

University of Southern Denmark

Advice complexity of adaptive priority algorithms

Boyar, Joan; Larsen, Kim S.; Pankratov, Denis

Published in:
Theoretical Computer Science

DOI:
10.1016/j.tcs.2023.114318

Publication date:
2024

Document version:
Final published version

Document license:
CC BY

Citation for pulished version (APA):
Boyar, J., Larsen, K. S., & Pankratov, D. (2024). Advice complexity of adaptive priority algorithms. Theoretical
Computer Science, 984, Article 114318. https://doi.org/10.1016/j.tcs.2023.114318

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark.
Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

 • You may download this work for personal use only.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying this open access version
If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 19. May. 2025

https://doi.org/10.1016/j.tcs.2023.114318
https://doi.org/10.1016/j.tcs.2023.114318
https://portal.findresearcher.sdu.dk/en/publications/c98abb13-5c58-47cd-954d-4a3f42406a67

Theoretical Computer Science 984 (2024) 114318

Available online 22 November 2023
0304-3975/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Advice complexity of adaptive priority algorithms ✩

Joan Boyar a, Kim S. Larsen a,∗, Denis Pankratov b

a Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
b Department of Computer Science and Software Engineering, Concordia University, 2155 Guy St., Montreal, Quebec H3H 2L9, Canada

A R T I C L E I N F O A B S T R A C T

Communicated by G.F. Italiano

Keywords:

Greedy algorithms

Priority algorithms

Adaptive priority algorithms

Exact algorithms

Online algorithms

Advice complexity

The priority model was introduced to capture “greedy-like” algorithms. Motivated by the success
of advice complexity in the area of online algorithms, the fixed priority model was extended to
include advice, and a reduction-based framework was developed for proving lower bounds on the
amount of advice required to achieve certain approximation ratios in this rather powerful model.
To capture most of the algorithms that are considered greedy-like, the even stronger model of
adaptive priority algorithms is needed. We extend the adaptive priority model to include advice.
We modify the reduction-based framework from the fixed priority case to work with the more
powerful adaptive priority algorithms, simplifying the proof of correctness and strengthening all
previous lower bounds by a factor of two in the process.

As evidence that adding advice to adaptive priority algorithms extends both adaptive priority
algorithms and online algorithms with advice, we present a purely combinatorial adaptive priority
algorithm with advice for Minimum Vertex Cover on triangle-free graphs of maximum degree
three. Our algorithm achieves optimality and uses at most 7𝑛∕22 bits of advice. No adaptive
priority algorithm without advice can achieve optimality without advice, and we prove that an
online algorithm with advice needs more than 7𝑛∕22 bits of advice to reach optimality.

We show connections between exact algorithms and priority algorithms with advice. The
branching in branch-and-reduce algorithms can be seen as trying all possible advice strings, and
all priority algorithms with advice that achieve optimality define corresponding exact algorithms,
priority exact algorithms. Lower bounds on advice-based adaptive algorithms imply lower bounds
on running times of exact algorithms designed in this way.

1. Introduction

Everybody who has studied algorithms has an intuitive notion of a greedy algorithm. In many discrete optimization problems,
input can be represented as a sequence of items coming from some infinite universe, and the output of an algorithm can be represented
as a sequence of decisions – one decision per item. A decision could, for example, be to accept or reject an item. The quality of such
a sequence of decisions is often measured using an objective function that must be maximized (or minimized). Greediness refers to

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.

E-mail addresses: joan@imada.sdu.dk (J. Boyar), kslarsen@imada.sdu.dk (K.S. Larsen), denis.pankratov@concordia.ca (D. Pankratov).

https://doi.org/10.1016/j.tcs.2023.114318

Received 24 May 2022; Received in revised form 19 June 2023; Accepted 16 November 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:joan@imada.sdu.dk
mailto:kslarsen@imada.sdu.dk
mailto:denis.pankratov@concordia.ca
https://doi.org/10.1016/j.tcs.2023.114318
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114318&domain=pdf
https://doi.org/10.1016/j.tcs.2023.114318
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 984 (2024) 114318

2

J. Boyar, K.S. Larsen and D. Pankratov

making the decision that maximizes the objective function at the current point in time. This often means that the algorithm pretends
that each input item is the last it is going to receive.1

One of the earliest formalizations of a greedy-like notion was in the form of matroids by Whitney [50], more recently extended
to greedoids by Korte and Lovász [36–39]. In spite of the profound connection between greedoids and optimization problems
admitting optimal greedy algorithms, greedoids do not give a complete characterization of what people usually characterize as
greedy algorithms, and there is no consensus in the research community as to a formal definition of greedy algorithms.

Priority algorithms were introduced by Borodin, Nielsen, and Rackoff [11] in an attempt to formalize “greedy-like” or “myopic”
algorithms, trying to encompass the algorithm designers’ notion of greedy-like that goes beyond the matroid-based framework
(earlier works such as [29,33] have discussed the basic idea of using priority functions for scheduling problems as an informal
but fairly well understood concept). One of the purposes of this formalization is to prove results giving lower bounds on how
well any priority algorithm can approximate an optimal solution, without requiring any assumptions such as P ≠ NP. The priority
model has been studied in the context of many combinatorial optimization topics, including classical graph problems [4,6,12,20],
scheduling [11,41,44,49], satisfiability [45,46], auctions [10], and general results, present in many of the above contributions as well
as in [40]. Many classical greedy algorithms have a simple structure consisting of two components: a sorting, ordering, or priority
component and an online, irrevocable decisions component. The second component is where an irrevocable decision is made, while
the first component determines the order in which the items are processed by that second component. Priority algorithms have this
structure and they come in two flavors: fixed and adaptive. We illustrate these models with two well known examples.

The input to the Minimum Spanning Tree problem is an edge-weighted, undirected, connected graph, and the objective is to
select a set of edges forming a spanning tree of minimal total weight. Viewing Kruskal’s algorithm for this problem as a fixed priority
algorithm, we define the universe of input items as = {(𝑢, 𝑣, 𝑤) ∈ ℕ × ℕ ×ℚ ∣ 𝑢 ≠ 𝑣}, where (𝑢, 𝑣) is an edge between vertices 𝑢
and 𝑣 with weight 𝑤. An input instance is a finite subset ⊂ . Kruskal’s algorithm can be thought of as defining an ordering on
the entire universe (by non-decreasing weight 𝑤, with arbitrary tie-breaking) prior to seeing any input items. The input is then
given to the algorithm one input item at a time, in the order defined on the universe. When we discuss correctness and quality,
we often think of the input as being given by an adversary, but of course still respecting the ordering that may not be total. The
algorithm makes an irrevocable decision when receiving the next item: accept the edge if it does not form a cycle with the current
partial solution (the set of accepted items so far), and reject it otherwise.

Strengthening the model, adaptive priority algorithms may change the ordering of the universe after processing each input item.
An example of an adaptive priority algorithm is Prim’s algorithm for the Minimum Spanning Tree problem. The universe is as
above. Prim’s algorithm also orders edges by non-decreasing weight, but it has to maintain a single connected component. Thus, the
algorithm gives higher priority to edges incident to vertices already added to the solution. Since the set of vertices in the solution
keeps growing, the ordering (the priority function) is updated in every step. We emphasize that it is an ordering of the universe, the
rest of the input is not known, and the ordering is redefined before the next input is given.

Note that online algorithms are usually only used when problems have an online nature, while priority algorithms provide a
framework for certain offline algorithms. However, as models, they seem quite similar. Priority algorithms can be seen as either
extending the power of online algorithms by allowing a limited ordering of input items, or as limiting the power of an adversary by
not allowing it full control over the order of items.

We now discuss advice, starting with the online algorithms setting, where advice has been considered for some time. An online
algorithm processes a sequence of input items, one at a time, with no knowledge of future input items; an assumption that, even
for inherently online problems, is not necessarily realistic. Often some information about the input sequence is known in advance,
e.g., its length, the largest weight of an item, etc. The knowledge could be absolute, approximate, or expected from experience. An
information-theoretic way of capturing some of this additional knowledge is provided by the advice tape model2 of Hromkovič et
al. [32] (further technical development in Böckenhauer et al. [9]). In this model, an all powerful oracle that knows the algorithm
and sees the entire input sequence3 writes bits (referred to as advice bits) on an infinite tape. The algorithm uses the advice tape
in processing the online items. The “tape” analogy is used in many other models, but the only important properties are that there
are always bits when the algorithm asks for them and there is no detectable end to the collection of bits. The advice complexity of
an algorithm is the number of bits read. Usually, we are interested in the worst-case number of bits read as a function of the input
length. Results for online algorithms with advice are bounds on the number of advice bits necessary and/or sufficient to achieve a
given competitive ratio.4 Often, a few bits of advice improve the competitive ratio dramatically over what is achievable by an online
algorithm without advice.

The lower bound results can be interpreted as hardness results for the online problems: if many advice bits are necessary in order
to reach optimality (or significantly improve the competitive ratio), the problem is hard. Results can also give strong lower bounds
on certain types of semi-online algorithms and inspire algorithm design. See [14] for an extensive list of articles. Of most relevance
to us are results concerning graph algorithms [7,22,23,28,30,34,35,43].

1 For some problems, in particular many graph problems, the input items received so far may require a certain number of further input items to be given before a
well-defined final input is formed; see [12] for a detailed discussion of these issues.

2 Other advice models have been proposed, including the helper and answerer models of Dobrev et al. [21], the tree exploration model with advice of Fraigniaud
et al. [27], and the per request model of Emek et al. [24]. See [14] for a comparison of these models.

3 In contrast with the online and priority worlds, in the Turing machine world the advice depends only on the input length 𝑛 and not the input itself.
4 The competitive ratio is the term used in online algorithms for what is essentially the approximation ratio when considering offline problems.

Theoretical Computer Science 984 (2024) 114318

3

J. Boyar, K.S. Larsen and D. Pankratov

A superset of the current authors introduced advice into the fixed priority model [13]. As for online algorithms in the advice
tape model, an oracle knows the algorithm, sees the entire input sequence, and writes advice bits on the tape. The advice is then
read by the priority algorithm at its discretion during its execution. Just to emphasize, since the oracle knows the algorithm, the
bits always represent what the algorithm expects, so the oracle and the algorithm cooperate. In this model, one is interested in the
number of advice bits necessary and/or sufficient to achieve a given approximation ratio. In addition to introducing this model,
[13] also developed a general framework for proving lower bounds in this model and applied this framework to several classical
problems, including Maximum Independent Set, Maximum Bipartite Matching, Minimum Vertex Cover, etc. That paper left it as an
open question whether the ideas can be extended to the (arguably more useful) adaptive priority model, and if this would result in
useful new paradigms. Our current paper addresses that question.

There are many models that represent computation as a leveled tree (or even more generally as a DAG – directed acyclic graph),
such as decision trees, branching programs, small depth formulas/circuits, various proof systems (tree-like and general resolution),
pBT algorithms, etc. One can often define a notion for each of these tree/DAG models which intuitively captures the amount of
parallelism needed to carry out the computation efficiently. Such a notion can be viewed as being somewhat analogous to the
notion of advice in our setting. For example, in the pBT (priority backtracking) model of Alekhnovich et al. [3], an algorithm is
represented by a pair of functions: one function allows reordering of the universe of input items, and another function assigns a
value to a decision based on already seen input items. The ordering function can be fixed, adaptive, or fully adaptive (we are not
discussing this in full here). The execution of such an algorithm on a particular instance can be represented by an ordered leveled
tree, where each node corresponds to a partial execution and is labeled by the sequence of input items seen so far and decisions
made for those items. The children of a node (in order from left to right) correspond to different input items to be considered next
according to the current ordering function. The correctness condition requires that at least one of the leaves contains an optimal
choice of decisions. The width of a pBT algorithm is the maximum width of a level of such a tree, where the maximum is taken
over all levels and all instances of a given length. The length of the ordered (left-to-right) depth-first search traversal of a pBT tree
corresponds to the running time of the natural backtracking algorithm associated with the pBT algorithm. This model captures many
backtracking algorithms, but not all of them. For example, early termination as well as choices of which decision to make next can
be based on only the already seen portion of the input in pBT, and these choices cannot be made, for example, based on the value
of an LP-relaxation of the entire instance (as is often done in real-life backtracking algorithms). The logarithm of the width of a pBT
algorithm can be thought of as “advice” length, but there are notable differences between the pBT model and the priority algorithms
with advice model. In particular, one can try to simulate the pBT model by a priority algorithm with advice, and vice versa, but
one quickly runs into issues of whether priorities and/or decisions are allowed to depend on advice. Establishing precise connections
between these models is an interesting open problem. Connections between the fixed pBT algorithms and fixed priority algorithms
with advice were previously discussed in [13]. While it is interesting to carry out a comparative study between various tree/DAG-

like models and expose informal and formal connections between them and the notion of advice, it is not the goal of the present
paper. We discuss only one such connection at length later in this paper, and that is the connection between priority algorithms and
branch-and-bound/branch-and-reduce algorithms.

We now briefly list our contributions.

• We introduce the notion of advice in the adaptive priority model and identify four natural models based on how the priority
function is allowed to depend on the advice.

• We extend the general lower bound framework of [13] to work in what we call the oblivious priority function model. The results
automatically apply to the weakest model which does not use advice in the priority functions at all and also to the fixed priority
results in [13]. We simplify the proof that the framework from [13] works, and we strengthen the lower bounds implied by the
framework by a factor of 2. The framework offers a template for lower bound results: By exhibiting gadget pattern pairs fulfilling
a given list of criteria, a lower bound can be computed with fairly limited work.

• As evidence that adding advice to adaptive priority algorithms extends both adaptive priority algorithms and online algorithms
with advice, we study the classical Minimum Vertex Cover problem on triangle-free graphs of maximum degree 3. We present
an adaptive priority algorithm with advice that achieves optimality. The algorithm works in all but the weakest of our models.
Known results imply that adaptive priority algorithms for this problem cannot achieve optimality without advice [12]. We show
that online algorithms must use more advice than our algorithm to achieve optimality. Our algorithm is purely combinatorial
and requires a somewhat involved analysis.

• Priority algorithms with advice that achieve optimality naturally lead to exact algorithms by trying all possible advice strings of
length no more than the upper bound proven. We call exact algorithms designed this way priority exact algorithms. We discuss
the implications of our lower bounds on priority algorithms with advice for proving lower bounds on the running times of such
algorithms.

In [13], the lower bound template is based on an advice-preserving reduction (using the same advice) between two problems within
the priority framework: it is established that if there exists a fixed priority algorithm with advice for problem 𝐴, then there also
exists one for Pair Matching (PM) with the same advice length, and it is shown that PM requires a lot of advice. Such a reduction
must map each input for PM to an input for 𝐴, so that decisions for 𝐴 can be used for making decisions for PM. The difficulty is
that the inputs and the decisions for 𝐴 and PM must be aligned so that inputs respect priority functions, and decisions are not based
on information not available at that point during the execution of the algorithm. This becomes significantly harder when moving to
adaptive priority algorithms, since the priorities for the two problems can depend on advice and can change dramatically between

Theoretical Computer Science 984 (2024) 114318

4

J. Boyar, K.S. Larsen and D. Pankratov

input items. We avoid some of these difficulties by working with an advice-preserving reduction between a problem in an online
setting and a problem in the priority setting, removing the difficulties in aligning priority functions, and allowing us to focus more
on how priority functions are allowed to depend on advice. Our extension to adaptive priority algorithms enables us to define and
establish lower bounds for priority exact algorithms.

