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Hadronic spectrum in the chiral large N. extension
of quantum chromodynamics
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We study quantum chromodynamics in the chiral large N limit which contains a left-handed Weyl fermion
in the fundamental representation, a left-handed Weyl fermion in the two index antisymmetric representation
and dN . — 3P left-handed Weyl fermions in the antifundamental representation of the SUSN ;P gauge group.
We construct gauge singlet composite operators and study their masses and correlation functions at large N..
It is shown that all hadron masses scaleas  N2n, where ng is the number of constituent quarks in the hadron.
In addition by simple gluon exchange considerations it is seen that scattering amplitudes between hadrons
have the same N scaling as the mass of the lightest hadron involved. This is the case provided the hadrons in
the scattering amplitude share a sufficiently large number of constituent quarks. The chiral large N extension
also allows for other nontrivial processes. For instance we consider two different baryonium states that are
unique to this extension and that decay via emissions of two- and three-quark hadrons. Also other nontrivial
scattering processes are considered. Finally, we study composites made of a mix of left- and right-handed
fields. We categorize multiple groups of hadrons within the full spectrum according to their flavor structure.
Within these groups all n-point functions scale the same.

DOI: 10.1103/PhysRevD.110.014012

I. INTRODUCTION

The strong interactions of quarks and gluons continue to
be one of the most difficult phenomena to understand even
more than 50 years after the birth of quantum chromody-
namics (QCD) [1-4]. Great effort has been put into
understanding the spectrum and physics at low and
intermediate energies using lattice simulations [5,6],
higher order perturbation theory which is currently known
to five loops [7,8] for the running of the gauge coupling,
large N, techniques [9,10], holography and light cone
quantization [11,12]. The literature is immense but a few
recent reviews on several aspects of QCD can be found
here [13-15].

In this work we are particularly interested in studying
QCD in a large number of colors N approach. In QCD with
N ¥ 3 the quarks are in the fundamental representation of
the SUAN. ¥4 3 gauge group. In the original large N,
extension of QCD [9,10,16-19] the quarks are kept in the
fundamental representation of the SUAN .b gauge group. We
will refer to this extension as the ’t Hooft limit. At infinite
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N, there are a number of simplifications such as the
suppression of nonplanar diagrams and quark loops. On
the other hand it also adds a complication since baryons
contain N quarks and therefore an infinite product of
quarks at infinite N..

Another extension is to consider the ’t Hooft limit but
with N¢ pairs of fundamental quarks and then taking the
large N¢ limit with N¢=N, kept fixed [20,21]. We will refer
to this as the Veneziano limit. This limit is used in [22-25]
in a holographic approach to QCD.

At N, ¥4 3 the two index antisymmetric representation is
equivalent to the antifundamental representation. So to
remedy the baryon problem just mentioned, Corrigan and
Ramond proposed to add a quark in the two index
antisymmetric representation in addition to the fundamen-
tal quarks [26—30]. As one extends QCD to large N, one
can then form a baryon containing only three quarks at any
N.. We will refer to this extension as the Corrigan-Ramond
extension. If the quarks belong to the two index antisym-
metric representation then the quark loops are not sup-
pressed at infinite N and are on an equal footing with the
gluons in terms of counting of the number of degrees of
freedom.

Now it is also possible to consider having only two index
antisymmetric quarks and no fundamental quarks at any
N, [31-34]. At N, ¥ 3 this is still ordinary QCD. We will
refer to this extension of QCD as the orientifold limit. If we
consider a single quark in the two index antisymmetric
representation at infinite N this extension shares parts of

Published by the American Physical Society
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its bosonic sector with N % 1 supersymmetric Yang-Mills
theory [35-39].

In this work we consider a large N extension of QCD first
proposed in [40] that in a certain sense stands in between the
’t Hooft and orientifold large N, limits and simultaneously
share certain features with the Veneziano limit. It does soina
nontrivial way since it is a chiral extension of SUSN ¥4 3b
QCD and one has to be careful about possible gauge
anomalies. It is in this little honey hole between the above
mentioned time honored large N extensions our investiga-
tions will unfold. Our results are complementary to the
results derived in the past for the various large N, limits.

The work is organized as follows. In Sec. I we introduce
the large N chiral extension of QCD, in Sec. Il we comment
onanumber of different properties of the chiral extension and
in Sec. IV we give a brief review of large N. counting
techniques. In Sec. V' we provide a detailed analysis of the
composite spectrum, their masses and various interactions.
We finally end with the conclusions in V1.

Il. THE CHIRAL LARGE N, EXTENSION

The chiral large N, extension is a third limit of QCD
which in some sense is in between the 't Hooft and
orientifold limits. Schematically it can be seen in Fig. 1
which is taken from [40]. In the chiral large N limit we
consider a gauge theory with gauge group SUdN ;b and with
associated gauge fields aA“p} in the adjoint representation
where p %0;...;3 is a Lorentz index and i;j % 1; ...; N,
are SUAN b gauge indices. We also add a single left-handed
Weyl fermion g, in the fundamental representation of
the gauge group and a single left-handed Weyl fermion

G ¥a—Gd" in the two index antisymmetric representation
of the gauge group. This is a chiral gauge theory, and in
order to cancel the gauge anomaly we add dN. — 3p left-
handed Weyl fermions Q.;.¢ in the antifundamental rep-
resentation of the gauge group. Here the index o is an
SLa2; Cb spinor index and f is a global SUSN — 3b index.
We will refer to £ as a flavor index. The theory is a

|66
L
£
: O+H+@ ~es)
o N
.\(b
(o
O+0
‘t Hooft
FIG. 1. The three different large N limits of QCD.

TABLE I. This table summarizes the particle content of the
chiral extension, and shows the charges of the two anomaly free
Udlb symmetries.

ESUSNP  SUGSN —3p U,d1p U,d1p
o O 1 N, -2 —ON, — 1p
G E 1 N, —4 2
Qq O O —ON, —2b -1
A, adj 1 0 0

generalized Georgi-Glashow model [41] and is chiral for
N. > 3. We here summarize the particle content
The two Abelian U§1b symmetries are both anomaly-free®

N —2

1 1
Uil ZiNc—20b 2= 50N = 28Nc = 30 ¥4 0

a1p

N, — 2

U,01p —%6Nc—lbb 2—%6NC—3D1/40 a2p
Most importantly for N, % 3 the Weyl fermions Q..
disappear from the spectrum and the two index antisym-
metric representation is equivalent to the antifundamental
representation. Therefore the theory is vectorlike and is
SUGN, ¥4 3 QCD with a single massless Dirac quark
flavor
L

da
1 .
Wp % EijkEGBqBMk 03p
Our convention for Hermitian conjugation is
66 b Vi Gaiy 84p

The model above provides a third alternative large N,
limit for one flavor QCD. First note that it partly resembles
the ’t Hooft limit since it contains a Weyl fermion ¢}, in the
fundamental representation of the gauge group. Second
note that it partly resembles the orientifold limit since it

contains a Weyl fermion qL‘E}J in the two index antisym-
metric representation of the gauge group. In this sense the
large N, limit we are considering stands in between these
two time honored limits. Now third note that to nontrivially
cancel the gauge anomalies we add N — 3 Weyl fermions
in the antifundamental representation. Taking the large N,
limit of these fermions then in some sense resembles the
Veneziano limit where one takes the limit of a large number
of flavors. As a final remark please note that we can trivially
extend the large N limit of one flavor QCD to that of N¢

'The contribution from n left-handed Weyl fermions to a U§1b
anomaly is T,Qn where T, is the trace normalization factor of the
gauge group representation r and Q is the Udlp charge.

014012-2
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flavor QCD by just adding N¢ copies of the same fermion
content.

Various possible candidate phases for generalized
Georgi-Glashow models have been studied in [42]. In
general the phase structure of chiral gauge theories has
been of significant interest in the past. See for instance
[40,43-55].