The remainder of the paper is organized as follows. Section 2 introduces the four adaptive priority models with advice. In
Section 3, we discuss connections to exact algorithms. In Section 4, we show the first lower bound, based on a construction from [12],
and show that the result is tight for a restricted problem. This first example problem serves as an introduction to some of our lower
bound techniques. In Section 5, we present our adaptive priority algorithm for the Minimum Vertex Cover problem on triangle-free
graphs of degree at most 3 and analyze its advice complexity. Section 6 presents the extension of the general lower bound framework
of [13] to adaptive priority with advice, along with a new framework for algorithms that solve to optimality. Another example
problem is considered in Section 7, presenting different lower bounds obtained in two of the different models, along with a matching
upper bound in one of the two models. Open problems are discussed in Section 8.

2. Models

A request-answer game [5,48] is specified by the universe of input items , the universe of decisions , the objective function
OBJ∶ 𝑛 ×𝑛 →ℝ ∪ {±∞} on inputs of length 𝑛, and the type of a problem, which could be either “maximization” or “minimiza-

tion”. An input to a request-answer game is a finite multi-set of items from the universe, i.e., 𝑋 = {𝑥1, … , 𝑥𝑛} where 𝑥𝑖 ∈ . We
assume that the objective function is invariant under simultaneous permutations of input items and decisions, i.e., for all 𝑥1, … , 𝑥𝑛,
all 𝑑1, … , 𝑑𝑛, and all permutations 𝜋 ∶ [𝑛] → [𝑛],

OBJ(𝑥1,… , 𝑥𝑛, 𝑑1,… , 𝑑𝑛) = OBJ(𝑥𝜋(1),… , 𝑥𝜋(𝑛), 𝑑𝜋(1),… , 𝑑𝜋(𝑛)).

The values ±∞ in the objective can be used to specify infeasible input. The setting of request-answer games is very general and
includes most problems of interest in the areas of online and priority algorithms.

A function 𝑃 ∶ →ℝ is called a priority function. We introduce a short-hand notation max𝑃 𝑋 ∶= argmax{𝑃 (𝑥) ∣ 𝑥 ∈𝑋} for the
element of highest priority in the multi-set 𝑋. In case there are multiple elements of highest priority, we assume ties are broken in
an adversarial fashion, i.e., we assume the most unfavorable tie-breaking for our algorithms. Thus, all upper bounds we prove will
be valid for all input instances, and we can make the simplifying assumption that max𝑃 𝑋 is an element, and not a set of elements.

A priority algorithm ALG is not given all of the input, 𝑋, at once. Instead, ALG receives 𝑋 one item at a time. The priority
algorithm has some limited control over the order in which 𝑋 is given: Each time, before the next input item is given, ALG defines
a priority function, 𝑃 , and the next input item given to ALG is max𝑃 𝑋. Recall that the priority function is defined on the universe,
 , and not directly on the remaining part of the input 𝑋, which is not known to the algorithm. We use both the terminology that
an input item has been given to the algorithm and that the algorithm has received or gets an input item.

What we have described above is the most general version of priority algorithms, called adaptive, since the priority function can
be adapted based on the input given so far. As the name indicates, fixed priority algorithms are those where the priority function
cannot be updated during the execution of the algorithm. This simpler class was treated in [13].

We consider priority algorithms in the advice tape model [9,32], and start with a discussion of this model. The setup is exactly
as described for online algorithms in the introduction. In the advice tape model, there are two cooperating players – the algorithm
and the oracle. The oracle sees the entire input 𝑋 and writes advice to the algorithm on the infinite advice tape using the binary
alphabet. The algorithm can decide to read zero or more bits (for emphasis, often referred to as advice bits) from the advice tape,
sequentially from left to right, before making each decision. We use 𝑠𝑖 to refer to the prefix of the advice tape that has been read
so far by the algorithm. The maximum number of advice bits read, that is, the largest value of |𝑠𝑛| for any input of size 𝑛, is the
advice complexity of the algorithm (a function of 𝑛). See Algorithm 1 for a template illustrating the setup for a priority algorithm with
advice.

Algorithm 1 Template: Priority Algorithm with Advice.

1: 𝑋 is the input

2: read zero or more bits from the advice tape

3: 𝑠0 ← the prefix of the advice string just read

4: 𝑖 ← 1
5: while 𝑋 ≠ ∅ do

6: 𝑃𝑖 ← the priority function for iteration 𝑖

7: 𝑥𝑖 ←max𝑃𝑖 𝑋
8: read zero or more bits from the advice tape

9: 𝑠𝑖 ← the known content of the advice string

10: 𝑑𝑖 ←𝐷𝑖(𝑥1, 𝑥2, … , 𝑥𝑖, 𝑑1, 𝑑2, … , 𝑑𝑖−1, 𝑠𝑖) ⊳ the decision for input 𝑥𝑖
11: 𝑋←𝑋 ⧵ {𝑥𝑖}
12: 𝑖 ← 𝑖 + 1

A priority algorithm with advice must have this format. A concrete algorithm is defined by specifying three elements for each
iteration: the priority functions 𝑃𝑖, how many advice bits to read, and how the decision 𝑑𝑖 is made.

Theoretical Computer Science 984 (2024) 114318

5

J. Boyar, K.S. Larsen and D. Pankratov

The decisions, 𝑑𝑖, and how many bits of advice to read, |𝑠𝑖+1| − |𝑠𝑖|, are always functions of the information seen so far, i.e., the
input seen so far, the advice seen so far, and the previous decisions. Of course, one may omit the dependence of 𝑑𝑖 on 𝑑1, … , 𝑑𝑖−1,
since these decisions can be reconstructed from 𝑥1, … , 𝑥𝑖−1 and 𝑠𝑖−1. As mentioned in the introduction, priority algorithms with
advice can give rise to practical algorithms. However, as a starting point, advice is created by an oracle, and the setup is used to
measure some aspect of problem difficulty. Thus, it makes sense to consider how advice may be used by the algorithm. In particular,
to what extent do we allow the priority functions to be defined based on the advice obtained by the algorithm at a given time? We
make the following distinctions:

Unrestricted priority function model. We allow the priority functions to depend on the input received so far and the advice read
so far:

𝑃𝑖(𝑥1,… , 𝑥𝑖−1, 𝑠𝑖−1).

Oblivious priority function model. We allow the priority function to depend on the input received so far and the advice read so
far, as in the unrestricted priority function model, but the priority function must give the same priority to all input items which are
indistinguishable, when ignoring names not present in the input items already seen. (For example, for unweighted graph problems,
vertices of the same degree, where neither the vertices nor their neighbors have been seen yet, should have the same priority.)

Decision-based priority function model. We allow the priority functions to depend on the input received so far and the decisions
made so far:

𝑃𝑖(𝑥1,… , 𝑥𝑖−1, 𝑑1,… , 𝑑𝑖−1).

Advice-free priority function model. We only allow the priority functions to depend on the input received so far:

𝑃𝑖(𝑥1,… , 𝑥𝑖−1).

Similarly to this, in [13] the priority functions were assumed to not depend on the advice (but the priority function was fixed, not
adaptive).

Clearly, any algorithm that works in the oblivious priority function model also works in the unrestricted priority function model.
Any algorithm that works in the decision-based priority function model also works in the unrestricted priority function model, since
the input and advice determine the decisions. Similarly, any algorithm that works in the advice-free priority function model can
be simulated by an algorithm in any of the other models, for which reason we refer to this model as the weakest. Observe that the
unrestricted and decision-based priority functions models coincide when advice encodes the decisions to be made. This sometimes
functions as a point of reference, since no more advice than encoding all the decisions is necessary. The oblivious priority function
model appears to be incomparable to the decision-based priority function model and its motivation is as follows. Although it seems
natural to let decisions depend on the advice in any way and it makes sense to let the priority function depend on advice, it does not
seem natural for an algorithm to use, for example, a priority function that prefers input items with certain names that have not been
seen yet.

When including advice, one can ask how computationally expensive it is to generate that advice. This could vary significantly
from one algorithm/application to the next, but the model allows anything; the priority model does not impose any computational
restrictions on priority functions or decisions by the algorithm. This is in line with the information-theoretic nature of the priority
model and similar to other areas, such as online algorithms, communication complexity, decision tree complexity, etc. These models
sidestep hard computational questions, such as P vs. NP, by introducing informational bottlenecks. The strengths of this information-

theoretic modeling are that it makes the proven lower bounds stronger and that it makes it possible to prove results that do not depend
on unproven assumptions in complexity theory. The main weakness of this information-theoretic modeling is that the algorithms that
are designed might be impractical. However, priority algorithms achieving good approximation ratios tend to have easily computable
priority functions and easily computable decisions.

3. Priority exact algorithms

There is a simple, general technique one can use to convert a priority algorithm with advice to an offline algorithm with the same
approximation ratio. If the algorithm uses at most 𝓁 bits of advice for some input length, then, on an input of that length, one can
enumerate all 2𝓁 advice strings and execute the algorithm on each of them, keeping track of the best result. We call such algorithms
priority exact algorithms, since algorithms which solve problems to optimality are generally referred to as exact algorithms.

3.1. Example: Maximum Independent Set

In the textbook Exact Exponential Algorithms by Fomin and Krasch [25], in presenting the measure-and-conquer technique, they
begin with a simple branching algorithm, mis3 (Algorithm 2), for Maximum Independent Set, the problem of finding the maximum
size among subsets of the vertices where no two of the vertices are adjacent. We show how mis3 could be changed to a priority
exact algorithm for graphs of bounded degree at most Δ.

As a first intuitive explanation, note that the algorithm gradually decreases the size of the graph until the size of a maximal
independent set is found, except that in Line 10 two options are explored recursively. Using advice, one could simply make the
correct choice of these two options. A priority exact algorithm could be designed by trying all different sequences of such choices.

Theoretical Computer Science 984 (2024) 114318

6

J. Boyar, K.S. Larsen and D. Pankratov

Algorithm 2 Maximum Independent Set algorithm mis3 from [25]. 𝑁[𝑣] denotes {𝑣} ∪ {neighbors of 𝑣}, 𝑑(𝑣) the current degree
of 𝑣, Δ(𝐺) the maximum degree in 𝐺, and 𝛼(𝐺) the size of the maximum independent set.

1: Algorithm mis3 (𝐺)

2: Input: A graph 𝐺 = (𝑉 , 𝐸).
3: Output: A maximum cardinality of an independent set of 𝐺.

4: if ∃𝑣 ∈ 𝑉 with 𝑑(𝑣) = 0 then

5: return 1 + mis3(𝐺 ⧵ {𝑣})
6: if ∃𝑣 ∈ 𝑉 with 𝑑(𝑣) = 1 then

7: return 1 + mis3(𝐺 ⧵𝑁[𝑣])
8: if Δ(𝐺) ≥ 3 then

9: choose a vertex 𝑣 of maximum degree in 𝐺
10: return max(1 + mis3(𝐺 ⧵𝑁[𝑣]), mis3(𝐺 ⧵ {𝑣}))
11: if Δ(𝐺) ≤ 2 then

12: compute 𝛼(𝐺) using a polynomial time algorithm

13: return 𝛼(𝐺)

In greater detail, an input item is a vertex, together with a list of all its neighbors. In the priority algorithms framework, we
assume that the history is known, i.e., that the algorithm knows the sequence of all earlier input items it has received and which
decisions it made for these. Thus, in designing priority functions, we can also talk about the current degree, i.e., the number of
neighbors that have not yet been removed, as it is done in mis3.

In the priority exact algorithm we design the priority functions, 𝑃𝑖, depending partially on the current degrees of the vertices.
Since neighbors of accepted vertices must be rejected, these neighbors are given highest priority (Δ +3, say). Then, vertices of current
degree 0 have the next highest priority, Δ + 2, vertices of current degree 1 have priority Δ + 1, and all other vertices have priority
equal to their current degree.

When there are only disjoint cycles remaining, we define priority functions as follows: The lowest priority vertices are those of
degree 2, so they are not processed until it is time to start a new cycle. Every time we start the processing of a new cycle (a degree 2
vertex), we accept the vertex (include it in the maximum independent set). The highest priority is given to vertices adjacent to a
vertex just processed. If it has current degree 0, it is rejected, because it is adjacent to the first vertex in the cycle. If it has current
degree 1, it is accepted if its neighbor was rejected and vice versa. Note that the priority does not alone determine the decision made.

Advice comes into play in the case where the branching occurs, in Line 10. One bit of advice is used to tell which branch gives
the better result, and the adaptive priority algorithm with advice takes that branch, i.e., the advice is used to determine if the vertex
under consideration should be included into the maximum independent set or not. Note that the algorithm can easily determine
when to read a bit of advice, so the maximum amount of advice needed is the number of branches on the shortest (meaning with
fewest branches) of the root-to-leaf paths that leads to a maximum independent set. If one has a bound 𝑚 on that number of branches
in the best case, it is never necessary to go through more than all 2𝑚 possible bit strings of length 𝑚, and the natural approach
is to do the recursive branching with a bit in the advice string indicating which branch to take. In doing so, if one encounters an
(𝑚 +1)st branching, one can simply terminate computation in that direction and move to the next bit string. Thus, mis3 can be seen
as a priority exact algorithm. Since the priority functions depend only on which branches have been taken previously on the current
root-to-leaf path, it only depends on decisions made so far, so the defined priority algorithm with advice is in the decision-based
priority function model.

The calculation of 𝑚 is exterior to the algorithm and could, for example, be an upper bound given as a function of |𝑉 |. By
recording accepted vertices, keeping the result with the best 𝛼(𝐺), it is simple to return a maximum independent set instead of just
the size of it.

By the standard correspondence between Maximum Independent Set and Minimum Vertex Cover, mis3 can immediately be
converted to an algorithm for finding a minimum vertex cover5 by reversing the decisions made. In Section 5, mis3 is extended
to a priority algorithm with advice, PRIORITYVC, for finding minimum vertex covers in triangle-free graphs of maximum degree 3,
adding more priorities, particularly for vertices of degree 3, considering which neighbors are shared with previously processed
vertices. PRIORITYVC is shown to require at most 7|𝑉 |∕22 bits of advice, which is provably less advice than required by any online
algorithm with advice. No adaptive priority algorithm without advice can achieve an approximation ratio for this problem better
than 4∕3 [12]. Thus, PRIORITYVC is an example of an algorithm with an amount of advice that cannot be matched by any online
algorithm and with an approximation ratio that cannot be matched by any priority algorithm without advice. This shows that the
class of adaptive priority algorithms with advice is a larger class than either of these related classes of algorithms.

Running the algorithm PRIORITYVC on all possible advice strings of length 7𝑛∕22, we obtain an offline algorithm solving the
problem to optimality, a priority exact algorithm, that runs in time6 𝑂∗

(
2

7𝑛
22
)
⊂ 𝑂∗(1.247𝑛). This is much better than the naive

𝑂∗(2𝑛) brute-force approach; however, there are other more involved optimal offline algorithms achieving even better running times
for the Minimum Vertex Cover problem. The best published exact algorithm for Minimum Vertex Cover restricted to graphs of
maximum degree 3 runs in 𝑂∗(1.0836𝑛) [51]. That algorithm is not a priority exact algorithm; in Section 4 and Subsection 6.3,
we show that no priority exact algorithm (derived from a priority algorithm with advice in the decision-based or oblivious priority

5 Minimum Vertex Cover is the problem of finding a minimum-size subset of the vertices where every edge in the graph is incident to at least one of the vertices.
6 The notation 𝑂∗() is similar to big-Oh, except that it allows ignoring polynomial factors, i.e., 𝑂∗(𝑔(𝑛)) has the same meaning as 𝑂(𝑔(𝑛) poly(𝑛)).