When taking the large N limit we must be careful and
make sure that we correctly normalize the fields and
properly account for various SUAGN.P color factors. We
want to use the double line notation and hence we consider
the gauge fields and the Weyl fermions in the two index
antisymmetric representation as rank-2 tensor representa-
tions. We here summarize our conventions for the gen-
erators T2, a¥%1;...;N2—1 the trace-normalization
factors T,, quadratic Casimirs C, and dimensions d, for
the representation r

STeb T s cF%Ng_l- de %N, 85
] 2 2N, ¢
: . 1 NZ—1

OTebd va—dT2bJ TeYZ Cg¥%———: dg%N. 06b

2 2N,
OTRPAC44ifC  T,o%N. Cpa%N. da%NZ—-1 &7p
N,—2
OTSAPS VadTr ATTRAS  Topp Ya—
N¢ b 1pON, —2p NN, —1p
CM%% 2A1/4Ca+ 58p
C

We also need the following two important identities
(completeness relations)

gTapi aTask, 1/4% 51,8, - Niaijak. 69
C
BATDIBATBK! 1/, %aailaik — §ikilp 3100

where AP is a set of linearly independent Ng x N,
matrices SATPT ¥ —A". There are NN, —1p=2 such
matrices, so r % 1;...;N.ON; —1p=2 [56,57]. We also
want to rescale the fields so that the gauge coupling only
appears as an overall factor in the Lagrangian. We discuss
this in detail in appendix. With these conventions the
Lagrangian is

N 1 o e aEe o
L Y Tc —ETrFWF“V b iqo"D,q b 2iTrdde" D, &P

b iQ3d"D,Q - %Tréa“Aubz b 2Trcd—o"Dycp  §11p

with

Foo Vs F3,T2 % 0,A, — A, — A A, 812p

qui 1, apqi _ iaAupijqj; (jAHIDij Yy Af}éT%Dij 013p

0D, GPY ¥4 0,G" — i80A,P', G4 b G*6ATPJP;
OAP'; Va AZST2P'; d14b

D,Q; ¥40,Q; — i6A b d;
8AP) Vs ARBT 2D Vs —AST 2 h) §15p

8D,CP'; ¥ 0,y — Ay C T BAPT Y ARSTED;

and the 't Hooft coupling being A ¥ g?N.. We have chosen
linear covariant gauge with gauge parameter & while ¢ %
c2T2 are ghost fields in the adjoint representation. This
Lagrangian is equivalent to the canonically normalized
Lagrangian in Eq. (A1) when appropriately rescaling the
fields and carrying out the traces.

We can obtain the propagators by multiplying the
canonically normalized propagators in Eq. (A8) by the
completeness relations in Egs. (9) and (10). We then
obtain

héAuéxbb'JﬁA\,éybbkﬂ 1/4%AUV6X—yDNA 6i|6kj —Ni6ij6k|
Cc Cc
holt,8Xb0],. OyPi Va sadax—ybléi ;
). NC
L IS il 1 A i s N
hGa~ OXPGgua OYPI /4ZSadéx—be—66 (&) —06'0! b
Cc

hQu:i.¢OXPQL T ybi ¥4 sadax—yleaistff“
C

A

A 1
i ki1 —
hdcdxbb Jacaybb L /42A6X yDNC

&&—i&&
817p

for the propagators. Neglecting the Lorentz part of the
propagators and only writing the color structure we present
them as the following Feynman diagrams

014012-3
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() ) = —— - () | —= =
(Faw) =i ————]
(@ (v) = ]l —— ; -

(@@’ w) =

(), @) = |

For simplicity we have not written an arrow on the flavor
line for the Q propagator since it will always point in the
same direction as the arrow on the associated color line.

I11. SOME OBSERVATIONS

In this section we comment on a number of observations
and properties of the chiral large N limit. First, counting of
the degrees of freedom (neglecting spin) gives

large N¢

A, N2-1 N2
large N

Oa N N¢
1 largeN, 1

ENCGNC— E

Ng

Ua

Qa;f

So the number of degrees of freedom of the g, Weyl
fermion only grows linearly as opposed to the degrees of
freedom of all the other fields A, Gq, Q¢ Which grows
quadratically. In other words the fundamental quark is
suppressed.

Consider now the running of the ’t Hooft coupling
A\ ¥ g?N¢ which can be found from the running of the
gauge coupling g. To one loop order the running is

1p N2

large N

NON, — 3 818p

dA ~ A
I /A
ha =2\ by b 819p
~ 1 Ne—2 N;—3
1 _ - C _ C
PR T
' Ga qu Qu;f
large N 520b

127183 T 1€
A, G Qu;f

So again we see that at the one loop level the fundamental
quark g, loops are suppressed by 1=N. compared to the

other A, Gq, Q. loops. The theory is asymptotically free
at any N..

At last consider the cancellation of the qubic gauge
anomaly. The chiral large N, extension is a chiral gauge
theory and the qubic gauge anomaly is

SUBN P |§f} b ?Ncgz_ 4=

large N¢

te~
Ca

Ng—3p %0
e ¥

Y0 021bp

bea}

o f

Again we see that the relevance of the fundamental quark
0y is suppressed relative to g, and Qg.¢ in canceling the
gauge anomaly.

IV. LARGE N, COUNTING

The N - oo limit greatly simplifies the task of evalu-
ating Feynman diagrams. Our most important task will be
to keep track of powers of N..

In the large N limit we take the "t Hooft coupling A to be
fixed. As summarized in Eq. (17) propagators come with a
factor of Nic Interaction vertices come with a factor of N.

Each color-, and flavor-contraction comes with a factor
of N

o' YaNg; e aN.—3 N 322

A. Gluons

We will first demonstrate how large N counting works
for a pure Yang-Mills theory. Consider a simple vacuum
bubble in double-line notation

~NZ

014012-4
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In this work we take time to flow in the upward direction in
all Feynman diagrams. To find the N. scaling of this
diagram, we only need to count propagators, vertices and
color-loops. There are three propagators, two vertices,

WD

If we change the index-structure of the very first diagram,
we can draw something subtly different

This diagram has three propagators, two vertices and one
loop, so it scales like 6Nicb3 x N2 x N, 1.Relative to the

other diagrams, this one is suppressed by 1=NZ which
makes it irrelevant in the large N limit. The above
examples hint at a hierarchy of Feynman diagrams in
the large N. limit—diagrams that can be drawn on a flat
plane (planar diagrams) are dominant compared to the
diagrams that require a third dimension to be drawn
(nonplanar diagrams). One can now construct a 1=N;
expansion such that the sum over all N, leading diagrams
(the planar diagrams) samples a subsection of diagrams at
all loop-orders. This is of course well known.

B. Fundamental quarks

Next, we can add q'-quark lines to the vacuum bubbles.
The counting rules are the same

— ~ (&) xNZxN2 =N,

These kinds of diagrams scale like N because the
quark line is a single color-line (as opposed to the gluon

and three color-loops. In total, the diagram scales like
(:SNicb3 x N2 xNE N2 As examples the following dia-
grams are also all N2

CO==)

|
double-line). If we keep the diagram planar, but add some
number of internal g'-quark loops

B B

we see that each internal quark loop gives a factor of Nic So
internal fundamental q'-quark loops are suppressed. Yet
another suppressed diagram with an internal qg'-quark
loop is

Of course, nonplanar diagrams are also still suppressed.

To sum up: If we want quarks in the diagram, the planar
diagrams with a single quark loop on the boundary
dominate. These diagrams scale as N, which is sublead-
ing compared to the gluon vacuum bubbles NZ.

C. Many antifundamental quarks

The antifundamental quarks Q;.¢ have a flavor-line in
addition to their color-line. The consequence is that
Q-quark loops are not suppressed, and internal Q-quark
loops do not alter the N, scaling

014012-5
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In the third diagram we see that crossing flavor-lines with
fermion- or gluon-lines is not suppressed. Second, planar
diagrams still dominate over nonplanar ones

Third, interrupted Q-quark loops, internal or not, are
suppressed. The reason for this rule is that the interrupted
quark loops reduce the number of color-loops. This
becomes obvious when we use double-line notation

c

The two index antisymmetric representation is the one used
in the orientifold large N extension [35-39].

The vacuum bubble large N, scaling of the various quark
types is in agreement with the observations discussed in
Sec. I1l. We know how to find the N scaling of any given
diagram in the chiral large N. extension and will now
move on.

V. HADRON SPECTRUM

What are the minimal colorless hadrons in this theory?
First, we have the order N.-quark composites that only use
one quark-type each

B Ya€i, iy 9" Q"%; §23p

Bn,-p ¥4 €, iy 01102 ... Gt ;N even 24P
Beven Y4 €i, iy, €jy.jn, 079 .G s N even  625p
Boga Y4 €i, iy, €. jy, 07 ... GieIve 40, N odd  326b
Brt,.. £, %€ ™ Qig, .. Qi ity 027p

We have suppressed the spinor-indices. It is clear that when
N, ¥ 3 the composite B ¥4 €;;,q'c/g* becomes the usual
baryon APP in one-flavor QCD. Note that the B,y
composite vanishes

D D

D. Two-index antisymmetric quarks

The two-index antisymmetric quarks ", similarly to
the gluons, have two color-lines. In contrast to the Q-quark
loops, interrupted §-quark loops have the same scaling as
uninterrupted ones. In other words, all planar diagrams
comprised of §’s and gluons, are  N2—notice that this is
the same scaling as in pure Yang-Mills

5 i Atingd
Bodd ]/4€il”_iNC€j1._'chq 1 ...g NeIne
Ya 6_le°Ei1-..iNc€j1---chq¥%jlil "-qf&chiNc

Y, gide .. gineine Y4 —Bogq ¥4 0

4 7€ ing Sy ing

We can also build order N.-quark composites by combin-
ing different quark-types. One combination is

Matn -2 ¥ €i, iy, G712 Q2. qve 628p
This becomes the usual meson M ¥z€;;,§7% g when N %4 3
in one-flavor QCD. For general N, it is just one member of
a whole family of composites. These consist of § quarks
and s fundamental quarks

Mag'SD%Eil i qlﬁsiliz ___qt&izg—lizg inSpl_“qiNc; 2§b51/4 Nc
; cing

029p

As we vary S and s with 25ps ¥ N, fixed, the Mg.o
family of composites interpolates between the B and Bchz
composites. When § %2 0 and s % N we have My » % B
and when § % N¢=2 and s % 0 we have My 2505 ¥ By 2.
There are also the following two composites which consist
of a fixed number of quarks not scaling with N

X¢ ¥ Qi §30p

Yep Y2 6 Qi Qjp d31p

The X¢’s have the same color index contraction as the
mesons in the 't Hooft limit, the difference being that

014012-6
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they in addition have a single SUON — 3P flavor index. The
Yep's are also somewhat similar to the baryons in the
Corrigan-Ramond extension [26] except for the two
SUGN. — 3p flavor-indices.

Finally, B is the only composite exclusively made of
two-index antisymmetric quarks that can be identified with
an ordinary baryon. It consists of N.ON. — 1p=2 quarks
G, and is nontrivial to write down for arbitrary N..
In SUG43b, the two-index antisymmetric representation is
the same as the antifundamental &; ¥4 €;; %%, and the
baryon is

= ik & 6 Atiniy ftinds fkak
Bisuaas ¥4 €9%Gi0; 0k V2 2€;,,5, €i k., 012 G2 ¥ 832p
For SUd4b,
. >
Bisuaar SIgn60b€a064bEU@Abacazbaoalb
g S
> €ty BoasoBoion otz E oz Bosen PoansBoian
x q*‘YGlBl qmzﬁz qL&ung qktu4[34 q*ﬁasﬁs qL‘W353 833p

The B is the large N, extension of this. It is constructed in
such a way that it is an antisymmetric combination of all
possible two-color labeled quarks, and it can be identified
as the Skyrmion of the orientifold limit [31]. y

To sum up, for N.% 3 the composites B, B and
Mg1.n,—2» are the standard baryons and meson, while the

rest (By,=2; Beven: Bt,..f,,» Mg X, Yee) all vanish. In

terms of color-structure, every one of these composites also
|

|
I I

: I I

Bitn 11 : :
: I I

I I

appear in the Corrigan-Ramond extension, except B, £y,
X¢ and Yep which are unique in this chiral setting.

_ One can also include the conjugate quarks Qg ng,
Geij and build conjugates of all the composites we have
mentioned so far, as well as some additional ones, namely
gq mesonlikes, arbitrarily large extensions of the tetraquark
and flavor-analogs created by swapping any number of g’s
with Q’s.

a'as; gtz ax‘zizg ... Gm-sm él:«:imi1
qiql&iliz Gfals ... gfin-im ai,; gt Gy ---(jwimim,[,1 gimgime:;

b flavor analogsdq’ — Q¥f:q; - Qi.¢P

qﬂj 5:«],- ;

We will consider these composites later in the text.

A. Hadron masses

In this section, we will use our large N tools to examine
some of the properties and interactions of different com-
posites in the theory. We will use diagrams and group-
theoretical factors (quadratic Casimirs) to determine the
masses of the composites. Afterward, we examine inter-
actions between composites using large N, diagram
techniques.

1. Mass: Diagrams and combinatorics

First, we will use a diagrammatic approach. The goal is
to examine gluon-corrections to the propagation of the
hadrons with many quarks (which is every hadron except
X and Ygg)

37 Beven-, BNC/2

Ms.6)

Gluon exchanges: The first-order correction to N.-quark diagrams come from a one-gluon exchange between two of the

confined quarks. The possible exchanges are

HH H

014012-7
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To specify what the color-flow of these diagrams look like,
and then determine N¢-scaling, we burrow a procedure
from [58] which is
(i) Select a suitable vacuum-bubble
(if) Cut the quark lines twice to create the desired gluon-
exchange
(iii) Find the N¢-scaling by examining how many loops
are destroyed
We now comment on each of the one-gluon exchange
diagrams above.
a. The first diagram is an exchange between two
fundamental quarks. Using double-line notation

L
|

The diagram above show how to get gluon-exchange a by
cutting a suitable vacuum bubble and twisting the gluon-
propagator. Let us count N.’s: The vacuum bubble is N,
but cutting the quark-lines has the side-effect of destroying
two color-loops  1=NZ2. In total this leaves us with Nlc for
the resulting diagram. Notice that our knowledge of the
color-flow comes from the planar diagrams.

b The second type of gluon exchange would be seen in
the B; Beyen; Bsimple Daryons and the Mggq-family. A
suitable diagram for analysis is a first-order correction to
the " vacuum bubble

%LW

o<

N

The vacuum bubble is N2 while cutting the quark-lines
destroys three color-loops  1=NZ. This leaves us with -

N

in total.
c: The third type of gluon-exchange only shows up in the
Br,..f, baryons. Again, we should cut a suitable vacuum

bubble diagram

P
7anN L
! \

1

3

The vacuum bubble is N2 while cutting the quark-lines
destroys one flavor-loop 1=N. and two color-loops
1=NZ. This leaves us with Nic in total.

d: The fourth type only shows up in the Mg.q, compo-
sites. Cutting

k...k . L1

The vacuum bubble is N, while cutting the quark-lines
destroys both color-loops  1=NZ2. This leaves us with Nic
e: The fifth type of gluon-exchange only happens in Y ¢.¢

The vacuum bubble is N2 while cutting the quark-lines
destroys one flavor-loop 1=N. and two color-loops

1=NZ. This leaves us with 5.

f: The sixth and final type ‘of gluon exchange only

happens in X¢
o< — | |

- =

The vacuum bubble is N while cutting the quark-lines
destroys one flavor-loop 1=N. and one color-loop
1=N.. This leaves us with N x Nic x Nic Ya Nic

As we might have expected from an inspection of the
Lagrangian, all of the one-gluon exchanges are of the same
order in N.. The next step in determining the mass of
composites is to consider the combinatoric factors.

Combinatorics and mass: The combinatorics of the order
N.-quark composites are straightforward. They can each
make N2 distinct quark pairs with each pair contributing
with a 1=N_ gluon interaction. Thus, in total, the gluon
interactions (and the masses of the composites) scale
like N—ls x N2 ¥ N..