Theoretical Computer Science 984 (2024) 114318

7

J. Boyar, K.S. Larsen and D. Pankratov

function models) for Minimum Vertex Cover on triangle-free graphs of maximum degree 3 has a running time less than Ω(1.142𝑛).
We comment further on this in Subsection 6.3.

3.2. Priority exact algorithms, in general

When attacking new NP-hard problems, the priority exact algorithms approach has the potential to deliver a first upper bound
that beats the brute force approach, giving an aim for later, more specialized, possible improvements.

A significant motivation for originally introducing and studying priority algorithms was to develop a framework for proving lower
bounds for a large collection of algorithms at the same time: Establishing that no fixed (or adaptive) priority algorithm can attain a
certain approximation ratio implies that one has to look beyond this fairly broad design pattern to possibly discover an algorithm
with a better approximation ratio. We note that this motivation is just as relevant for the design of exact or approximation algorithms
using the framework outlined above. A discussion of the lower bound results we obtain is included in Subsection 6.3.

Priority exact algorithms form a subset of the more general branch-and-reduce [18,19] exact algorithms, which find an optimal
solution to a problem using a search tree and backtracking. Trying successive possibilities for the advice, setting some decision to
accept or reject for example, is essentially the same as a branch operation in the more general algorithms. The restriction that input
items be prioritized independently of each other means that there are many possibilities allowed in the general branch-and-reduce
algorithms that are not allowed in priority exact algorithms. For the Minimum Vertex Cover problem, for example, priority exact
algorithms cannot handle maximal connected components of small size separately (or even handle a vertex of degree 2 differently
depending on whether or not it is contained in a triangle); in fact, the lower bounds are proven by considering small connected
components.

While there are restrictions, the advantage of priority exact algorithms is that they should be relatively easy to implement and
efficient (other than the branching, of course). A straight-forward implementation of a priority exact algorithm as a branching
algorithm may lead to many fewer branches than one would obtain by enumerating all bit strings of the maximum length, even in
the worst case. In many cases the problem size would reduce by different amounts, depending on whether the decision was accept or
reject, for example. One could also apply standard techniques for establishing upper bound results, such as measure and conquer [26]

to obtain better upper bounds.

In general, branch-and-reduce algorithms can be considered to have been converted from (usually not priority) algorithms with
advice. Advice can be given for each node in the search tree indicating which branch to take to find an optimal solution. If the
work done at a node can be handled by a priority algorithm (and all root-to-leaf paths have the same length), then it is essentially a
priority exact algorithm. However, for example for Minimum Vertex Cover, most exact algorithms use operations that do not fit in
the priority algorithm model.

In [16], the author presents a lower bound that also holds for priority exact algorithms (recursive proofs) for Maximum Indepen-

dent Set (if one ignores cutting off the length of the root-to-leaf paths considered due to the maximum length of the advice string
necessary), but also for more powerful algorithms, and proves that there exists a 𝑐 > 1 such that the running time is at least Ω(𝑐𝑛).
In fact, this result holds for every graph in a large class.

Exponential lower bounds for other classes of (what can be seen as) branch-and-reduce algorithms exist for other problems as
well, for example 𝑘-SAT [1,2,47], Maximum Independent Set [16], Graph Coloring [42], and Knapsack [17].

4. Example: Minimum Vertex Cover

We now present an example, mainly illustrating some of our techniques for proving lower bounds for priority algorithms with
advice, but also presenting an algorithm showing that the result is tight for the class of inputs given by the adversary. Both the
algorithm and lower bound apply to the decision-based priority model.

Given a simple undirected graph 𝐺 = (𝑉 , 𝐸), a subset of vertices 𝑆 ⊆ 𝑉 is called a vertex cover if every edge in 𝐺 is incident to at
least one vertex from 𝑆 . Minimum Vertex Cover is the problem of finding a vertex cover of minimum size. An input item is a vertex
together with a complete list of its neighbors (including those vertices that have not even appeared as part of the input yet); this is
known as the vertex arrival, vertex adjacency model. Thus, for each vertex, when it becomes the highest priority vertex, the priority
algorithm must decide whether or not to “accept” or “reject” that vertex, under the condition that at the end, for every edge in the
graph, at least one of its endpoints must have been accepted.

Theorem 1. No adaptive priority algorithm can solve Minimum Vertex Cover optimally with fewer than |𝑉 |∕7 bits of advice in the decision-

based priority function model.

Proof. Within the proof, we have found it beneficial to include intuition and introduce terminology relevant for the general tem-

plates, making the style somewhat different from a normal formal proof.

We build on the construction in [12] (which was reused in [13]), showing that for this problem, no adaptive priority algorithm
without advice can achieve an approximation ratio better than 4∕3. The two graphs in Fig. 1 are used.

In proving lower bounds for adaptive priority algorithms, the adversary chooses the input, first choosing the universe of input
items, and then creating an actual input 𝑋 from that universe. Originally the adversary can set 𝑋 to the entire universe. Then it
(perhaps gradually) removes input items from 𝑋 as the algorithm selects input items using priority functions and makes irrevocable
decisions for them. Thus, the input item selected by the current priority function is always one of the remaining input items in 𝑋

Theoretical Computer Science 984 (2024) 114318

8

J. Boyar, K.S. Larsen and D. Pankratov

4

3 7 5

2 6

1 4

3

7

52

61

Fig. 1. Topological structures of graphs giving a lower bound for the Minimum Vertex Cover problem. Graph 1 is on the left and Graph 2 is on the right. The unique
minimum vertex covers are marked in gray.

with highest priority. When there are ties, the adversary can choose among those with highest priority. (In this proof, the adversary
can simply choose an arbitrary item of highest priority, so we may assume that there is always a single input item with highest
priority.)

For Minimum Vertex Cover, the adversary, ADV, will select an isomorphic copy of either Graph 1 or Graph 2 from Fig. 1,
depending on the algorithm, ALG. Since both graphs have seven vertices, the universe, , of input items, contains the names of
seven vertices (the same names are used for both graphs), and for each of the vertices, all possibilities for input items (names of
vertices and lists of neighbors) for degrees two and three. Note that both graphs have unique minimum vertex covers of size 3. The
numbers shown in the figure are for our reference only and do not represent actual input items given to an algorithm. The figure
represents the topological structure of the inputs. The actual input items would be created out of all consistent namings of vertices in
such graphs. To illustrate this point, consider vertex 1 in Graph 1. It is adjacent to vertices 2 and 6. The corresponding possible input
item could happen to be (1, {2, 6}), but it could also be (5, {2, 3}), for example. In the latter case, the actual input vertex 5 would be
mapped to vertex 1 in the figure, vertex 2 would be mapped to vertex 2, and vertex 3 would be mapped to vertex 6. In total, there
are 7 × 6 × 5 possible input items that could be associated with vertex 1 in Graph 1. After a particular item has been processed, the
number of items that could be associated with subsequent vertices is reduced because of consistency requirements.

Given this universe of input items, the first priority function for any algorithm, ALG, for Minimum Vertex Cover must select either
a vertex of degree 2 or a vertex of degree 3 as the first vertex to be processed.

In order to obtain a vertex cover of size 3, it is necessary to accept vertex 1 in Graph 1 and reject vertex 2 in Graph 1. Thus, for
the case where the first vertex selected by ALG has degree 2, ADV can force ALG to produce a vertex cover of size at least four by
choosing vertex 1 from Graph 1 if ALG rejects and choosing vertex 2 from Graph 1 if ALG accepts. Because of how the universe is
defined, ADV can do this regardless of which input item with degree 2 ALG chooses.

Similarly, in order to obtain a vertex cover of size 3, it is necessary to accept vertex 3 in Graph 1 and reject vertex 1 in Graph 2.
Thus, for the case where the first vertex selected by ALG has degree 3, ADV can force ALG to produce a vertex cover of size at least
four by choosing vertex 3 from Graph 1 if ALG rejects and choosing vertex 1 from Graph 2 if ALG accepts. Again, because of how the
universe is defined, ADV can do this regardless of which input item with degree 3 ALG chooses.

To define a problem where 𝑘 = |𝑉 |∕7 bits of advice are necessary for optimality in the decision-based priority model, we consider
an algorithm, ALG′, and an adversary, ADV′. We create 𝑘 disjoint subuniverses, 1, 2, … , 𝑘, copies of the subuniverse , with
different names for the vertices in each copy, and define the universe, ′, for ALG′ to be the union of these 𝑘 subuniverses. The
input for ALG′ is the union of 𝐻1, 𝐻2, … , 𝐻𝑘, where 𝐻𝑖 is an isomorphic copy of either Graph 1 or Graph 2.

With its priority functions, ALG′ can choose input items in many different ways, and could, for instance, interleave input items
stemming from different copies of . However, for each 𝑖, there is always a first vertex in 𝑖 that ALG′ chooses (from the current
subset 𝑋 of the universe, ′). When ADV′ is not restricted by advice that ALG′ has read, it can force ALG′ to accept a vertex cover
of size four for 𝐻𝑖, exactly as ADV forces ALG, depending on whether this first vertex from 𝑖 has degree 2 or 3.

We now define 2𝑘 sequences of input items for ALG′, by describing how one of these 2𝑘 sequences of input items is defined: ALG′

selects input items one at a time, and ADV′ knows from which of the 𝑘 subuniverses the input items originate.

In this concrete case of an adaptive priority algorithm (with advice), since we are assuming that ALG′ solves the problem to
optimality, the adversary can assume in the decision-based priority model that the current priority function is determined based
on ALG′ making the correct accept/reject decisions up to this point. Now, ADV′ does the following: Assume that ALG′ has already
received input items originating from 𝑖 of the subuniverses from which ′ was defined and the adversary has a current subset
𝑋 ⊆ ′. If that is the case, then 𝑋 contains exactly enough input items to complete one graph from each of the subuniverses from
which ALG′ has received some input item (how this is maintained is explained below). From subuniverses not included in these 𝑖
subuniverses, 𝑋 still contains all possible names for vertices in the graphs. Now, ALG′ receives its next input item: the input item in
𝑋 of the highest priority in this round.

Theoretical Computer Science 984 (2024) 114318

9

J. Boyar, K.S. Larsen and D. Pankratov

If that next input item, 𝑣, is from one of the 𝑖 subuniverses, nothing further is done. However, if that next input item originates
from a subuniverse not among the 𝑖, then the following is done.

If 𝑣 has degree 2, ADV′ can choose that it is vertex 1 in Graph 1 or vertex 2 in Graph 1. If 𝑣 has degree 3, ADV′ can choose
that it is vertex 3 in Graph 1 or vertex 1 in Graph 2. It makes a choice and then removes from 𝑋 all input items originating from
the selected subuniverse of ′, except enough to make up exactly the graph that was chosen (Graph 1 or Graph 2) with the vertex
names consistent with the first input item from that graph.

Continuing this inductively defines one of the 2𝑘 distinct input sequences.

If a priority algorithm with advice for Minimum Vertex Cover uses fewer than 𝑘 bits of advice for instances with 7𝑘 input items,
the same advice must be given for at least two of the sequences, 𝐼1 and 𝐼2, defined above. ALG′ therefore uses the same priorities
and makes the same decisions on 𝐼1 and 𝐼2 until some difference is detected. Thus, consider the first time in the processing of 𝐼1
and 𝐼2, where an input item that has current highest priority is the first input item of a graph from some 𝑗 , but the graphs included
in 𝐼1 and 𝐼2 from 𝑗 are different.

Up until (and including) this point, all input items have been the same for the two sets. Thus, ALG′ must make the same decision
for 𝑣 in both 𝐼1 and 𝐼2, but one of those decisions leads to a vertex cover of size four. Thus, ALG′ is not optimal, and 𝑘 bits of advice
are necessary. □

This lower bound is generalized in Subsection 6.3, giving a template for proving such bounds.

For an algorithm matching the lower bound of the above theorem on these particular types of inputs using Graphs 1 and 2,
we begin with the case 𝑘 = 1, i.e., we receive a graph isomorphic to either Graph 1 or 2. Making the correct decision on the first
vertex received enables a priority algorithm to obtain a vertex cover of size 3 by giving highest priority after that to neighbors of
vertices which are already chosen, accepting if the known neighbor was rejected, and rejecting if the known neighbor was accepted.
Continuing in this way until all vertices are processed always produces the minimum vertex cover. Thus, one bit of advice is necessary
and sufficient for optimality for these restricted inputs; the one bit indicates whether or not the first vertex should be accepted or
rejected.

Extending the algorithm just described for the case 𝑘 = 1 for achieving optimality when one bit of advice is given per subuniverse,
one notes that 𝑘 bits of advice are also sufficient for these very specific types of input. Thus, in this very restricted problem, for every
positive integer 𝑘, there is an input size where 𝑘 bits of advice are necessary and sufficient.

Since the results in this section concern exact, rather than approximation algorithms, all results also apply to Maximum Indepen-

dent Set for graphs of maximum degree 3. Both Graph 1 and Graph 2 are triangle-free graphs, so the lower bound also holds for
triangle-free graphs of maximum degree 3, as does the 4∕3 lower bound on the approximation ratio for adaptive priority algorithms
without advice.

5. Solving Minimum Vertex Cover to optimality for triangle-free graphs of maximum degree 𝟑

We consider the Minimum Vertex Cover problem, as defined in Section 4, on triangle-free graphs of maximum degree 3, in the
online and in a priority setting with advice. The vertex arrival, vertex adjacency model is used. (Since the results in this section
concern exact, rather than approximation algorithms, all results also apply to Maximum Independent Set for triangle-free graphs of
maximum degree 3.) Let 𝑛 denote the number of vertices in the input graph. As mentioned in Section 4, no adaptive priority algorithm
without advice can achieve an approximation ratio for this problem better than 4∕3 [12], since graphs used in the construction there
were triangle-free with maximum degree 3. In this section, we show that asymptotically this problem requires at least (𝑛 − 4)∕3 bits
of advice to solve optimally in the online setting, while it can be solved optimally using at most 7𝑛∕22 < 0.3182𝑛 bits of advice in
the adaptive priority setting.

We begin with the negative result for the online setting.

Theorem 2. Asymptotically, for 𝑛 ≥ 7, no online algorithm using fewer than (𝑛 − 4)∕3 bits of advice can accept a minimum-sized vertex
cover for all triangle-free graphs of maximum degree 3.

Proof. The adversary will use a graph with 𝑛 = 6𝑛′ + 1 vertices, where 𝑛′ ≥ 2. The set of all vertices is denoted by 𝑉 .

One way to describe the adversarial input is as if it is being constructed in stages. In the first stage, the adversary creates 2𝑛′
disconnected paths of length 2 each, or 2-paths, for short (this already gives 6𝑛′ nodes). In the second stage, the adversary connects
endpoints of 2-paths, chaining several paths together into one large cycle. Not all initial 2-paths will necessarily participate in the
cycle. Finally, the adversary attaches one more vertex to an appropriately chosen vertex 𝑣 in the cycle and decides how to present
this constructed graph online. An optimal decision to accept or reject a middle vertex of each initial 2-path depends on the answers
to these questions: Does this 2-path participate in the large cycle or not, and, if it participates in the cycle, is it located at an even or
odd distance from 𝑣? When the fully constructed adversarial input is presented to an online algorithm such that middle vertices of
initial 2-paths are given first, the algorithm does not yet know the answers to the questions above, so a lot of advice is required to
infer correct decisions for these vertices.