The B however, is a different story. When examining
the combinatorics of the B, we have to consider a new
subtlety [32]. A general one-gluon exchange changes the
color-indices of a quark-pair from ij; kl to ik; jl

i k il

ij k1
Because this baryon is an antisymmetric combination of
all possible two-color labeled quarks, the ik;jl pair
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already exists in the B composite. This violates Pauli’s
exclusion principle, and we must conclude that not all
gluon exchanges are valid within the B composite [32].2
However, if the two quarks in the one-gluon exchange
share a single color-index, the process does not change the
color of the quark pair (up to a permutation)

il Ik
ij jk
What does this mean for the combinatorics of a one-gluon
exchange? When choosing the first quark, there are N2 to
choose from, but for the second, there are only N, quarks
that share one color-index with the first. Combining these
yields a total combinatoric factor of NZ. Gluon-interaction
in the B (and the mass) is thus - N3 % N2,
For two-gluon exchanges, there are no restrictions on
which quarks can participate. Therefore we have N2
choices for both the first and the second quark, giving a

total combinatoric factor of NZ. Because two-gluon
exchanges contribute as %,* the total contribution to the

N_gi
B mass is again N2

ji I k

b

=S

ij kI

This argument can be extended to any and all classes of
diagrams exclusively made of quarks in the two index
antisymmetric representation [59]. The proof uses simplified
equivalent diagrams by introducing “gluon-roundabouts.”

The above analysis only includes two-body interactions.
How does it extend to n-body interactions? We will again
borrow a procedure from [58], and use the ’t Hooft baryon
B to argue that n-body interactions give the same result as
two-body. If we for instance cut a planar vacuum bubble
with three gluons into three pieces, we destroy three color-
loops, ending up with a factor of NZ2. To balance this,
when you choose three quarks from the baryon, it can be
done N? ways. Again, the total contribution is N..

“Note that this is not a problem for By -, Beyen OF Mg

*If we insist on our procedure of cutting diagrams, the two-
gluon exchange in the diagram can be obtained from a nonplanar
diagram. This gives the 1=N2 factor.

Oq*ﬁk

The generalization is that an n-body interaction scales
like NI™™ > N2 ¥4 N..

Lastly, d disconnected pieces contribute with Ng. When
we uncover that Mg N, itis easy to identify higher order
contributions with the expansion of the propagator

: ) Mat?
eiMet 1/, 1 — iMgt — —2

b 834p

These points about n-body interactions and multiple dis-
connected pieces hold for the other hadrons as well. With
this in mind, we will keep just discussing two-body
interactions. One might worry that this kind of diagram-
matic analysis is not rigorous enough, or maybe only holds
for “heavy” quarks. To show that the results also are valid
for light quarks, we will now perform an alternative set of
calculations, and end up with the same results.

2. Mass: Hamiltonian approach

Another way of analyzing the masses of composites, is a
“semirelativistic” approach described in [60] for light
quarks.

Our simple baryon-Hamiltonian contains a relativistic
kinetic term, and two potential terms. The one-gluon
exchange potential Vo contains contributions from all
quark-pairs, and the confining potential V. receives con-
tributions from each quark:

Hbaryon VaT bvoge ch
3¢hg i 3 Ao b
Y, p?payojxi—Rj —  ———%_ §35p
ivil i<jyul 2 )% =)

where o is the string tension between quarks (o is expected
to be independent of N at leading order [60]), and n, is the
number of quarks in the composite. The strength of both
potentials depends on the representation of the quarks that
are part of the baryon:

— Cr

C, r,—C
ag Vs bq,q, Ya —— NC” 2 §36p

~r.
Ce’

where C, is the quadratic Casimir of the representation of a
single quark in the composite, and C,, , is the quadratic
Casimir of the representation of a pair of quarks undergoing
a gluon-exchange. Clearly, the next step is finding the
relevant quadratic Casimir operators. Using
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N 1PN 3N —1P3N—2b
8

N8N —1p3N s —203N —3p
24

! 2N,

3N — 23N —3p3N —4p 43N p1pINZ—N—4b

TABLE Il. The dimension, trace-normalization and quadratic Casimirs of all relevant representations. See part
b) in the text for an explanation of why all these representations are relevant.
d, T, C,
O N 1 aNZ-1p
c 2 2N,
Adj ON; p 1pdN. — 1P ch—z N,
H NN —1p N2 32N2—2N —4b
2 2 2N,
= NN p1p Ncp2 32N2p2N.—4p
2 2 2N,
EP N¢ON.—1pdN;p1p NZ-3 30N2Z-3p
3 2 2N,
a NN —1pN —2b N —3pN,—2b 30N2—2N.—3p
6 4 2N,
EH N23N 1PN —1p 8N 2PN 3N, —2p 43N p2bdN . —2p
12 6 2N,
aﬂ 3N —2pdNZ—N,—4p 43NZ—N —4p
p

N8N, p 1PN, — 2b

12 2N,
33N p1piN,—1p 3N2-2N.-1
2N, 2N¢

s -
¢ v, ai gy, MNe P 16N, — 10
d, d,

T, 837p

or equivalently, if one only knows the Dynkin indices
day; ay; ...;ay,—1P of a representation,

D g
C, Y
mvsl
>
b 2ndN, — mba,ay,
n%.0

N¢ON. — mbma,, p mdN, — mba?,

d38p

the relevant Casimir’s are obtained and collected in Table 1.
|

D®D:ED€9E],
B@BZEH@@Q@H

i@izg@ﬁi

The sixth tensor-product deserves more space and a dimen-
sional check:

H@E:D@

040p

0

The last representation on the right-hand side (rhs) has
N, — 1 boxes in the first column, and two in the second. We
will call this representation rp because its shape resembles
that of the letter P.

The confining potential: As summarized in Table I, the
aq-coefficients from (36) are all 1. This means that all the
composites have a contribution to their Hamiltonian pro-
portional to the number of quarks 8 angP, see Eq. (35).

The one-gluon exchange potential: Equation (35)
instructs us to sum over all possible quark pairs that can
undergo a one-gluon exchange. We will call the number of
pairs P. See Table IV for a counting of pairs in each
composite, and how much they each contribute to the one-
gluon exchange potential. The next step is to insert the right
b-coefficients into Table IV. But which ones should we use?
There are six quarks-pairs, and each have multiple possible
color-channels

O® O = Singlet + Adj]

D@BZ@@EP

d39p

Having enumerated the different possible color-channels,
we can now calculate their individual coefficients. As an
example, see the following calculation

TABLE I1l. The color-channel-dependent coefficients of the
confining potential V..
C,=C¢ Features in
O 1 B; Ma§;sb; Xf
0 1 Br,. £y X Yep
H 2;,1,\‘;__12; B: Bn.=2; Beven; Magso; Y £
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TABLE IV. The different composites each have different number of quark-pairs, affecting the strength of the one-
gluon potential V4. Notice that some composites have multiple different types of pairs. These are separated by a

line-space.
Large N contribution
Ng 2P 10 Voge
B N¢ Ng x 0N, — 1p NZbgq
Beven N¢ Ng x 0N — 1p NZbg g
Bn,-2 % Ne s e — 1p N2by g
Bf,.. £y, N¢ Ne x 0N — 1p NZboqo
B NcéNzc—lb Ncal\;c—lb < 6NcaNzC—lb —1p Nébgg
Mﬁl;Nc—ZD 1 1x 6Nc —1p=2 Ncqu
PN, - 1P PN, — 1P x 3N, — 2P PN2byq
Mos:sp 5 565 — 1b 835 — 1Pbgg
s psds — 1p ppsds — 1pbggq
p3s p3sbyq
Xf 1 b 1 1=2 qu
Yep 1p2 3=2 Zbgg P byg

1
bEIQ a —Cr - C|_: - CAZ
Ne °

1
#3N2 — 2N, — 1 — N2 — 1p — 82N2 — N — 2b

Ya N2

1 1

= - 341p
N2 2N

1

The results are gathered in Table V. When considering
whether a color-channel is allowed, we should check if it
gives rise to attractive or repulsive interactions between the

TABLE V. The color-coefficients for the one-gluon-exchange
potential V gge.

Possible color

channels Dy, q, Attractive?
o®O m &b
: i
o®O Adj. pNig
Singlet =1
n®g i — b
E -2 _2
NZ NG
H®H = ~&pE
iy i
—4 _ 4
: NE TN
g®o re pﬁg—ﬁ
o b&bit-1
6®a En by
0 -1 _1
H NE W

quarks in the large N limit. This is also summarized in
the table.

Notice that every tensor-product yields just one attractive
representation except for g ® gand g ® &. Furthermore, the

resulting color-channels (such as { and E) have different

large N, behavior, so the distinction is important.

First, we will look at the choice between rp and . In this
case, the b-coefficient for ois 1, and simply dominates
over the coefficient for rp which is_ 1=N_..

Next, the choice between EF and E. This is in fact what
we treated in the combinatorics of the diagrammatic
analysis. For By_-; Beven and Mg, the E representation
works just fine, and it also naturally dominates over
(their b-coefficients are  1=N. and 1=N2 respectively).
However, B is constructed in such a way that a one-gluon
exchange can only happen between quarks that share
one color index. This is exactly what the F-representation
does—two of the colors are symmetric as apparent from the
Young tableu.

Finally, we can insert the attractive by, 4, coefficients, and
calculate Vo for the different hadrons. The results are
gathered in Table V1. To conclude on the one-gluon-potential:
Once again, each hadron gets a contribution proportional to
their number of quarks.

Bounds on hadron mass based on a4 and by, 4,: We have
now seen how both the potentials of the Hamiltonian are of
order ng. Next, with a little help from [60], we can set an
upper and lower bound for the masses of our composites

a ng—1 a b
i i 2 q “-q Q2 :s
nqum‘hlpj P°p 2 ng P r vl
q
= Mcomposite = 4aq6an - bq1q2 P3=2p 042p
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TABLE VI.  Final contributions to the one-gluon-potential V g4
after calculating number of pairs, and then weighing each pair
with their respective quadratic Casimir.

Large N, contribution

Ng t0 Voge

B N, N,
BNC:Z N¢=2 Ne
Beven % Ne
Bfl L Nc Nc
B NN —1p N2

- 2 c
M, 1p N, —2p N,
Mag.sp $ps §sp§a§—1Nppsas—1p N,
X 1p1 1
Yf;fﬂ 1 b 2 l
where Q  ng is the band number of the considered state in

a harmonic oscillator picture. Inserting into Eq. (42) and
taking the large N limit, we again arrive at the masses with
the same N scaling as  ng.

\

B Xy

-

——
B X

When evaluating these diagrams, we need to take into
account nontrivial combinatoric factors. To highlight this,
we look closer at the quark-quark exchange channel with
one gluon (the second and third diagrams).

First, assign a color i to the in-going quark from
composite with lowest ng, in this case X¢. This gives a
combinatoric factor of 1 (there is one fundamental quark in
X¢ to choose from). Follow the color-flow, and carry the

Siz MRl

Next, the color of all in-going quarks should match their
outgoing color for the hadron to be gauge invariant. We
should assign the i to the outgoing quark from X¢, and
follow the color-flow again (this time backward)

Before moving on, we should note a detail about the
masses of By -, and Beyen. Because they are symmetric in
their gauge-functions under exchange of two quarks, they
receive a contribution from Fermi zero temperature pres-

sure (which maximally scales like Ng>) [31].

B. Hadron interactions

1. Interactions: Scattering diagrams

Following a diagrammatic analysis similar to Witten [10],
we can get a heuristic idea about how scattering between
the different hadrons (B;ENCZZ;éeven;E;Bfl___ch;Mag;Sp;
X¢:Y¢p) scale with Ng.*

The idea is to examine all possible exchanges between
the hadrons, using the gluon exchanges from Sec. VA 1. To
evaluate the final effect of these diagrams, we have to
develop a procedure to determine the associated combina-
toric factors. To establish this procedure, we should study
some examples:

Exchanges between B and X¢: How might these interact?
They could exchange a quark, gluon or both. Let us draw
all possible diagrams up to one-gluon exchange

—— ——
B X B X

H g

At this point the diagrams differ. The colors of the first
diagram are fully determined giving a combinatoric factor
of 1 (there is only one quark in B with the color i), while
there is an undetermined color index j in the second
diagram giving a combinatoric factor N (there are N,
quarks in B with an arbitrary color). Thus, the diagrams
(with combinatoric factors) contribute 1=N. and 1 respec-
tively, so MOB; X¢Pycatiering 1. This is strong enough to
affect the X¢’s, but not the "t Hooft baryons.

If we had instead examined the g-Q channel (the fourth
diagram above), we would have found that diagram to
contribute  1=N.. It is a trend that cross-quarktype

*It should be noted that this analysis is at fixed velocity and not
fixed momentum because many of the hadrons have N.-scaling
masses.
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channels are suppressed—although sometimes they are
still the most dominant channels.

& combinatoric factors: Because B has N3N, — 1p
quarks, it can give a larger combinatoric factor than
e.g., B2 with Nc=2 quarks. Lets see an example of
this by examining their respective interaction with
B, £, :

In both diagrams, the interacting quark has one determined
color i, and one free color. For the interaction with B, this
means a combinatoric factor of N, (there are N quarks in B
with color i). For échz, the combinatoric factor is 1 (there is
just one quark in Bchz with color i). We conclude
that MB; Br,..fy Pscatering  Ne (strong enough to affect
Bfl---ch but not B), while MéBchz; Bfl...chpscattering 1
(not strong enough to affect either of the interacting
hadrons).

Next, compare the scattering amplitudes for pairs
0B; X¢P and ééchz;Yffob. Naively, one might think that
the amplitudes should be the same—the B;E~3Nc=2’s are
somewhat similar in structure, the X, Y’s are similar, and
both pairs can exchange a quark of the same type

13

D

——
BN,JZ Yff’
We have already seen that MOB; X¢Pyaering 1 for the

first diagram. In the second diagram, the two gluons
give 1=N2, there is 1 quark to choose from in Y, and
N.=2 quarks to choose from in |§ch2- In total, we get
MBBy_-5; Yeebeatiering 1=Ne. The By p’s do not affect
the Y ¢p’s even though they have quark content in common.

The two amplitudes differ because of the two index
antisymmetric quarks §" . A quark §" exchange requires
two gluon exchanges for the colors to be independent of
each other. This allows for large combinatoric factors when
B is involved, but also serves to suppress quark exchanges
in BNc=2; Beven; M6§;sp-

Maz.s» counting: Because they have a variable number of
quarks g' and g , the M.s, exchanges require a little more

of a delicate counting. Let us examine the scattering
amplitudes for the pair dMg.qp; BP

Min HIs!

N —— N
B

The first diagram, with combinatoric factors, contributes
Nl x§x2 Ni (there are 3 quarks to choose from,

and one quark in B with matching colors). The second
diagram, with combinatoric factors, contributes Nlcx
sx N, ¥s. The second diagram dominates, and we
get M6M6§;sb; Bpscattering S.

General procedure: For two composites v, w with
NgOvP < nqdwp, the general procedure for determining
the combinatoric factor is

(i) Assign colors to the ingoing quark g; from w.
Follow the color-flow and assign colors to wherever
they end up.

(if) Assign the same colors to the outgoing quark g
from w, and follow the color-flow backward to again
ensure that the colors are consistent.

(iii) Determine the two combinatoric factors by asking,
a: How many quarks could I have chosen for step 1?
b: How many quarks in v have colors that are
consistent with those determined in step 1 and 2.

Now we have the tools to examine interactions between any
hadron. Exhausting every possible one-gluon interaction
(or two-gluon when two index antisymmetric quarks '
are exchanged), we arrive at Table VII: The scattering
amplitudes should be compared to the masses of the
involved hadrons. This is done in Table VIII: We can
make a few interesting observations from Table VIII.

TABLE VII. Scattering amplitudes between the different ha-
drons. Notice that if the two hadrons have no quark content in
common, the interaction can be suppressed.

B Bn Been M B Br.r, X¢ Yep
B N2 N, Ne N; Ne N 1 1
By, No 1 1 1 1 1 1=N, 1=N,
By No 1 1 1 1 1 1=N; 1=N,
Mgw Ne 1 1 s s 1 s=N, 1=N,
B N, 1 1 s N, 1 1 1=N,
Brr, Ne 1 1 1 1 N, 1 1
Xs 1 1=N, 1=N, s=N, 1 1 1=N, 1=N,
Yep 1 1=N, 1=N, 1=N, 1=N, 1  1=N, 1=N,
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TABLE VIII. Qualitative analysis of scattering amplitudes. If the amplitude is strong enough to affect the motion of one of the
involved hadrons, we write a checkmark in the direction of that hadron.