More formally, let 𝑆 = {𝑣1, 𝑣2, … , 𝑣2𝑛′ } be the first 2𝑛′ vertices to be given – they form middle vertices of 2-paths, so all vertices
in 𝑆 will have degree 2. Throughout the processing of 𝑆 , the neighbors will be vertices never seen before. As described above, some
neighbors of 𝑆 will be connected so as to form a cycle, which we denote by 𝐶 . Then there will be a unique vertex 𝑤 of degree 1,

Theoretical Computer Science 984 (2024) 114318

10

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 2. The construction used in Theorem 2. Here, we have 𝑛′ = 4. The optimal vertex cover is shown in green. Vertices with a single arrow pointing to them are those
vertices from 𝑆 that were selected to be at odd distance from node 𝑣. Vertices with two arrows pointing to them are those nodes from 𝑆 that were selected to be at
even distance from node 𝑣. Here, the number of vertices in 𝑆 not in the optimal vertex cover is 𝑟 = 2.

connected to one designated neighbor 𝑣 ∈ 𝐶 ⧵ 𝑆 . Finally, the set of all other vertices will be denoted 𝐼 , i.e., 𝐼 = 𝑉 ⧵ (𝐶 ∪ {𝑤}). This
set induces isolated 2-paths, with the middle vertices in 𝑆 . The vertex 𝑣 will have degree 3. There will be an even number of vertices
from 𝑆 in 𝐼 and, thus, an even number in 𝐶 . The construction is illustrated in Fig. 2.

Note that this graph has a unique minimum-size vertex cover: the middle vertex of each path in 𝐼 and every other vertex in 𝐶 ,
starting with 𝑣.

For each vertex, 𝑢 ∈ 𝑆 , all of which have degree 2, ALG must decide whether to accept or reject this vertex, without knowing if 𝑢
is in 𝐼 or 𝐶 . Of course, within 𝐶 , ALG will not know if 𝑢 will be at an even or odd distance from 𝑣.

Suppose we want to create a graph 𝐺 with 0 ≤ 𝑟 ≤ 𝑛′ vertices from 𝑆 not in the optimal vertex cover. We can choose any subset
𝑅 of 𝑟 vertices in 𝑆 to be at odd distances from 𝑣 in 𝐶 . Among the other vertices, 𝑟 can be placed at the even locations in 𝐶 , and the
remaining 2𝑛′ − 2𝑟 vertices from 𝑆 can be in 𝐼 . (The placement of 𝑣 is also arbitrary, but we are fixing a placement in this counting.)
For fixed 𝑟, there are

(2𝑛′
𝑟

)
different possibilities for the subset 𝑅. In all, there are

∑𝑛′

𝑟=0
(2𝑛′
𝑟

)
different possibilities for the subset 𝑅,

each with a different optimal vertex cover (note that 𝑟 = 0 is a degenerate case where there is no cycle, 𝑣, or 𝑤, but the instance
is still a possibility, and for 𝑟 ≥ 1, the unique cycle 𝐶 has at least 6 vertices and 𝑛 ≥ 7, so the graph is triangle-free). Any online
algorithm that gets the same advice for two of them must give a suboptimal cover for at least one of them. Thus, an algorithm that
solves the problem to optimality needs at least log2

∑𝑛′

𝑟=0
(2𝑛′
𝑟

)
> log2 22𝑛

′−1 = 2𝑛′ − 1 = (𝑛 − 4)∕3 bits of advice.

Just for emphasis, note that all input items in 𝑆 are fixed to be exactly the same in all instances that we consider, i.e., input items
in 𝑆 do not depend on the choice of 𝑅, 𝑣, and 𝑤. Thus, an online algorithm receiving items from 𝑆 can only rely on advice to act
differently on 𝑆 from instance to instance. □

Now, we present an adaptive priority algorithm with advice that works in both the decision-based and oblivious priority function
models, uses fewer than (𝑛 − 4)∕3 bits of advice, and achieves optimality.

We present an adaptive priority algorithm PRIORITYVC with advice for the Minimum Vertex Cover problem on triangle-free
graphs of maximum degree 3. The main result of this section is the following:

Theorem 3. PRIORITYVC solves Minimum Vertex Cover on triangle-free graphs with maximum degree 3 optimally in both the decision-based
and oblivious priority function models and uses at most (7∕22)𝑛 = 0.3181𝑛 bits of advice, where 𝑛 is the number of vertices.

Proof. Follows from Lemmas 1 and 4. □

In order to describe and analyze the algorithm, we have to introduce and define some terminology. We do this in the order from
most intuitive to least intuitive. Fortunately, most of the terminology will be self-explanatory, but needs to be stated for the sake of
completeness.

Since it is an adaptive priority algorithm, PRIORITYVC works in discrete time steps. Each time step consists of the algorithm
updating the priority function, receiving the next input item according to the new priority, potentially reading advice, and then
making a decision as to including the vertex corresponding to the input item in the solution or not. We also refer to the decision
of including the vertex in the solution as accepting the vertex and the opposite decision as rejecting the vertex. The decision is called
correct if it is possible to extend the partial solution obtained after the decision to a minimum vertex cover in the input graph.

In many cases it is possible to make a decision that is guaranteed to be correct without consulting advice at all. Consider, for
example, a vertex of degree 1 – it is easy to see that a correct decision is to reject such a vertex and then accept its unique neighbor.

Suppose that at time 𝑡 vertex 𝑣 arrives and it is not possible, from the vertices seen so far, to make a decision that can be guaranteed
to be correct no matter what happens in the rest of the input. Since we want to solve the problem to optimality, PRIORITYVC then
reads a single bit of advice. This bit encodes a correct decision for the algorithm. In other words, if the bit is 1, then the algorithm
accepts 𝑣 and otherwise the algorithm rejects 𝑣. In these cases, we say that the advice is to accept or reject the vertex, respectively.
We also say that 𝑣 received advice.

Once a decision has been made for a vertex, this vertex is called processed. Vertices that have not been processed are called
unprocessed. Suppose that the algorithm processes the vertices in the order 𝑣1, 𝑣2, … , 𝑣𝑛 – this notation is only for the duration of
this paragraph and will have a different meaning in the proofs below. Recall that the input items consist of pairs (𝑣𝑖, 𝑁(𝑣𝑖)), where
𝑁(𝑣𝑖) is the neighborhood of the vertex 𝑣𝑖. Since the priority algorithm is adaptive, it can effectively remove processed vertices from
the input graph. Namely, at time 𝑖, the algorithm knows 𝑣1, … , 𝑣𝑖−1. Therefore, in defining the priority function, the algorithm can

Theoretical Computer Science 984 (2024) 114318

11

J. Boyar, K.S. Larsen and D. Pankratov

ignore vertices in {𝑣1, … , 𝑣𝑖−1} when assigning a priority to (𝑣, 𝑁(𝑣)), which is equivalent to removing vertices 𝑣1, … , 𝑣𝑖−1 from the
rest of the input graph. We refer to 𝑁(𝑣) ⧵ {𝑣1, … , 𝑣𝑖−1} as the current neighborhood of 𝑣 and |𝑁(𝑣) ⧵ {𝑣1, … , 𝑣𝑖−1}| as the current
degree of 𝑣. We refer to 𝑁(𝑣) and |𝑁(𝑣)| as the original neighborhood of 𝑣 and the original degree of 𝑣, respectively.

The following is less intuitive but useful terminology for vertices:

aa-vertex: a processed vertex that received advice to be accepted.

ar-vertex: a processed vertex that received advice to be rejected.

a-vertex: either an aa-vertex or an ar-vertex.

non-a-vertex: a vertex that was processed without advice.

contributing: an aa-vertex with two rejected and one unprocessed neighbor.

c-neighbor: an unprocessed vertex that is a neighbor of a contributing vertex.

bad-vertex: a vertex that requires advice and all of its neighbors are c-neighbors of other vertices at the time this vertex is processed.

a-sibling: a neighbor of an aa-vertex 𝑣 such that 𝑣 has another neighbor that has been accepted.

Observe that the above definitions are with respect to a given time step. In particular, it is possible that a vertex 𝑣 is processed during
some time step and at that point becomes an aa-vertex. At a later time step, it could become a contributing vertex. Also observe that
it is possible that a neighbor of an unprocessed vertex is a c-neighbor, that is, a neighbor of some other vertex that is contributing at
the time of consideration.

The pseudocode of PRIORITYVC is given in Algorithm 3. Ties that are not broken by PRIORITYVC explicitly can be broken
arbitrarily (even by an adaptive adversary).

Algorithm 3 PRIORITYVC algorithm.

procedure PRIORITYVC

while there exist unprocessed vertices do

Define the priority function 𝑃 as follows

(listed in order from highest to lowest priorities):

P1: nodes with a rejected neighbor;

highest priority is given to those nodes whose neighbor

was most recently rejected.

P2: nodes with current degree 0.

P3: nodes with current degree 1;

highest priority is given to those nodes with a most recently

processed neighbor; among those, highest priority is given to
those nodes that had two neighbors that became aa-vertices.

P4: nodes with current degree 2 that had a third neighbor in
common with a previously rejected bad-vertex.

P5: a-siblings.

P6: nodes with current degree 3 with 2 or 3 neighbors in common

with a single aa-vertex that was not a bad-vertex when it
received advice.

P7: nodes with current degree 3 that share neighbors with

a-vertices.

P8: other nodes with current degree 3.

P9: nodes with current degree 2

Receive the next vertex 𝑣 according to 𝑃
switch priority of 𝑣

case P1 or P6:

Accept 𝑣
case P2, P3, P4, P5, or P9:

Reject 𝑣
case P7 or P8:

Obtain advice to accept or reject and apply it to 𝑣

In order to finish the specification of PRIORITYVC, we have to describe how the oracle generates the advice. The oracle sees the
entire input beforehand and it knows how PRIORITYVC works. Since PRIORITYVC is deterministic, the oracle can, in effect, simulate
PRIORITYVC on the input. Thus, the oracle knows the order in which the vertices are processed and it knows at which time steps
PRIORITYVC asks for advice. The oracle supplies the advice in the order in which the advice is requested by PRIORITYVC. Suppose
that at some time, PRIORITYVC processes 𝑣 based on advice. If there is a unique correct decision for 𝑣, the oracle provides that
decision, either accept or reject, which is one bit of information. If either decision is correct (could be completed to a minimum
vertex cover) and 𝑣 is a bad-vertex, the oracle advises to accept. Finally, if either decision is correct and 𝑣 is not a bad-vertex, the
oracle advises to reject. This tie-breaking condition is particularly important for the analysis.

We mention a few high level features of PRIORITYVC. Vertices that obviously can be handled without advice are those with
current degree 0 or 1, and neighbors of rejected (accepted in mis3) vertices. The two key observations in the design of mis3 are
the following: First, the vertices just described should receive the highest priorities (as described in Section 3.1). Second, if we

Theoretical Computer Science 984 (2024) 114318

12

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 3. Illustration of the case of 𝑣 having priority P4 in Lemma 1. Some edges are omitted so as to avoid clutter.

process vertices of current degree 3 prior to processing vertices of current degree 2 (with a small exception of P4; ignore that for the
moment), then, when a vertex of current degree 2 arrives according to P9, we know that all the remaining vertices in the graph have
current degree 2. We can conclude that the remaining graph is a collection of disjoint cycles and an optimal vertex cover in such a
graph can be computed by a priority algorithm without advice. Therefore, with such an approach, only vertices of current degree 3
may require advice and the goal is to minimize the number of such vertices. This is where cooperation between the oracle and the
algorithm becomes crucial – we shall see that the tie-breaking condition of the oracle is chosen so as to create scenarios under which
some vertices of current degree 3 may be processed without advice.

Next, we analyze PRIORITYVC formally. We begin with the easier proof of correctness of the algorithm and then establish the
sufficient number of bits of advice. Suppose that at time 𝑡 a vertex arrives according to priority P9 for the first time. Then we refer to
the time interval [1, 𝑡 −1] as Phase 1 and to the time interval [𝑡, 𝑛] as Phase 2. If such 𝑡 does not exist then we set 𝑡 = 𝑛 +1 meaning that
the entire time interval [1, 𝑛] consists of only Phase 1 and Phase 2 is empty. Correctness of the algorithm follows from the following
lemma.

Lemma 1. Every decision of PRIORITYVC is correct.

Proof. The proof is by induction in the number of input items. For the base case, no input items have been processed and all
decisions have trivially been correct. For the inductive step, if all previous decisions have been correct, we need to demonstrate that
the decision for the next vertex is also correct. Let 𝑣 be the newly arriving vertex.

First, suppose that the algorithm is in Phase 1.

Case: 𝑣 has priority P1, P2, P3, P7, or P8. Decisions of PRIORITYVC are obviously correct.

Case: 𝑣 has priority P4. PRIORITYVC rejects 𝑣, so suppose for the sake of contradiction that 𝑣 should have been accepted. Let 𝑣′
denote a bad-vertex and 𝑢1, 𝑢2, and 𝑢3 its three neighbors such that 𝑢1 is also a neighbor of 𝑣. This is illustrated in Fig. 3.

Observe that another optimal vertex cover is obtained by accepting the vertices 𝑣′, 𝑢2, 𝑢3, 𝑣 and rejecting 𝑢1. Thus, the oracle
would have given advice to accept 𝑣′, since at the time 𝑣′ was processed, both decisions were correct, and the oracle prefers
accepting bad-vertices. This is a contradiction, so the decision of PRIORITYVC to reject 𝑣 is correct.

Case: 𝑣 has priority P5. Observe that processing bad-vertices leads to processing of their neighbors prior to any vertex with priority
P5 being processed. Therefore, 𝑣 is a neighbor of an aa-vertex 𝑣′ and 𝑣′ was never bad. Denote the neighbors of 𝑣′ by 𝑢1, 𝑢2, 𝑢3 such
that 𝑢1 = 𝑣. Consider the time when 𝑣′ received advice to be accepted. We claim that at most one of 𝑢1, 𝑢2, 𝑢3 can be accepted in the
future. Suppose, for the sake of contradiction, that at least two nodes, say, 𝑢1 and 𝑢2, must be accepted in the future. Then accepting
𝑢1, 𝑢2, 𝑢3 and rejecting 𝑣′ would result in a vertex cover of the same size or smaller as accepting 𝑣′, 𝑢1, 𝑢2 and rejecting/accepting 𝑢3.
In this case, since 𝑣′ was not bad at the time it received advice, the oracle should have given advice to reject 𝑣′ according to the tie-

breaking condition. This is a contradiction, and therefore at most one of 𝑢1, 𝑢2, 𝑢3 can be ever accepted. By definition of an a-sibling,
either 𝑢2 or 𝑢3 has been accepted prior to 𝑣 = 𝑢1 being processed, so it is correct to reject 𝑣.

Case: 𝑣 has priority P6. As in the previous case, let 𝑣′ be the aa-vertex that shares at least two neighbors with 𝑣 and that was
not bad at the time it was processed. As already argued, at most one neighbor of 𝑣′ can be accepted, therefore at least one of the
neighbors of 𝑣 in common with 𝑣′ must be rejected. Since each edge must be covered by the solution, we conclude that 𝑣 must be
accepted.