B BNE/Z Beven M(§,s) B Bfl o fNe X Yf,f’
= v
v

M(gls) if s ~ NC ifs ~ Nc
v

B if s ~ N, v

(i) The B only scatters with itself, but affects the motion ~ Before calculating any correlation functions, note that
of everything else around. The By -, and Be,en Onthe  insertions of X¢ and Y¢p on quark lines are quite limited.

other hand affect nothing, and are only scattered by B. ~ They must appear pairwise. The possible insertions are
(i) The usual meson M.y 2> and the "t Hooft baryon B
scatter with each other. This might be seen as an
attractive feature of the large N limit because it '
resembles what happens in the N % 3 theory. !
(iii) The X¢ and Y¢p’s are scattered by Br,..fy, and B. i
The B and Mg, can also push around the X¢’s (j ( (D
D

because they all feature fundamental quarks.

The general pattern is that scattering amplitudes between
hadrons follow a number-of-quarks- and quark-type hier- (
archy: The hadrons with ng NZ interact with all other
hadrons, and are only scattered only by themselves.
Hadrons with nq N scatter with each other if they have
a sufficient amount of quark content in common. Hadrons
withn, 1 are scattered by higher nq  N-hadrons if they
have a sufficient number of quarks of the same type as the
ng 1-hadron. For fundamental and antifundamental
quarks, this “sufficient” number of quarks is N, and
for two index quarks it is N2.

Sa o

Notice that the two insertions of Y ¢¢ on an antifundamental
line yield an extra color-loop, but also breaks up a potential
flavor-loop (remember the arrows on the flavor-lines follow
those of the quark color-lines).

Y¢p: Itis only possible to draw even ny-point functions
2. Interactions: Correlation functions of Y¢p. The leading order contributions to the generating

The X¢ and Yge composites have n; 1, so we  functional from Y¢.q are of order NP™=2 and they look
can use correlation function analysis to examine them.  something like this:
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Note that instead of forming loops, the flavors are simply
propagating between hadrons (remember that the flavor-
lines also carry arrows with the same direction as their
associated color line). Adding sources, we learn that we
should include a factor of N, in the definition of \?f;fn if we
want the two-point function to be of order 1. Thus, a
general ny point function goes like:

o1 d
1 I
hYdxPY dypi ¥a N2 536xp 6Jayplogézl/zJ =P 1 043p

Like the standard meson operator, the diagrams contribut-
ing to ny-point functions are always I5\|°' Consequently,
they have to be normalized by a factor = N, and a general
Ny-point function is

L 045p
X

- 1-ny=2
WA e Ne N
Ny

This is exactly similar to the Y composite, and the
conclusions that one can draw from it are the same.
Mixing X’s and Y’s: It is easy to create diagrams with
both X, and Y operators. The general structure can be
constructed by starting with the skeleton of a hYYi
diagram. Then insert ny X’s two at a time on an arbitrary
Q line, and add ny Y's two at a time, directly connecting to
the previous YY pair. Because the X’s do not change the

N.-counting, the resulting diagram contributes N};bnvzz

N /2

Now, an arbitrary n-point function is

p L 1pny=2 1, n1-My=2-1y=2
Y Y e <N N oa6p

Ny Ny

014012-

.1 1pny=2 1-ny=2
hY {Z ﬁl N—QY X NC v ]/4 NC v 644'3
Ny

As a result of this behavior, the Y’s by themselves are
stable, free particles (hYYYYi N;!). Furthermore,
because the operator is single-trace, and the theory is
asymptotically free, we expect the N, - oo world to
feature an infinite tower of single-particles states [10].
Xs: The fact that the X¢’s consists of two different quark
types, means that they also have to appear in pairs. The leading
order contributions to logdZ#J b comes from processes like

~ N,

The mixed correlation function of highest order in N, is
hXXYYi NZ%, so interactions are suppressed.

Do the X and Y mix with the glueballs? The glueballs
can be inserted arbitrarily on available gluon-lines without
changing the value of a diagram. And because of planarity,
there are available gluon-lines everywhere. All in all then,
each glueball adds a factor of N¢"® in the correlation
functions, because of their normalization

1pny=2
c

. 1
T P S b

Y, NE2-nv=2e 347b

We conclude that interactions with glueballs are also
suppressed.

3. Interactions: Diagrams for additional processes

The gauge structure of our composites also allow for
nontrivial processes although many of them are suppressed.
They all conserve the two Udlp symmetries from Table | as
they should.

Xgand Y ¢p insertions: The X¢ and Y ¢p’s can be inserted
on the baryon lines. They have to be inserted tw%at a time,
and they each bring normalization factors = N, and
N, respectively for X¢ and Ygp. The color-flow of the
baryon lines thus allows for the creation of an X¢XT pair

(or YepY TP pair), or scattering between a baryon and X¢
(or Y¢gp). Some examples are
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X' X;

The amplitudes for a baryon (B; Bfl_,_ch) to scatter with X¢
or create an X¢XT pair, are the same

Mo

Normalization factors

Vil 048b
g 7

Combinatorics

Creating a pair of particles would of course also require the
baryon to transition to a lower energy-state. The amplitudes
for a baryon (B_flu_ch, B: Beven; BN -») to scatter with Y ¢¢
or create a Yp YT pair are also the same, but they depend

on WhICh baryon one chooses.
For Beyen: Bn,=2, the amplitude is

1
M 22 X Yo — 049p
¥z} e N
Normalization factors ~ Combinatorics
For By, £, the amplitude is
M 22 Yal d50p
¥} g > Mg
Normalization factors ~ Color loop ~ Combinatorics
For B, the amplitude is
Yal d51p

V3!

Combinatorics

Moy

Normalization factors

These results are compatible with Table VIII.

i INe—
€iy.in g g N

Baryonium states: Next, as an analog of baryonium
states in the °t Hooft limit [10,61], a single B¢, ¢,
may combine with B or BN - to form a “baryonium”
bound-state BBy, ..f,, Of BNC_ZBfl___fNC. First consider the
BBy, ..t State. With the inclusion of combinatoric factors,

interactions between the fundamental and antifundamental
quarks inside this state are N

J i

S B

.

B

Bh TNe

It is possible for BBy, .f,, 10 decay via successive
emissions of Xg’s. See Feynman diagram below. After
one such emission, we will call the resulting state
BBfl___ch_lélb. In this state, the remaining oN.— 1p
quarks eil___iNcqil...q‘chl form an antifundamental repre-
sentation, and the remaining dN. — 1p flavored quarks
€ meQ; g, ... Qi s, form a fundamental representa-
tion. In this sense, such a state behaves like a q'Q;
operator—it is capable of producing color-loops, and
should be normalized accordingly.

From this state, another meson may be emitted, and then
another, and so on. A general baryonium state obtained by
C emissions is then BBy, . 0Cb. We can write such a

decay as

Fne-c

BBs, .r, 0CP - BB, 1, . 0CP1PpXs 852

Fne-c c—Cp1p

The following diagram represents the first process in which
BBy, .. 1, emits the first meson X¢

fil -'iNr. (‘27:1,]01 e (JiNC—l'ch_l
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Here, the colored line is not a quark-line. Rather, it represents the fact the antifundamental €i1...iNcqi1---qiN°*

and fundamental e‘l---‘Nchl;fl...QiNC_l;ch_l states combine to form a gauge-singlet. The amplitude for an arbitrary X¢
emission is

1 1 1 N.—C
M . _ % —x——x @§N.,—Cb x C y—< = 353p
BB3Cb - BBICp1p i\lg_z N (a:c{glp_z N %_2 ? C{Z E I'?f} N .

BB;X¢Normalization factors

} Combinatoric factor ~ Color loops

The amplitude starts at 1 when the bound state consists of 2N, quarks, and ends at Ni when there are two quarks left.