Since the case of P9 cannot happen in Phase 1, we move to the analysis of Phase 2. As discussed prior to this lemma, at the
beginning of Phase 2 we know that the remaining graph is a collection of cycles. Once a vertex of current degree 2 arrives according
to P9, it is rejected, which creates two vertices of current degree 1 each. They are neighbors of a rejected vertex, so they are
processed next according to P1. The degrees of their neighbors on the cycle drop to 1 or 0, so they are processed according to P1–3.
This continues until all vertices in this cycle have been processed. Then the next cycle is processed and so on. The correctness of the
constructed vertex cover follows from the fact that a minimum vertex cover in every cycle rejects at least one vertex. Thus, by the
isomorphisms of a cycle, it is always safe to reject the first vertex from the cycle. After that, correctness follows by the correctness of
cases P1–3, as in Phase 1. □

Theoretical Computer Science 984 (2024) 114318

13

J. Boyar, K.S. Larsen and D. Pankratov

Central to the analysis of the number of bits of advice is the notion of a component. A new component starts when a new a-vertex
is processed that does not have neighbors in common with a previously processed a-vertex. When a new component is started, any
previous component is closed, meaning that it receives no more vertices. A vertex is included in the current component if it is not in
any previous component, and one of the following cases applies:

• it is an a-vertex that shares a neighbor with a previously processed a-vertex from the current component,

• it is a neighbor of an a-vertex from the current component,

• it is accepted or rejected before the component is closed.

Note that a component in the above sense is not to be confused with a connected component – it is possible for a connected graph
to consist of several components, and it is possible that such a component is not connected.

We let 𝑐 denote the final number of components created by PRIORITYVC on the given input. For 𝑖 ∈ [𝑐], we let 𝑎𝑖(𝑡) denote the
number of a-vertices in component 𝑖 at time 𝑡, and we let 𝑠𝑖(𝑡) denote the size of component 𝑖 at time 𝑡. Let 𝑡𝑖 denote the time
component 𝑖 is closed. We use a shorthand notation 𝑎𝑖 ∶= 𝑎𝑖(𝑡𝑖) and 𝑠𝑖 ∶= 𝑠𝑖(𝑡𝑖) for the final number of a-vertices in component 𝑖 and
the final size of component 𝑖, respectively. We also define 𝑛𝑖(𝑡) ∶= 𝑠𝑖(𝑡) − 𝑎𝑖(𝑡), which is the number of non-a-vertices in component 𝑖
at time 𝑡, and 𝑛𝑖 = 𝑠𝑖 − 𝑎𝑖, which is the number of non-a-vertices in component 𝑖.

The high level idea behind bounding the number of advice bits used by PRIORITYVC is to prove two inequalities and then take
their linear combination. The first inequality (Lemma 2) is more local in that it is proved for each component independently of other
components. The second inequality (Lemma 3) is more global in that it incorporates potential interactions between components.
Both inequalities are proved via weight reallocation arguments as explained in the following lemmas.

We begin with the more difficult local lemma.

Lemma 2. For all 𝑖 ∈ [𝑐], we have

𝑠𝑖 ≥ 3𝑎𝑖 + 1.

Proof. Consider component 𝑖.

If 𝑎𝑖 = 1, then the vertex that received advice and its three neighbors are added to the component by definition, so 𝑠𝑖 ≥ 4 = 3𝑎𝑖+1.

If 𝑎𝑖 = 2, then the two vertices that received advice can share at most one neighbor. If, to the contrary, they had two vertices in
common, then if the first of the two vertices is rejected, then its neighbors are accepted, and the second vertex becomes unary and
does not need advice due to P3; a contradiction. Similarly, if the first vertex is accepted, it becomes an aa-vertex and the second vertex
gets accepted without advice due to P6. So counting the two vertices and their five distinct neighbors gives that 𝑠𝑖 ≥ 7 = 3𝑎𝑖 + 1.

If 𝑎𝑖 ≥ 3, then the situation is more involved. The desired inequality trivially follows if we can establish

𝑛𝑖 ≥ 2𝑎𝑖 + 1. (1)

For 𝑗 ∈ [𝑎𝑖], let 𝑡𝑗 denote the time step when the 𝑗th a-vertex in component 𝑖 is processed. Call this vertex 𝑣𝑗 . Thus, the component
gets started at time 𝑡1 with a-vertex 𝑣1. Denote the three neighbors of 𝑣𝑗 by 𝑢𝑗,1, 𝑢𝑗,2, 𝑢𝑗,3.

Denote the weight of a vertex 𝑣 by 𝑤(𝑣). Each non-a-vertex 𝑣 that gets added to this component starts out with weight 𝑤(𝑣) = 1.
Each a-vertex 𝑣𝑗 that gets added to this component starts out with weight 𝑤(𝑣𝑗) = 0. The weight is reallocated from non-a-vertices
to a-vertices, so as to guarantee the properties below at the end of processing the component. We let the index of the a-vertices
𝑣1, 𝑣2, … , 𝑣𝓁 denote the order in which weight is allocated to them, and establish the following:

I1 𝑤(𝑣1) = 1.5;

I2 𝑤(𝑣2) = 2.5;

I3 𝑤(𝑣3) = 2.5;

I4 𝑤(𝑣𝑗) = 2 for 𝑗 ∈ [4, 𝓁].

Note that since we are in the case 𝑎𝑖 ≥ 3, this is well-defined. We check that I1–4 are sufficient to establish the claim. Observe that
the total amount of weight allocated to component 𝑖 is exactly 𝑛𝑖. After reallocating the weight, I1–I4 imply that the total weight in
the component is ≥ 1.5 + 2.5 + 2.5 + 2(𝑎𝑖 − 3) = 2𝑎𝑖 + 0.5. Since the reallocation procedure does not destroy weight or create extra
weight, the total amount of weight in the component at the end is 𝑛𝑖. This implies that 𝑛𝑖 ≥ 2𝑎𝑖 + 0.5. Since 𝑛𝑖 and 𝑎𝑖 are integers,
we have 𝑛𝑖 ≥ 2𝑎𝑖 + 1, as desired.

We execute weight reallocation in parallel with PRIORITYVC. The reallocation follows some rules: (a) after sufficient weight is
reallocated to an a-vertex, this weight is not reallocated ever again; (b) only the weights of vertices that are in component 𝑖 can be
reallocated (to an a-vertex in component 𝑖); (c) at any point in time, the weight of non-a-vertices can be either 0, 0.5, or 1; (d) if the
weight of a non-a-vertex is 0, then the vertex has been processed and removed from the graph; (e) the weight of every non-a-vertex
can be reallocated twice: 0.5 can be reallocated when its degree goes from 3 to 2 (and not more than 0.5 is reallocated in this
scenario) and the remaining 0.5 is reallocated when the degree of the vertex drops down further, when it is processed, or even after
it is processed; (f) every unprocessed vertex with weight 0.5 is a neighbor of a processed a-vertex. We do not keep track of each of
the above statements explicitly in the following case analysis, since this is rather tedious. It is fairly straightforward to verify that
each claim continues to hold in the analysis below.

Theoretical Computer Science 984 (2024) 114318

14

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 4. Illustration of reallocating 0.5 units of weight from each of the neighbors to 𝑣1 in I1. In order not to clutter the illustration, we do not show all edges incident
to vertices. How a vertex is processed starting at 𝑡1 is indicated next to the vertex. The weight of a vertex is shown inside the vertex.

Fig. 5. Illustration of reallocating 1 unit of weight from 𝑧 and 0.5 units of weight from each of neighbors of 𝑣2 to 𝑣2 in I2.

Observation 1: For point (b), we make one observation that is used repeatedly, namely that a certain neighbor of a neighbor
cannot belong to an earlier component, which means that we are allowed to reallocate weight from it. Note that the only unprocessed
vertices of a closed component are neighbors of aa-vertices. Consider an a-vertex 𝑣𝑗 in the current component that shares a neighbor
𝑢𝑗,1 with a previously processed a-vertex 𝑣𝑗′ , also of component 𝑖, for some 𝑗′ < 𝑗. Then after processing 𝑣𝑗 , the current degree of
𝑢𝑗,1 drops to 1. Let 𝑧 be the unique neighbor of 𝑢𝑗,1 at that point. We claim that 𝑧 cannot belong to a previous component. If 𝑧 did
belong to a previous component, say 𝑖′ < 𝑖, then 𝑧 would necessarily be a neighbor of an a-vertex in component 𝑖′. Suppose that
component 𝑖′ was closed at time 𝑡. The degree of 𝑢𝑗,1 is 3 until 𝑣𝑗′ is being processed. Thus, at time 𝑡, 𝑢𝑗,1 shared a neighbor, 𝑧, with
an a-vertex in component 𝑖′. This implies that component 𝑖′ should not have been closed at time 𝑡, since it could be extended by
considering 𝑢𝑗,1. Thus, 𝑧 cannot belong to a previous component, and we are free to allocate weight away from 𝑧.

With this additional observation, we are ready to prove I1–4.

I1. Observe that if the first a-vertex is an ar-vertex, then all its neighbors are removed prior to any other vertex receiving advice.
Since a-vertices in a component are connected through common neighbors, there can be no other a-vertices in the component, so
𝑎𝑖 = 1. Therefore, since we assume that 𝑎𝑖 ≥ 3, the first a-vertex must be an aa-vertex. This vertex and its three neighbors are added
to the component. We reallocate 0.5 units of weight from each of the neighbors to 𝑣1. This is illustrated in Fig. 4.

I2. The second a-vertex 𝑣2 must have exactly one neighbor in common with 𝑣1: if it had no neighbors in common, a new
component would get started; if it had more than one neighbor in common, then it would be processed without advice. Without loss
of generality, let that neighbor be 𝑢1,3 = 𝑢2,1. Observe that 𝑣2 must have received advice to be accepted. If it received advice to be
rejected, then all its neighbors would be accepted and 𝑢1,1 and 𝑢1,2 would become a-siblings (if they have not been processed yet), so
they would get processed prior to 𝑣3. But this implies that all neighbors of 𝑣1 and 𝑣2 would be eliminated prior to 𝑣3 and 𝑣3 would
never be added to the current component, contradicting the assumption that 𝑎𝑖 ≥ 3.

Thus, we assume that 𝑣2 received advice to be accepted. At time 𝑡2, the current degree of 𝑢1,3 must be 2: if it was higher, then
the original degree (which would include 𝑣1) would be more than 3; if it was lower, then 𝑢1,3 would be processed prior to 𝑣2 and 𝑣2
would not have received advice. One of the vertices contributing to the current degree of 𝑢1,3 is 𝑣2. Let the other vertex be 𝑧. Observe
that 𝑧 is different from all of 𝑢1,1, 𝑢1,2, 𝑢2,2, 𝑢2,3 since otherwise the input graph would contain a triangle. When 𝑣2 is processed, the
current degree of 𝑢1,3 drops to 1, so it will be rejected and its neighbor accepted. Since 𝑧 is a new vertex that has been added to the
component, we can reallocate one unit of weight from 𝑧 to 𝑣2. We also reallocate 0.5 units of weight from each of the neighbors of
𝑣2 to 𝑣2. This results in the overall weight of 𝑣2 being 2.5, as desired. It is easy to check that this reallocation satisfies all the rules
and the illustration is shown in Fig. 5.

I3. There are several cases for 𝑣3.

Case 1. Consider the case where 𝑣3 shares a single neighbor with a previous aa-vertex (could be either 𝑣1 or 𝑣2). Without loss of
generality, let the shared neighbor be 𝑢3,1. Then 𝑢3,2 and 𝑢3,3 are added to the current component for the first time so they start out
with weight 1. Since 𝑢3,1 has not yet been processed at 𝑡3, its weight is 0.5.

Subcase 1(a). Suppose that 𝑣3 receives advice to be rejected. Then the weight of all its neighbors can be reallocated to 𝑣3 resulting
in 𝑤(𝑣3) = 2.5, as desired. This obeys the reallocation rules, since 𝑣3 and all its neighbors will be removed from the graph prior to 𝑡4.
This is illustrated in Fig. 6.

Theoretical Computer Science 984 (2024) 114318

15

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 6. Illustration of reallocating the weight of all the neighbors of 𝑣3 to 𝑣3 in I3, Subcase 1(a).

Fig. 7. Illustration of reallocating 0.5 units of weight from each of 𝑢1,2, 𝑧 = 𝑢1,1, 𝑢2,2 = 𝑢3,1, 𝑢3,2, 𝑢3,3 to 𝑣3 in I3, Subcase 1(b).

Fig. 8. Illustration of reallocating 1 unit of weight from 𝑢3,3 and 0.5 units of weight from 𝑢1,2 and the other neighbors of 𝑣3 to 𝑣3 in I3, Subcase 2(a).

Subcase 1(b). Suppose that 𝑣3 receives advice to be accepted. Without loss of generality suppose that 𝑢3,1 = 𝑢2,2, i.e., the single
shared neighbor is with 𝑣2 (𝑣2 and 𝑣1 behave symmetrically in the following argument). Arguing similarly to I2, after accepting 𝑣3,
the current degree of 𝑢3,1 would drop to 1. Let 𝑧 be the unique neighbor of 𝑢3,1 at that point. Then, by the priority tie breaking in P3,
𝑢3,1 is rejected and 𝑧 is accepted. If 𝑧 has weight 1 at time 𝑡3, then the weight reallocation is done similarly to I2. Otherwise, 𝑧 has
weight 0.5. By Observation 1, 𝑧 is in the current component. The vertex 𝑧 cannot be a neighbor of 𝑣3, or there would be a cycle. The
only vertices in the current component of weight 0.5 after processing vertices in I1 and I2 and reallocating weights are neighbors of
𝑣1 and 𝑣2. Since 𝑧 cannot be a neighbor of 𝑣2 (this would create a triangle), it must be a neighbor of 𝑣1. Without loss of generality,
assume 𝑧 = 𝑢1,1. Since 𝑧 is accepted, 𝑢1,2 becomes an a-sibling, unless it was already processed. So, both 𝑢1,2 and 𝑢1,1 are processed
and removed from the graph prior to 𝑡4. Thus, we can reallocate 0.5 units of weight from each of 𝑢1,2, 𝑧 = 𝑢1,1, 𝑢2,2 = 𝑢3,1, 𝑢3,2, 𝑢3,3 to
𝑣3 resulting in 𝑤(𝑣3) = 2.5 as desired. This last case is illustrated in Fig. 7.

Case 2. Suppose that 𝑣3 shares two neighbors with previous aa-vertices – one with 𝑣1 and another with 𝑣2. More specifically,
without loss of generality suppose that 𝑢3,1 = 𝑢1,1 and 𝑢3,2 = 𝑢2,2.

Subcase 2(a). If 𝑣3 receives advice to be rejected, then the three neighbors 𝑢3,1, 𝑢3,2, 𝑢3,3 are accepted. Their weights are reallocated
to 𝑣3. Moreover, 𝑢1,2 (assuming that 𝑢1,3 was the neighbor common to 𝑣1 and 𝑣2) was either processed earlier and had 0.5 units of
weight remaining, or becomes an a-sibling and is processed prior to 𝑡4. In either case, we can reallocate 0.5 units of weight from 𝑢1,2
to 𝑣3 for the total amount of weight reallocated to 𝑣3 being 2.5. This is illustrated in Fig. 8.

Subcase 2(b). If 𝑣3 receives advice to be accepted, then the current degrees of 𝑢3,1 and 𝑢3,2 drop down to 1 each (same argument
as in I2). Let the unique neighbor of 𝑢3,1 be 𝑧1 and the unique neighbor of 𝑢3,2 be 𝑧2. Note that 𝑧1 is not a neighbor of 𝑣3 or 𝑣1 in the
original graph for otherwise it would contain a triangle. Similarly, 𝑧2 is not a neighbor of 𝑣3 or 𝑣2. Observe that after processing 𝑣3,
vertices 𝑢3,1, 𝑢3,2, 𝑧1, and 𝑧2 will be processed prior to 𝑡4. If either 𝑧1 or 𝑧2 (which could be the same vertex) has weight 1 at 𝑡3, then
we can reallocate 0.5 units of weight from each of 𝑢3,1, 𝑢3,2, 𝑢3,3 to 𝑣3 and 1 unit of weight from 𝑧1 or 𝑧2 to 𝑣3 for the total weight
2.5 as desired. An example where the weight of 𝑧1 is 1 at time 𝑡3 is illustrated in Fig. 9.

The only remaining scenario is when each of 𝑧1 and 𝑧2 have weight 0.5 at time 𝑡3. Based on I1 and I2 and properties of 𝑧1 and
𝑧2 mentioned above, it must be the case that 𝑧1 = 𝑢2,3 and 𝑧2 = 𝑢1,2, since, otherwise, there is a triangle, so 𝑧1 ≠ 𝑧2. In particular,

Theoretical Computer Science 984 (2024) 114318

16

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 9. Illustration of reallocating 0.5 units of weight from each of 𝑢3,1, 𝑢3,2, 𝑢3,3 to 𝑣3 and 1 unit of weight from 𝑧1 or 𝑧2 to 𝑣3 in I3, Subcase 2(b).

Fig. 10. Illustration of reallocating 0.5 units of weight from each of 𝑢𝑗,1, 𝑢𝑗,2, 𝑢𝑗,3 and 𝑧 to 𝑣𝑗 in I4, Case 1.

after processing 𝑣3, vertices 𝑢1,1, 𝑢2,2, 𝑢1,2, 𝑢2,3 will be processed prior to 𝑡4. Thus, we can reallocate 0.5 from each of them, plus 0.5
from 𝑢3,3.

I4. Let 𝑗 ≥ 4 and consider 𝑣𝑗 receiving advice at time 𝑡𝑗 . Each of the neighbors of 𝑣𝑗 has current degree at least 2 (same reason as
in I2) and at least one of the neighbors is shared with a previous aa-vertex in the component.

Case 1. Suppose that 𝑣𝑗 receives advice to be accepted. Without loss of generality assume that 𝑢𝑗,1 is a neighbor shared with 𝑣𝑗′
for some 𝑗′ < 𝑗. After processing 𝑣𝑗 the degree of 𝑢𝑗,1 drops to 1, so by the priority tie breaking in P3, it is rejected and its neighbor,
call it 𝑧, is accepted. We can reallocate 0.5 units of weight from each of 𝑢𝑗,1, 𝑢𝑗,2, 𝑢𝑗,3 and 𝑧 to 𝑣𝑗 for the total weight of 2.0, as desired.
This is illustrated in Fig. 10.

Case 2. Suppose that 𝑣𝑗 receives advice to be rejected. Then the three neighbors are accepted. As argued before, each of the
neighbors has degree at least 2 at time 𝑡𝑗 , and each of the neighbors has at least 0.5 units of weight available for reallocation. If at
least one of the neighbors has 1 unit of weight available, then we can reallocate 2.0 units of weight from the neighbors of 𝑣𝑗 to 𝑣𝑗 ,
as desired. If each neighbor has only 0.5 units available, then each neighbor is also a neighbor of a previously processed aa-vertex in
this component. Let 𝑣′

𝑘
be such a processed neighbor of 𝑢𝑗,𝑘 for 𝑘 ∈ [3]. Observe that the 𝑣′

𝑘
are all distinct, since a vertex receiving

advice can share at most one neighbor with a previous aa-vertex. If some 𝑣′
𝑘

is not a contributing vertex at time 𝑡𝑗 , then, by accepting
𝑢𝑗,𝑘, the other remaining neighbor of 𝑣′

𝑘
becomes an a-sibling and will be processed prior to 𝑡𝑗+1. In this case, we can reallocate 0.5

from the a-sibling and each of the 𝑢𝑗,𝑘 for 𝑘 ∈ [3] to 𝑣𝑗 for a total weight of 2.0, as desired.

The only remaining subcase is when all of the 𝑣′
𝑘

are contributing vertices at 𝑡𝑗 . This means that 𝑣𝑗 is a bad-vertex at time 𝑡𝑗 .
Consider what happens after processing 𝑣𝑗 . The degree of each 𝑢𝑗,𝑘 drops to exactly 1 and they are accepted. Let 𝑧𝑘 be the unique
neighbor of some 𝑢𝑗,𝑘 immediately prior to 𝑢𝑗,𝑘 being accepted (note that the 𝑧𝑘 do not have to be distinct, but this does not matter
for the following argument). If, after processing all 𝑢𝑗,𝑘, the degree of at least one of the 𝑧𝑘 drops below 2, then it would be processed
prior to 𝑡𝑗+1. In this case, we can reallocate 0.5 units of weight from each of 𝑢𝑗,𝑘 and 0.5 units of weight from the to-be-processed 𝑧𝑘
to 𝑣𝑗 for a total weight of 2.0. Otherwise, consider 𝑧1, for example. After processing all 𝑢𝑗,𝑘 the current degree of 𝑧1 is 2. Thus, it can
be rejected without advice according to priority P4 and its weight can be reallocated to 𝑣𝑗 for the total weight of 𝑣𝑗 being at least
2.0 (the other weights coming from the 𝑢𝑗,𝑘), as desired. □

Next, we prove the second inequality.

Lemma 3. We have

10𝑎− 4𝑐 ≤ 3𝑛,

Theoretical Computer Science 984 (2024) 114318

17

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 11. Illustration of reallocating one unit of weight from 𝑢1,𝑘 for 𝑘 ∈ [3] to 𝑣1 in J1. As in Lemma 2, we do not show all edges incident to vertices so that the
illustration does not become cluttered. How a vertex is processed is indicated next to the vertex. The weight of a vertex is shown inside the vertex.

where 𝑛 is the number of vertices in the graph, 𝑎 is the number of advice bits read by PRIORITYVC, and 𝑐 is the number of components, as
defined earlier.

Proof. We prove this via a weight reallocation argument similar to the one used in Lemma 2. Weight reallocation is done in parallel
with PRIORITYVC, so we can describe it one vertex at a time. Weight reallocation is performed each time an input vertex receives
advice and may involve vertices that are processed immediately after that without advice. There are several key differences from
the weight reallocation done in Lemma 2. First of all, every vertex starts with initial weight 3 – no matter whether the vertex is an
a-vertex or non-a-vertex. Secondly, we allow weight to be reallocated even from unprocessed vertices from closed components, since
we are not interested in a component-wise inequality, but the inequality for the entire input. The weight reallocation procedure will
guarantee the following properties:

J1. The first a-vertex of every component receives 6 units of weight.

J2. Subsequent a-vertices in every component receive 10 units of weight each.

The reallocation procedure satisfies the following additional constraints: (a) no extra weight is created or consumed; (b) the weight
of a vertex is at least its current degree; (c) if a vertex has weight 0, then it must have been processed; (d) at any point in time 𝑡 the
weight that could have been reallocated by 𝑡 comes only from vertices processed by time 𝑡 or neighbors of a-vertices processed by
time 𝑡. We will not explicitly check each of these constraints in the cases described below, but it is easy to verify from the arguments.

We first see how J1 and J2 imply the claim and then define the reallocation procedure to satisfy J1 and J2. Observe that after
processing the entire input, the total weight in component 𝑖 is at least 6 + 10(𝑎𝑖 − 1). Adding this over all components 𝑖 ∈ [𝑐], we see
that the total weight in the input graph is at least 6𝑐 + 10(𝑎 − 𝑐), since components are vertex disjoint. Without weight reallocation,
the total weight would be 3𝑛 since each vertex starts out with exactly 3 units of weight. Since the weight reallocation procedure does
not create extra weight, we have 3𝑛 ≥ 6𝑐 + 10(𝑎 − 𝑐), which implies the statement of the lemma.

Although we are allowed to reallocate weight from unprocessed vertices from closed components, we still define the procedure
for each component separately. We use the notation of Lemma 2. More specifically, consider component 𝑖. Let 𝑎𝑖 denote the total
number of a-vertices in the component at the end. For 𝑗 ∈ [𝑎𝑖], let 𝑡𝑗 denote the time step when the 𝑗th a-vertex 𝑣𝑗 in component 𝑖

was processed. Thus, the component gets started at time 𝑡1 with a-vertex 𝑣1. Denote the three neighbors of 𝑣𝑗 by 𝑢𝑗,1, 𝑢𝑗,2, 𝑢𝑗,3.

J1. Since 𝑣1 is the first vertex of the component, its neighbors have not been processed and they cannot be neighbors of previous
a-vertices. Thus, we have 𝑤(𝑣1) = 𝑤(𝑢1,1) = 𝑤(𝑢1,2) = 𝑤(𝑢1,3) = 3. No matter whether 𝑣1 is an aa-vertex or an ar-vertex, after it is
processed and removed from the graph, the degrees of the neighbors drop by 1 each. Thus, we can reallocate one unit of weight from
𝑢1,𝑘 for 𝑘 ∈ [3] to 𝑣1, resulting in 𝑤(𝑣1) = 6, as desired. This is illustrated in Fig. 11.

J2. Let 𝑗 ≥ 2. We consider several cases depending on the type of 𝑣𝑗 and its (multi-hop) neighborhood.

Case 1. Suppose that 𝑣𝑗 receives advice to be accepted. Since 𝑣𝑗 is not the first vertex in the component, it shares a neighbor
with a previous aa-vertex 𝑣𝑗′ in the component for some 𝑗′ < 𝑗. Let that neighbor be 𝑢𝑗,1. As in the proof of Lemma 2, the current
degree of 𝑢𝑗,1 is 2 prior to processing 𝑣𝑗 , so its weight is also 2. After processing 𝑣𝑗 , we reallocate 1 unit of weight from each 𝑢𝑗,1, 𝑢𝑗,2,
and 𝑢𝑗,3 to 𝑣𝑗 and the weight allocated to 𝑣𝑗 becomes 6. The current degree of 𝑢𝑗,1 drops to 1. Let 𝑧 denote the unique neighbor of
𝑢𝑗,1 at that moment. Then, by the priority tie breaking in P3, 𝑢𝑗,1 is rejected and 𝑧 is accepted. We reallocate one additional unit
of weight from 𝑢𝑗,1 to 𝑣𝑗 . Since 𝑧 was present in the graph prior to 𝑣𝑗 being processed, the current degree of 𝑧 at time 𝑡𝑗 must be
at least 2. After 𝑧 is processed, we reallocate its weight to 𝑣𝑗 . At this point, the weight allocated to 𝑣𝑗 becomes at least 9. Let 𝑦 be
any neighbor of 𝑧 other than 𝑢𝑗,1 prior to 𝑧 being removed. Since processing 𝑧 decreases the degree of 𝑦 and we do not care which
component 𝑦 belongs to, we reallocate one unit of weight from 𝑦 to 𝑣𝑗 resulting in total weight allocated to 𝑣𝑗 being 10. Observe
that the triangle-free condition ensures that 𝑧 is not 𝑢𝑗,2, 𝑢𝑗,3 and it does not matter for the argument whether 𝑦 is 𝑢𝑗,2 or 𝑢𝑗,3 or any
other vertex in the graph. This case is illustrated in Fig. 12.

Case 2. Suppose that 𝑣𝑗 receives advice to be rejected. All neighbors of 𝑣𝑗 will be accepted after that and we can reallocate the
weight from those neighbors to 𝑣𝑗 . The current degree of each neighbor of 𝑣𝑗 is at least 2 prior to 𝑣𝑗 being processed (see arguments
in Lemma 2 for why). Thus, if one of the neighbors has current weight 3, then the total weight reallocated to 𝑣𝑗 from its neighbors
is at least 7. This, together with 𝑣𝑗 ’s initial weight of 3, results in 𝑤(𝑣𝑗) ≥ 10, as desired.

It only remains to handle the case when neighbors of 𝑣𝑗 have current degree and weight 2 at the time 𝑣𝑗 is processed. Let 𝑧 be the
unique neighbor of 𝑢𝑗,1. The current degree of 𝑧 is at least 2 prior to 𝑣𝑗 being processed, so its weight is at least 2, as well. Processing

Theoretical Computer Science 984 (2024) 114318

18

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 12. Illustration of reallocating one unit of weight from 𝑦 to 𝑣𝑗 in J2, Case 1.

Fig. 13. Illustration of reallocating one unit of weight from 𝑧 to 𝑣𝑗 in J2, Case 2.

𝑣𝑗 and its neighbors decreases the degree of 𝑧 by at least 1 and therefore we may to reallocate one unit of weight from 𝑧 to 𝑣𝑗 . This
last case is illustrated in Fig. 13. □

We are now ready to prove the bound on the number of advice bits used by PRIORITYVC.

Lemma 4. PRIORITYVC uses at most (7∕22)𝑛 = 0.3181𝑛 bits of advice on triangle-free graphs of maximum degree 3.

Proof. Lemma 2 says that 1 +3𝑎𝑖 ≤ 𝑠𝑖 for 𝑖 ∈ [𝑐]. Since the components are vertex-disjoint, the total number of vertices that received
advice is 𝑎 =

∑𝑐

𝑖=1 𝑎𝑖 and the total number of vertices is 𝑛 =
∑𝑐

𝑖=1 𝑠𝑖. Adding these inequalities over all 𝑖 ∈ [𝑐], we obtain

3𝑎+ 𝑐 ≤ 𝑛 (2)

Lemma 3 says that

10𝑎− 4𝑐 ≤ 3𝑛 (3)

Adding 4 times Eq. (2) to Eq. (3) results in 22𝑎 ≤ 7𝑛, i.e., 𝑎 ≤ (7∕22)𝑛, as desired. □

Corollary 1. The priority exact algorithm corresponding to PRIORITYVC runs in time

𝑂∗
(
2

7𝑛
22
)
⊂𝑂∗(1.247𝑛).

6. Hardness results using templates

In this section, we present templates for proving lower bounds on how much advice is needed for an adaptive priority algorithm
to achieve a certain approximation ratio or optimality. The results hold in the oblivious priority function model (and the optimality
results also hold in the decision-based priority function model).

The rest of this section is organized as follows: In Subsection 6.1, we introduce the notion of gadget pattern pairs and describe
conditions on problems and gadget pattern pairs that are sufficient for proving lower bounds using the templates in the next two
subsections. In Subsection 6.2, we present templates for proving trade-offs between the number of advice bits and approximation

ratios. We finish the section with a table listing the lower bound results that can be obtained for Minimum Vertex Cover with the
gadget pattern pairs from Subsection 4 and with known gadget pattern pairs for five other problems. In Subsection 6.3, we present

Theoretical Computer Science 984 (2024) 114318

19

J. Boyar, K.S. Larsen and D. Pankratov

the template for proving lower bounds on the number of advice bits needed to solve problems to optimality. The implications of these
results for priority exact algorithms are also discussed.