In the other baryonium state ENC:ZBfl___fNC there again exists interactions between the Q and § which are  N.. This
baryonium state decays via successive emissions of Y¢p’s. The following diagram represents the first emission

€iy..in, gzl glinve—sine—2 N Qi Qin,
The amplitude for this process is Ms-154+2)
/_,/%
Ji
Mg, _,Bics- By -,BiCP1>
1 1 1 N,
X x x ——=C X 2C
‘\IE NSPL ™ N Rz} ﬁ?}
{Z } . . Color loops
BB:Y ;o Normalization factors ~ COMPinatoric factor
N.=2-C
Yo 854b
Ng

The amplitude starts at Nic when there are %NC bound i ]
quarks and ends at > when there are three quarks left. Mss
The BNC:Z_CBfl___fNC_CESCD states are thus narrower than the
BBy, ...f,,..0CP states by a factor of N.. Th litude i

A nontrivial scattering process: We now consider the € amplitude 1s
following nontrivial scattering process

1 1 .., S
Misg;sp . s3sp1:s—20 N2 x N2 x NZx 8 N2 d56p
C Cc C
Mssso P Yer - 2X¢ P Mggpi:s—20 055p
Maximally this process scales as Nic which is suppressed

Diagrammatically it is compared to the scaling of the mass of M.
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C. Flavor structure in the hadronic spectrum

So far, we have studied the composite spectrum of
the theory Wlthout including the conjugated quarks
Olocis Ol Qu We will now, for the sake of completeness,
consider broadly the spectrum, correlation functions and
interactions when they are included.

Flavor in the chiral large N extension: The antifunda-
mental quarks Q;.¢ have an SUSN — 3p flavor-index, while
the fundamental quarks g, and two-index antisymmetric
quarks " do not. How does this flavor-index contribute in
interactions between hadrons? First, any intermediate state
will be filled by gluons, two-index antisymmetric quarks ¢
and quarks with a flavor index Qg, because they all have
free energy scaling as  N2. Second, the flavor index can
form loops. Flavor loops can only be created by flavor-
contracted operators such as Tgf V2 Q.G Gy, Q4T
Third, operators can have free flavor indices, which do
not alter the scaling of any given diagram.

When considering the full spectrum, there are groups of
hadrons that have all gauge indices contracted in an
identical manner, but for which their flavor indices differ
(consider e.g., X¢ % q'Q;s versus X% q'g;). In this
section we will divide the spectrum into composite oper-
ators that contain no Q¢ quarks and all the remaining ones
that contain at least one Q¢ quark. The former set therefore
contains no flavor indices (free or contracted) while the
latter set contains at least one flavor index. In the case
where the latter set contains multiple Qg fields the flavor
indices can be either free or contracted. The former set of
composite operators that contains no Q¢ quarks will be
called flavorless operators while the latter set that contains

|

(TTT) ~ N 1/?

T

~ N4

First the flavor-loop provides a factor of N, to a diagram.
Second any flavor-contracted operator like T]: will have a
higher normalization factor by a factor of = N, compared to
the flavorless analog T. In combination this yields an
additional N, x N2 1, 1—pN ¢ Suppression of the second
correlation functlon compared to the first.

Generally, any n-point function of Tf is N2
suppressed compared to an n-point function of T.

at least one Qg quark will be called flavored operators. Note
that this distinction implies that the two flavor singlet
operators T ¥a §;§" G 0 and Tf ¥ Q;.¢8 G5 QT do
not belong to the same group. According to our definition
the former composite operator is flavorless while the latter
is flavored. We will now study the interactions of the
flavorless and flavored hadrons.

In the full spectrum, gauge singlet flavorless operators
composed of n, fields have multiple gauge singlet flavored
analogs also composed of n, fields. The spin may in
general differ between the various operators. Consider as an
example the following four-quark operator

T % q'Gj GI% Gy 857p

There exists three flavored four-quark analogs of this
operator, one for each possible q - Q swap.

Te Yo 4 i 0% Qe
TL v Q6 §7 Qe

These three operators comprise the full set of four-quark
gauge singlet flavored operators (without any gluon oper-
ators). Notice that the spin of the flavorless T and flavored

operators Tg; T; are typically not the same. Also note that

the operator T; decomposes into a flavor singlet T: and

flavor adjoint of the SUON, — 3p flavor group.

We can use three-point functions to highlight how
diagrams with flavor-loops differ from dlagrams without.
Compare hTTTi-diagrams with hTT Tfanml diagrams

fpf pf”
({1}, Tf,,

)~ Nt

Consider now composite operators in which all gauge
indices are contracted in a nontrivial way. In other words
the composite operator is not composed of a product of
gauge invariant operators. In addition we also take the
operator to not have any gauge indices contracted by €;,
of the gauge group SUSNcP. This implies that the one-index
quarks g'; Q;.+ and their conjugated g;; Q" can appear at
most twice in the operator. In addition to these restrictions,
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we will temporarily ignore operators composed entirely of
two-index antisymmetric quarks .

Flavorless hadrons: What is left of the hadron spectrum
is quite limited. Before discussing their flavored analogs,
we will first describe the flavorless hadrons with two one-
index quarks. There are infinitely many of them, but they
are easy to enumerate

X Y2 g
Y ¥ qicd
T Y q'd; §7% G

P ¥4 945 67 Guq o

ih 5

H ¥4 q'8; §7% G §™ 0,

358p

Allowed n-point functions involving any combination
of the above hadrons all scale exactly the same in N..
The reason is as follows: In the leading order diagrams,
there is one fundamental quark loop running on the
boundary N, Each operator insertion then creates §
additional color loops (one for each d) Ng, implying a

P2%=2 1\ ormalization factor. Thus, each operator gives a
factor of N3 x Ng™P?2 1, N;¥2. In total then, n-point
functions with flavorless operators in Eq. (58) scale like

N13NG 2P0 v, NG ™2,

Some n-point functions vanish. Two examples are
hYYYi and hPYXi. This is so since in general, a §-line
|

(X.X)  {¥.Y) (T.

.T)

started by one operator must be ended by another. Because
of the color structure of the various quarks, this also
enforces the restriction that fermionic operators cannot
form odd n-point functions.

Motivated by the fact that all n-point functions scale
exactly the same, we will now construct some simplified
diagrams that will quickly visualize how the n-point
functions of the above described hadrons are organized.
Any three-point function is represented by a triangle. The
lines of the triangle represent the quark loop and the three
vertices represent the three operators. An example is

X

X X

To keep track of the two-index antisymmetric quarks, each
vertex additionally produces § lines internally in the triangle

B - A

With this setup, all the three point functions with X, Y, T, P,
H are

(Y..P) (P..P) (H..H)

A AL

AAAA

VAVAVAVAN

Nz, Four-point functions are
squares scaling like Nz%, five-points are pentagons

scaling like Ng>2 etc. At this point we have a solid
handle on this group of flavorless operators. All their
n-point functions scale the same, and we can quickly find
out what n-point functions are allowed by gauge structure.

These all scale like

|

Flavored hadrons: For each of the above flavorless
diagrams, there are a number of equivalent diagrams in the
flavored sector—mixing flavorless operators with flavored
ones, and flavored ones with other flavored ones. In our
simplified diagrams, these can be created from, e.g., the
flavorless triangles by replacing any of the solid outer lines
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with dashed flavor-lines (the dashed line is a shorthand for
the Qj.¢ propagator). An example is the diagram for
hXeXTXi

This allows us to quickly enumerate, for any three-point
function of operators appearing in Eq. (58), all flavored
analogs. Keep in mind that the inside of the diagram is
irrelevant when comparing flavored diagrams to flavorless
ones

These diagrams tell us about how the flavorless sector
interacts with the flavored sector. First, we see that the
flavor-operators must appear in pairs or larger groups.
Second, the scaling of a generic diagram is not altered by
substitution of any number of the solid lines with dashed
lines. However, if all n operators are flavor-contracted (like

T]:), they form a flavor loop and the diagram is suppressed by

a factor of Niz_”bzz as we noted earlier. Third, for flavorless

three-point functions with one operator such ashTTT1, there
are three flavored analogs. For two different operators, fx.|

(Y..YL)

(Y..YL)

hXY VY1, there are five flavored analogs. For flavorless three-
point functions with three different operators, fx. hY TP1, all
of the above seven triangles are unique flavored analogs of
the flavorless triangle. This can be generalized to arbitrary
n-point functions. In general, depending on how many
different operators are involved, an n-point function will
have between n_ — 1 and ny, — 1 flavored analogs where

20°b16 .y gven
n_% , ; Np ¥a 2" 059p
2ebld: n odd

Hadrons made exclusively of two-index quarks: Now we
come back to the operators made exclusively of two-index
quarks. They are also easy to enumerate

L, ¥ G G
Ly Ya G a%jk " a;
Le ¥ G Gy G Gyn 6" Guri

In [62] the authors studied n-point functions of L, operators,
so we will move forward and study n-point functions that
combine L,; operators with the X;Y;T;P;H... operators.
When combined with the X;Y; T; P; H... operators the L;,
i ZPP operators should be inserted inside the quark loop
where the two-index quarks are. Each such insertion costs a
factor of NZ! independent of i. This is because any L,;
insertion creates i — 1 extracolor loops, butalso comeswitha
normalization factor of NL. In terms of our simplified
diagrams, we may add the L,; operators as points that
consume / produce 2i internal lines. An example is

X

Y Y

Again we can diagrammatically enumerate every possible
n-point function. Using X, Y, T, all four-point functions
with just one L, or L, or L, operator in the middle, are given
by the diagrams
(T..TL)

(T..TL) (T..TL)

SN AL

014012-20



HADRONIC SPECTRUM IN THE CHIRAL LARGE N,

PHYS. REV. D 110, 014012 (2024)

These all scale like Nz>™2. What happens inside the
triangles does not affect our flavor considerations—it is still
true that any of the above diagrams have flavor-analogs that
scale exactly the same.