6.1. Gadget pattern pairs for the templates

In this section, we generalize the construction introduced in Section 4. These types of constructions will be used in our lower
bound proofs, some based on reductions and some adversarial. Thus, in some proofs, vertices are given to the priority algorithm with
advice by an adversary and, in other proofs, by a reduction (algorithm). In this section, we just use the term “adversary” to represent
both of these options.

In Section 4, we presented a lower bound on solving the Minimum Vertex Cover problem to optimality using priority algorithms
with advice in the decision-based priority function model. Two graphs, Graph 1 and Graph 2 were used. When a vertex of degree 2
was selected, the adversary chose between two isomorphic copies of Graph 1 to include; these two isomorphic copies constitute an
example of the general concept, a gadget pattern pair. Similarly, for a vertex of degree 3, the isomorphic copy of Graph 1, along
with the isomorphic copy of Graph 2, was another example of a gadget pattern pair. These two gadget pattern pairs constitute our
collection of gadget pattern pairs for the Minimum Vertex Cover problem.

A gadget 𝐺 for problem 𝐵 is simply some constant-sized instance for 𝐵, i.e., a collection of input items that satisfy the consistency
conditions for problem 𝐵. For example, if 𝐵 is a graph problem in the vertex arrival, vertex adjacency model, 𝐺 could be a constant-

sized graph. In this case, an input item would possibly be a vertex name and a list of neighboring vertex names.

We will define a universe of input items from a union of subuniverses. For this graph problem, in a subuniverse for a collection of
gadget pattern pairs, each vertex name exists as many times as the vertex of an input item in the universe, because it can be paired
with many different possible lists of neighboring vertex names for the purpose of creating all possible isomorphic instances of the
gadget. The effect of this is that when an algorithm receives the first input item of some degree 𝑑, it can be any of the degree-𝑑

vertices in any of the gadget patterns in the collection. Consistency conditions must apply to the actual given input. For instance, for
each vertex name 𝑢 which is listed as a neighbor of 𝑣, it must be the case that 𝑣 is listed as a neighbor of 𝑢. There could of course be
further constraints on the input instances; for instance, restricting inputs to graphs of some maximum degree.

In our proofs, the adversary provides multiple gadgets (possibly many isomorphic ones), each coming from some gadget pattern
pair in the collection. We need that the sets of possible input items for these multiple gadgets are disjoint, but contain all necessary
input items for all gadget patterns in the collection of gadget pattern pairs. To obtain this, we repeat the construction above, creating
distinct subuniverses for each gadget the adversary presents. Thus, if, during the execution of an algorithm, the adversary presents 𝑚
gadgets to the algorithm, the universe consists of 𝑚 disjoint subuniverses, 1, 2, … , 𝑚; all of these subuniverses are identical up
to renaming of vertices. This implies that an input item identifies which subuniverse it is in. We refer to this property as the disjoint
copies condition.

We also make an assumption on the objective function related to the gadgets: We say that the objective function for a problem
𝐵 is additive with respect to the gadgets if, for any instance formed from a set of 𝑚 gadgets from disjoint universes, the objective
function value on the instance is the sum of the objective function values on the individual gadgets. This implies that optimality on
the instance requires optimality on each gadget. For example, this assumption will hold for many classical graph problems since the
gadgets will be maximal connected components and the corresponding objectives are additive with respect to connected components.

Recall that max𝑃 𝑅 denotes the first item in a set 𝑅 according to the current priority function 𝑃 , i.e., the highest priority item
(possibly after tie-breaking by an adversary). Assume that ALG responds “accept” or “reject” to any possible input item. This captures
problems such as Minimum Vertex Cover, Independent Set, Clique, etc.

Each collection of gadget pattern pairs also satisfies the first item condition, and the distinguishing decision condition. The first
item condition says that the first input item chosen by ALG from the subuniverse 𝑗 , first(𝑗), identifies a gadget pattern pair, (𝐺𝑎

𝑗
, 𝐺𝑟

𝑗
),

from the collection of gadget pattern pairs, and that the input item itself gives no information about which of the two gadgets 𝐺𝑎
𝑗

or 𝐺𝑟
𝑗

it is in. For the Vertex Cover example from Section 4, the first item could be a vertex of degree 2 or degree 3, and the two
cases lead to different gadget pattern pairs, but the actual input item gives no information as to which of the gadget patterns within
the pair it belongs to. Given a priority function 𝑃 , the first item condition can be written as: first(𝑗) = max𝑃 𝐺𝑎𝑗 = max𝑃 𝐺𝑟𝑗 . The
distinguishing decision condition says that the decision with regards to item first(𝑗) that results in the optimal value of the objective
function in 𝐺𝑎

𝑗
is different from the decision that results in the optimal value of the objective function in 𝐺𝑟

𝑗
. This first input item is

said to be the distinguishing item. For accept/reject, we list 𝐺𝑎
𝑗
, where the correct decision is to accept, as the first gadget pattern of

the pair, and 𝐺𝑟
𝑗

as the second.

6.2. Lower bounds on the advice needed for approximation

In this section, we establish two theorems that give general templates for gadget-based reductions from a problem referred to as
2-SGKH, one for maximization problems and one for minimization problems. While it takes some work to establish these results, the
theorems are easy to apply to concrete problems once established. One simply has to define a collection of gadget pattern pairs with
the required properties and then plug numbers into our formulas. We do this for a number of approximation problems at the end of
this section.

The following online problem, while seeming artificial, has been used extensively in proving lower bounds for online algorithms
with advice, and we can also use it for adaptive priority algorithms with advice.

Theoretical Computer Science 984 (2024) 114318

20

J. Boyar, K.S. Larsen and D. Pankratov

Definition 1. The Binary String Guessing Problem [8] with known history (2-SGKH) is the following online problem. The input consists
of (𝑛, 𝜎 = (𝑥1, … , 𝑥𝑛)), where 𝑥𝑖 ∈ {0, 1}. Upon seeing 𝑥1, … , 𝑥𝑖−1, an algorithm guesses the value of 𝑥𝑖. The actual value of 𝑥𝑖 is
revealed after the guess. The goal is to maximize the number of correct guesses. □

Böckenhauer et al. [8] provide a trade-off between the number of advice bits and the approximation ratio for the binary string
guessing problem. This can be used to show that a linear number of bits of advice is necessary for many online problems.

Theorem 4 (Böckenhauer et al. [8]). For the 2-SGKH problem and any 𝜀 ∈ (0, 12], no online algorithm using fewer than (1 −𝐻(𝜀))𝑛 advice
bits can make fewer than 𝜀𝑛 mistakes for large enough 𝑛, where 𝐻(𝑝) =𝐻(1 − 𝑝) = −𝑝 log(𝑝) − (1 − 𝑝) log(1 − 𝑝) is the binary entropy
function.

To obtain an optimal online algorithm with advice for 2-SGKH, 𝑛 bits of advice are necessary and sufficient [8].

Results and proofs presented here are somewhat similar to those presented in [13] for fixed priority algorithms with advice.
However, there are two major differences. The harder and more interesting one is that we handle adaptive priorities, where the
priority functions may depend partially on the advice. In addition, we reduce from string guessing directly instead of going via an
intermediate priority algorithm problem. The purpose of this is to avoid losing constant factors with regards to the inapproximability
results through intermediate reductions, but this change also made it easier to handle adaptive priorities.

The lower bounds in this section hold in the oblivious priority function model. Recall that in Section 4, we showed a lower bound
result for solving Vertex Cover to optimality in the decision-based priority function model. It is an open problem to determine if
the approximation lower bounds we prove here also hold in the decision-based priority function model. The problem in proving this
when dealing with approximation algorithms is that, theoretically, a priority algorithm with advice could use that advice to encode
information in the decisions it makes and then use those decisions in later priority functions. This would allow the priority functions
to depend on the advice. For algorithms solving a problem to optimality, this encoding cannot be done since the gadgets in the proof
ensure that each decision made by an optimal algorithm is forced.

The template is restricted to binary decision problems since the goal is to derive inapproximability results based on the 2-SGKH
problem, where guesses (answers) are either 0 or 1. In our reduction from 2-SGKH to a problem 𝐵, we assume that we have a priority
algorithm ALG with advice in the oblivious priority function model for problem 𝐵. Thus, the priority functions may vary between
inputs to ALG, but must assign the same priority to unseen items that are indistinguishable (except for names of items) given the
input seen before this point. The current priority function will generally be referred to as 𝑃 . For the reduction, the inputs to 2-SGKH
are 𝑋 = ⟨𝑥1, … , 𝑥𝑛⟩.
Reduction algorithm Based on ALG, its advice, and its priority functions, we define an online algorithm ALG′ with advice (the
reduction algorithm) for 2-SGKH. The reduction is advice-preserving, since ALG′ only uses the advice that ALG does, no more. The
input items, 𝑛, 𝑥1, 𝑥2, … , 𝑥𝑛 with 𝑥𝑖 ∈ {0, 1}, to 2-SGKH arrive in an online manner, so after 𝑛 arrives, ALG′ must guess 𝑥1, and
then the actual value of 𝑥1 is revealed. In the general case, immediately after the value 𝑥𝑖 is revealed, ALG′ must guess 𝑥𝑖+1 and
then the actual value 𝑥𝑖+1 is revealed. When 𝑥𝑛 is revealed, ALG′ knows that this is the end of the input. At the end, there is some
post-processing to allow ALG′ to complete its computation. ALG′ is outlined in Algorithm 4, but we now describe how ALG′ provides
input to ALG in a consistent manner.

Algorithm 4 The reduction algorithm.

Given: ALG for problem 𝐵; the inputs to 2-SGKH are 𝑋 = ⟨𝑥1, … , 𝑥𝑛⟩
1: 𝑅 = ⊳ Use the input to 𝐵 to give answers for 𝑋
2: 𝑖 = 0 ⊳ Current index of 2-SGKH input

3: while 𝑖 < 𝑛 do

4: Let 𝑃 be the current priority function for ALG

5: 𝑣 =max𝑃 𝑅 ⊳ Choose 𝑣 as described under Consistent choice of input items

6: if 𝑣 is the first vertex from universe 𝑖+1 then

7: 𝑖 = 𝑖 + 1
8: present 𝑣 to ALG

9: answer 0 if ALG answers “accept” and 1 if ALG answers “reject”

10: receive actual 𝑥𝑖
11: update 𝑅 to only contain vertices from one of the two gadgets

12: make 𝐻𝑖 gadget 𝐺𝑎
𝑖

if 𝑥𝑖 = 0 and 𝐺𝑅
𝑖

if 𝑥𝑖 = 1
13: 𝑅 =𝑅 ⧵ (𝑖 ⧵𝐻𝑖)
14: else

15: present 𝑣 to ALG

16: 𝑅 =𝑅 ⧵ {𝑣}
17: while 𝑅 ≠ ∅ do ⊳ Post-processing to finish inputs for problem 𝐵
18: Let 𝑃 be the current priority function for ALG

19: 𝑣 =max𝑃 𝑅
20: present 𝑣 to ALG

21: 𝑅 =𝑅 ⧵ {𝑣}

Theoretical Computer Science 984 (2024) 114318

21

J. Boyar, K.S. Larsen and D. Pankratov

Consistent choice of input items

• ALG′ defines the universe to be the union of 𝑛 disjoint gadget pair universes, {1, 2, … , 𝑛}. It eventually defines an input
to problem 𝐵, 𝐻1, 𝐻2, … , 𝐻𝑘, where 𝐻𝑖 is a gadget 𝐺𝑎

𝑖
from 𝑖 if 𝑥𝑖 = 0; otherwise it is a gadget 𝐺𝑟

𝑖
from 𝑖.

These 𝐻𝑖 can be defined initially, if the input items are isomorphic, in which case a set 𝑅 is initialized to contain the input
items from these gadgets. Otherwise, as in the case of the Vertex Cover gadget patterns from Section 4, the algorithm’s priority
functions can give subsets of input items with identical priorities due to its oblivious nature. Knowing the inputs to 2-SGKH and
using the fact that the first item condition holds, ALG′ can always determine which gadget to actually use for 𝐻𝑖 when the first
input item from 𝑖 is selected. The set 𝑅 initially contains all of the universe , and ALG′ removes input items from 𝑅 that are
in 𝑖, but are not in 𝐻𝑖, when 𝐻𝑖 has been determined. Other input items are removed as they are processed.

• ALG′ decides which input item to give when the algorithm’s priority function designates a set 𝑆 of size greater than one as those
input items having highest priority. If at least one input item from every universe has been processed, the reduction algorithm
can make an arbitrary choice, lexicographically, for example. The same holds if the input items contain names of one or more
input items that have already appeared in earlier input items (for a graph in the vertex arrival, vertex adjacency model, this
means that the input item is a neighbor or a neighbor of a neighbor of some vertex already processed). Otherwise, ALG′ has
arranged that ALG has seen or will see input items from the first 𝑖 − 1 universes and now presents the first from 𝑖. From the
set of input items with current highest priority, ALG′ chooses which gadget pattern is correct for 𝐻𝑖: 𝐺𝑎𝑖 if 𝑥𝑖 = 0 or 𝐺𝑟

𝑖
if 𝑥𝑖 = 1,

satisfying that the distinguishing item, 𝑣, for the gadget is among those in 𝑆 . ALG′ presents 𝑣 to the algorithm and chooses the
actual gadget 𝐻𝑖 consistent with that.

The main challenge is to ensure that the input items to ALG are presented in the order determined by the priority functions, which
may change over time. The fact that the priority function does not distinguish between input items that have no known connection
to input items already seen allows ALG′ to choose a distinguishing item in a new gadget from a new universe when that is necessary.
In this case, by the disjointness of the universes for the gadgets and since we work in the oblivious priority function model, such a
distinguishing item will always be in the set of items of highest priority. Thus, the first items in the successive gadgets are chosen in
order. The first item chosen from a gadget is one where the distinguishing decision condition holds, i.e., one where one decision is
optimal for that gadget and the other leads to a non-optimal solution.

We let ALG(𝐼) denote the value of the objective function for ALG on input 𝐼 . The size of a gadget pattern 𝐺, denoted by |𝐺|, is
the number of input items specifying a gadget consistent with that gadget pattern. We write OPT(𝐺) to denote the best value of the
objective function on 𝐺. Recall that we focus on problems where a solution is specified by making an accept/reject decision for each
input item. We slightly abuse notation and let first(𝐺) denote the input item from gadget 𝐺 that was presented to ALG first, due to
ALG′ ’s choice among the set of input items with highest priority. We write BAD(𝐺) to denote the best value of the objective function
attainable on 𝐺 after making the wrong decision for that first item, first(𝐺), i.e., if there is an optimal solution that accepts (rejects)
first(𝐺), then BAD(𝐺) denotes the best value of the objective function given that first(𝐺) was rejected (accepted).

Definition 2. A collection of 𝑘 ≥ 1 gadget pattern pairs

{
(𝐺𝑎

𝑗
,𝐺𝑟

𝑗
) ∣ 1 ≤ 𝑗 ≤ 𝑘

}

for an optimization problem 𝐵 is called (𝑠, 𝜌)-reducible if the following conditions are fulfilled:

• The objective function for 𝐵 is additive with respect to the gadgets.

• Let 1, … , 𝑛 each be subuniverses for the collection of gadget pattern pairs, and the universe be the union of the subuni-

verses. The following conditions must be satisfied for the gadget pattern pairs with respect to the subuniverses:

– the consistency condition for 𝐵,

– the first item condition,

– the distinguishing decision condition,

– and the disjoint copies condition.