Only the flavor-loops in the above analysis utilize the
fact that T is a flavor-index with N, flavors, and they end
up being suppressed. Nevertheless, we have sketched a
diagrammatic program for charting a subsection of the full
hadronic spectrum, and shown that interactions between the
flavorless and flavored sectors follow simple patterns. One-
flavor index operators begin interacting with their flavor-

less analogs in three-point functions Ng*2. Two-flavor
index operators begin interacting with their flavorless-
analogs in four-point functions Ng!. A notable exception
to the suppression of mixing between the flavorless and

flavored sectors are interactions such as hXiin 1.

VI. DISCUSSION

We set out to study QCD in a large N extension which is
intermediate between the renowned 't Hooft and
Orientifold extensions. Using standard large N techniques,
we have systematically examined properties and inter-
actions of multiple composites in the hadronic spectrum
in the chiral extension of QCD.

First, we examined the purely left-handed and right-
handed part of the hadronic spectrum. Here, B;B and
Mg1.n,—2» are the standard baryons and meson, while the
rest (B =2; Beven, Bf,..fy,r Massr Xr:Yep) all vanish
at N, ¥4 3.

Using a diagrammatic analysis and group theoretical
factors, we determined the N scaling of the different
hadron masses to be proportional to the number of
constituent quarks. Next, a study of simple gluon
exchanges between hadrons showed that scattering ampli-
tudes between hadrons follow a number-of-quarks and
quark-type hierarchy: The hadrons with nj NZ interact
with all other hadrons, and are only scattered only by
themselves. Hadrons with ng N scatter with each other if
they have a sufficient amount of quark content in common.
Hadrons with n, 1 are scattered by higher ny  N-
hadrons if they have a sufficient number of quarks of
the same type as the ny  1-hadron.

Only even n-point functions of X¢ and Y ¢¢ are nontrivial,

and they are NiPn=2 suppressed. However, X¢ and Y ¢p play
crucial roles in other processes. They appear in the decay of
two distinct baryonium states. The amplitude for such a
decay depends on how many quarks are in the bound states,
and ranges from N2to NgZ? for the first baryonium, and
from N;! to NZ? for the second baryonium. We also
considered a nontrivial scattering process between Mo

and Y¢p, and found it to be at least Nzt suppressed.

Finally we considered composites made of a mix of
the left- and right-handed quarks. To break down the
daunting task of analyzing the complete spectrum, we
divided it into manageable groups. The hadron operators
that do not make use of €y iy, and are composed of two
fundamental flavorless quarks, and any number of two-
index antisymmetric quarks, are particularly easy to under-
stand. Correlation functions involving n; of these operators

all scale like iz_”“’:z. Next, hadron operators that are
composed of i pairs of two-index quarks are also easy to
understand. Their n,-point functions scale like Ng"™.

Interactions between the two above mentioned groups of

hadrons scale like N&Z~™72"%"2 Next, by performing swaps
of the type g - Q, flavored analogs of the above men-
tioned operators can be created. When analyzing n-point
functions involving a mix of flavorless and flavored
operators, the flavorless ones must appear in pairs. This

means that mixing of the flavored and flavorless sectors

begin in three-point diagrams which are NG suppressed.
Generally, mixing diagrams obtained by this procedure to
form n-point functions have the same scaling as the
flavorless ones, so at n= 3, there are many diagrams
mixing the flavorless and flavored sectors. In particular, for
any n, there are 2" — 2 different diagrams mixing flavorless
and flavored operators.

For possible future research directions we note that it
would be interesting to study this chiral extension in a
holographic setting. Holographic QCD has been under
intense investigations in the last 20 years [28,63-67].
Holography can be used to study, among numerous other
topics, chiral symmetry breaking [68], nuclear physics with
a solitonic approach [69,70], and several additional topics
using the Veneziano limit of QCD to construct holographic
models (V-QCD) [22-25]. Quite recently QCD in the 't
Hooft large N limit has also been under investigations
using bootstrap techniques [71-73]. It would be highly
interesting to do similar bootstrap studies of the chiral large
N, extension investigated here.

Furthermore, one can study angular-momentum contri-
butions to the masses of the composites. Additionally, one
can also study possible spin-flavor relations analogous to
the ones derived in the 't Hooft limit, for the N.—3
antifundamental quarks. Some relevant literature can be
found in [17-19,74].

In other words we believe our investigations open up for
many new and exciting research projects.

APPENDIX: CANONICAL LAGRANGIAN

We now write down the canonically normalized
Lagrangian of the theory in terms of the fields

AS; qj]; d&; Qa;i;f
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L % =2 FRF* P i00%°D};;qt

b 156D b Q5 0¥ Dyi Qqyir

- Zizéa“Af}bz b c2—0"Diccp 0A1p
where

Fa, ¥a 0,A3 — 0,A% b gFa*cADAS 0A2p
D} v20,0'j — igAROTEP';: 0A3p
D{® ¥4 0,0"™ — igAfdTS,P™ 0A4D
D, ¥4 0,87 — igAZT b 8ASD
DEC ¥4 0,8%¢ — igARST §p*° 8ABD

The notation for Hermitian conjugation follows

OASPT Vi AL dgibt =Gy 0GR =al

0Quipf = QLT e’ 142 3ATD

We have also chosen linear covariant gauge with gauge
parameter & and c? are ghost fields in the adjoint repre-
sentation. The propagators are the usual ones
hAZBXPADBYPi ¥a A, 0% — yPE2P
hojh,0XPQq.jOYPT Ve SeedX — yPO';
hQLLEXPQSBYPi Vs SgqdX — YPO'
Gjq:i.¢OXPQL T Bybi Vs SgqdX — yPEI ™

hcadxpcPaybi ¥4 Adx — yp&P 3A8P

We now switch to tensor notation for the gauge fields and
g Weyl fermions

A, Va AITE; g% qgrA"; C¥CcdTE 0A9p
and rescale the fields appropriately
1 1 1
A - _A 1 - — y g - e ,
y g y Ua g Oa o g U
1 1
Qq - aQa; ¢~ dAL0p

With these two changes we can write the Lagrangian as

N 1 i
L l/ATC —éTerF“V b ige“D,q

b 2iTré§6 D, &b p iQ3"D,Q

1 .
- ETr(ic’)“A“D2 b 2Trcé—o"D,ch 3A11p
with
Fuv Ya FA,TE Y4 0,A, — 0,A, — itA; A, 0A12p
Dya' va0,q' —i8AP of;  OAP'; Y4 ASOTEP,  GAL3p
0D, GPY ¥4 0,G" — i80A,P', G4 b G*0ATPJP;
OAD; Vs AZBTRD!; 0A14p
DUQi Ya auQi - |6A“D|JQJ,
0AP Vs AZST b Y4 —AZSTR b 0A15p

0D,cP'; ¥a d,cly — A C s
dch!; Va cRTRP!;

OAP' Va AGBTEP';;
0A16p

and the "t Hooft coupling being A ¥ g?N. and the gauge
field is A, ¥a A3TZ for an appropriate representation r.
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