• 𝑠 is the maximum number of input items in any gadget pattern in the collection.

• The values

OPT(𝐺𝑎
𝑗
),BAD(𝐺𝑎

𝑗
),OPT(𝐺𝑟

𝑗
),BAD(𝐺𝑟

𝑗
)

must be independent of 𝑗, and we denote them by

OPT(𝐺𝑎),BAD(𝐺𝑎),OPT(𝐺𝑟),BAD(𝐺𝑟);

– We must have that OPT(𝐺𝑟) ≥ OPT(𝐺𝑎).
– If 𝐵 is a minimization problem, 𝜌 =min

{
BAD(𝐺𝑎)
OPT(𝐺𝑎) ,

BAD(𝐺𝑟)
OPT(𝐺𝑟)

}
, and if 𝐵 is a maximization problem, 𝜌 =min

{
OPT(𝐺𝑎)
BAD(𝐺𝑎) ,

OPT(𝐺𝑟)
BAD(𝐺𝑟)

}
. □

Theoretical Computer Science 984 (2024) 114318

22

J. Boyar, K.S. Larsen and D. Pankratov

Theorem 5. Assume that the collection of gadget pattern pairs

{
(𝐺𝑎

𝑗
,𝐺𝑟

𝑗
) ∣ 1 ≤ 𝑗 ≤ 𝑘

}

for a minimization problem 𝐵 is (𝑠, 𝜌)-reducible. Then for any 𝜀 ∈ (0, 12], no adaptive priority algorithm in the oblivious priority function
model using fewer than (1 −𝐻(𝜀))𝑛∕𝑠 advice bits can achieve an approximation ratio smaller than

1 + 𝜀(𝜌− 1)OPT(𝐺𝑎)
𝜀OPT(𝐺𝑎) + (1 − 𝜀)OPT(𝐺𝑟)

.

Proof. Consider an adaptive priority algorithm ALG for 𝐵 in the oblivious priority function model. A reduction from 2-SGKH is
specified in Algorithm 4, combined with the definition of ALG′. The set 𝑅 contains the remaining items which could still be in the
input to 𝐵 and have not yet been presented to ALG. At any point in time, one of the input items with the highest priority among those
still available in 𝑅 is presented to ALG. This item is the first input item from a gadget when (1) there are still gadgets in 𝑅, where
none of their input items have been seen, and (2) the set of input items with highest priority is the set of input items containing no
reference to any input item referenced in any input item already seen. If this item is the first input item from a gadget, 𝐻𝑖, from
first(𝑖), it is an input item where the distinguishing decision condition holds. In this case, the next input to 2-SGKH to be processed
is 𝑥𝑖, and ALG′ guesses 0 for 𝑥𝑖 if ALG accepts first(𝑖) and 1 if ALG rejects. Note that ALG′ has created 𝐻 = ⟨𝐻1, 𝐻2, … , 𝐻𝑛⟩ such
that the answer ALG gives is correct for problem 𝐵 if and only if the answer ALG′ gives is correct for 2-SGKH. The correct answer by
ALG is well defined by the distinguishing decision condition.

The amount of advice is the same for both algorithms, so when it is (1 −𝐻(𝜀))𝑛′ bits for the 𝑛′ inputs to 2-SGKH, it is at least
(1 −𝐻(𝜀))𝑛∕𝑠 bits for the 𝑛 ≤ 𝑠𝑛′ inputs to 𝐵.

Now we turn to the approximation ratio obtained. We want to lower-bound the number of incorrect decisions by ALG. We focus
on the input items which are first(𝑖) and assume that 𝑥𝑖 is the next input to 2-SGKH when first(𝑖) is processed. Assume that ALG

answers correctly on all inputs that are not first(𝑖) for any 𝑖.
We know from Theorem 4 that for any 𝜀 ∈ (0, 12], any online algorithm using fewer than (1 −𝐻(𝜀))𝑛 advice bits makes at least

𝜀𝑛 mistakes on 2-SGKH. Since we want to lower-bound the approximation ratio of ALG, and since a ratio larger than one decreases
when increasing the numerator and denominator by equal quantities, we can assume that when ALG answers correctly, it is on the
gadget pattern pair with the larger OPT-value, 𝐺𝑟. For the same reason, we can assume that the “at least 𝜀𝑛” incorrect answers are
in fact exactly 𝜀𝑛, since classifying some of the incorrect answers as correct just lowers the ratio. For the incorrect answers, assume
that the gadget pattern 𝐺𝑎 is presented 𝑤 times, and, thus, the gadget pattern, 𝐺𝑟, 𝜀𝑛 −𝑤 times.

Denoting the input created by ALG′ for ALG by 𝐼 , we obtain the following, where we use that BAD(𝐺𝑥
𝑗
) ≥ 𝜌 OPT(𝐺𝑥

𝑗
) for 𝑥 ∈ {𝑎, 𝑟}.

Since the objective function for problem 𝐵 is additive,

ALG(𝐼)
OPT(𝐼)

≥
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤BAD(𝐺𝑎) + (𝜀𝑛−𝑤)BAD(𝐺𝑟)
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤OPT(𝐺𝑎) + (𝜀𝑛−𝑤)OPT(𝐺𝑟)

≥
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤𝜌OPT(𝐺𝑎) + (𝜀𝑛−𝑤)𝜌OPT(𝐺𝑟)
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤OPT(𝐺𝑎) + (𝜀𝑛−𝑤)OPT(𝐺𝑟)

= 1 + 𝑤(𝜌− 1)OPT(𝐺𝑎) + (𝜀𝑛−𝑤)(𝜌− 1)OPT(𝐺𝑟)
𝑤OPT(𝐺𝑎) + (𝑛−𝑤)OPT(𝐺𝑟)

Taking the derivative with respect to 𝑤 and setting equal to zero gives no solutions for 𝑤, so the extreme values must be found
at the endpoints of the range for 𝑤 which is [0, 𝜀𝑛].

Inserting 𝑤 = 0, we get 1 + 𝜀(𝜌 − 1), while 𝑤 = 𝜀𝑛 gives

1 + 𝜀(𝜌− 1)OPT(𝐺𝑎)
𝜀OPT(𝐺𝑎) + (1 − 𝜀)OPT(𝐺𝑟)

.

The latter is the smaller ratio and thus the lower bound we can provide. □

The following theorem for maximization problems is proved analogously.

Theorem 6. Assume that the collection of gadget pattern pairs

{
(𝐺𝑎

𝑗
,𝐺𝑟

𝑗
) ∣ 1 ≤ 𝑗 ≤ 𝑘

}

for a maximization problem 𝐵 is (𝑠, 𝜌)-reducible. Then for any 𝜀 ∈ (0, 12], no adaptive priority algorithm in the oblivious priority function
model using fewer than (1 −𝐻(𝜀))𝑛∕𝑠 advice bits can achieve an approximation ratio smaller than

1 + 𝜀(𝜌− 1)OPT(𝐺𝑎)
𝜀OPT(𝐺𝑎) + (1 − 𝜀)𝜌OPT(𝐺𝑟)

.

Theoretical Computer Science 984 (2024) 114318

23

J. Boyar, K.S. Larsen and D. Pankratov

Proof. The proof proceeds as for the minimization case in Theorem 5 until the calculation of the lower bound of ALG(𝐼)
OPT(𝐼) . We continue

from that point, using the inverse ratio to get values larger than one.

We use that for 𝑥 ∈ {𝑎, 𝑟}, BAD(𝐺𝑥) ≤ OPT(𝐺𝑥)∕𝜌.

OPT(𝐼)
ALG(𝐼)

≥
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤OPT(𝐺𝑎) + (𝜀𝑛−𝑤)OPT(𝐺𝑟)
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤BAD(𝐺𝑎) + (𝜀𝑛−𝑤)BAD(𝐺𝑟)

≥
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤OPT(𝐺𝑎) + (𝜀𝑛−𝑤)OPT(𝐺𝑟)
(1 − 𝜀)𝑛OPT(𝐺𝑟) + 𝑤

𝜌
OPT(𝐺𝑎) + 𝜀𝑛−𝑤

𝜌
OPT(𝐺𝑟)

Again, taking the derivative with respect to 𝑤 gives an always non-positive result. Thus, the smallest value in the range [0, 𝜀𝑛]
for 𝑤 is found at 𝑤 = 𝜀𝑛. Inserting this value, we continue the calculations from above:

OPT(𝐼)
ALG(𝐼)

≥
(1 − 𝜀)𝑛OPT(𝐺𝑟) +𝑤OPT(𝐺𝑎) + (𝜀𝑛−𝑤)OPT(𝐺𝑟)
(1 − 𝜀)𝑛OPT(𝐺𝑟) + 𝑤

𝜌
OPT(𝐺𝑎) + 𝜀𝑛−𝑤

𝜌
OPT(𝐺𝑟)

= (1 − 𝜀)𝑛OPT(𝐺𝑟) + (𝜀𝑛)OPT(𝐺𝑎)
(1 − 𝜀)𝑛OPT(𝐺𝑟) + 𝜀𝑛

𝜌
OPT(𝐺𝑎)

= (1 − 𝜀)𝜌OPT(𝐺𝑟) + 𝜀𝜌OPT(𝐺𝑎)
(1 − 𝜀)𝜌OPT(𝐺𝑟) + 𝜀OPT(𝐺𝑎)

= 1 + 𝜀(𝜌− 1)OPT(𝐺𝑎)
(1 − 𝜀)𝜌OPT(𝐺𝑟) + 𝜀OPT(𝐺𝑎)

The latter is the smaller ratio and thus the lower bound we can provide. □

We mostly use Theorems 5 and 6 in the following specialized form.

Corollary 2. Assume we are considering a (𝑠, 𝜌)-reducible optimization problem.

For a minimization problem, if OPT(𝐺𝑎) = OPT(𝐺𝑟) = BAD(𝐺𝑎) − 1 = BAD(𝐺𝑟) − 1, then no adaptive priority algorithm in the oblivious
priority function model using fewer than (1 −𝐻(𝜀))𝑛∕𝑠 advice bits can achieve an approximation ratio smaller than 1 + 𝜀

OPT(𝐺𝑎) .

For a maximization problem, if OPT(𝐺𝑎) = OPT(𝐺𝑟) = BAD(𝐺𝑎) + 1 = BAD(𝐺𝑟) + 1, then no adaptive priority algorithm in the oblivious
priority function model using fewer than (1 −𝐻(𝜀))𝑛∕𝑠 advice bits can achieve an approximation ratio smaller than 1 + 𝜀

OPT(𝐺𝑎)−𝜀 .

For the Minimum Vertex Cover problem, for example, we can apply the minimization version of Corollary 2. The size of the
gadget patterns is 𝑠 = 7 vertices in all cases. Since OPT(𝐺𝑎) = OPT(𝐺𝑟) = 3, and, when the optimal decision is not made on the first
vertex processed, the vertex cover size is at least 4, we obtain the following:

Corollary 3. For Minimum Vertex Cover and any 𝜀 ∈ (0, 12], no adaptive priority algorithm in the oblivious priority function model using
fewer than (1 −𝐻(𝜀))𝑛∕7 advice bits can achieve an approximation ratio smaller than 1 + 𝜀

3 .

The gadget pattern pairs used in [13] (called gadget patterns in that paper) to prove lower bounds in the fixed priority model
also work here in the adaptive priority model; there are no additional restrictions used in the proof here. (These gadget patterns
are included for completeness.) The reductions done here are directly from 2-SGKH, as opposed to going through the Pair Matching
problem, as in [13]. As mentioned earlier, this makes the proofs simpler in most respects (except for having to take into account
changing priority functions), and it means that one does not lose a factor 2 in the amount of advice required. Thus, the results
from [13] can be expressed using Table 1 as lower bounds for adaptive priority algorithm with advice. All of the ratios obtained
approach one as the amount of advice approaches some fraction of 𝑛. The gadget pattern pairs used in [13] can also be used for lower
bounds on the amount of advice required for optimality. Thus, those gadget pattern pairs satisfy the conditions of both templates in
this paper.

To collect results in one table, we include results for optimality though they are treated in the next section.

Note that the gadget patterns for Maximum Independent Set from [13] have a smaller optimal independent set than the gadget
patterns for the equivalent Minimum Vertex Cover, shown in Fig. 1. Thus, there is a trade-off between the lower bound for the
approximation ratio one can prove and the lower bound on the amount of advice needed to prove it.

We now go through the constructions that establish the remaining results listed in Table 1. They are based on gadget pattern
pairs that were presented in [13] but included here for completeness.

6.2.1. Maximum Independent Set and Maximum Cut

The gadgets are drawn to have vertex 1 be the one with highest priority. (See Fig. 14.)

Maximum Independent Set The optimal decision is to accept in 𝐺1 and reject in 𝐺2. The maximum number 𝑠 of input items for a
gadget is 8, OPT(𝐺1) = OPT(𝐺2) = 3, and BAD(𝐺1) = BAD(𝐺2) = 2.

Theoretical Computer Science 984 (2024) 114318

24

J. Boyar, K.S. Larsen and D. Pankratov

Table 1

Results for concrete problems: For a given problem, and any 𝜀 ∈ (0, 1
2
], no adaptive priority

algorithm in the oblivious priority function model using fewer than the specified number of
bits of advice can achieve an approximation ratio smaller than the ratio listed. The last column
is the number of advice bits required for optimality.

Problem Advice for Approx. Ratio Advice for Opt.

Maximum Independent Set [13] (1 −𝐻(𝜀))𝑛∕8 1 + 𝜀

3−𝜀
𝑛∕8

Maximum Independent Set [Fig. 1] (1 −𝐻(𝜀))𝑛∕7 1 + 𝜀

4−𝜀
𝑛∕7

Maximum Bipartite Matching (1 −𝐻(𝜀))𝑛∕3 1 + 𝜀

3−𝜀
𝑛∕3

Maximum Cut (1 −𝐻(𝜀))𝑛∕8 1 + 𝜀

15−𝜀
𝑛∕8

Minimum Vertex Cover (1 −𝐻(𝜀))𝑛∕7 1 + 𝜀

3
𝑛∕7

Maximum 3-Satisfiability (1 −𝐻(𝜀))𝑛∕3 1 + 𝜀

8−𝜀
𝑛∕3

Unit Job Sched., Prec. Constraints (1 −𝐻(𝜀))𝑛∕9 1 + 𝜀

6−𝜀
𝑛∕9

4 5 6 7 8

1 2 3

1 4 3 2 5

6 7 8

Fig. 14. Topological structure of the gadgets (𝐺1,𝐺2) for independent set.

1

2

3

1

2

3

1

2

3

1

2

3

Fig. 15. Topological structure of the gadgets (𝐺1,𝐺2) for bipartite matching.

Maximum Cut The goal is to partition the vertices into two sets such that the number of edges crossing the two sets is maximized.
The partition is specified by the algorithm assigning 0 or 1 to each vertex. In addition, we require that 0 is assigned to vertices
belonging to the larger block of the partition. The maximum cut in 𝐺1 (or 𝐺2) puts the upper vertices in the larger set and the lower
vertices in the other set. The optimal decision for the first vertex is unique: For 𝐺1, respond 1, and for 𝐺2, respond 0. The maximum
number 𝑠 of input items for a gadget is 8, OPT(𝐺1) = OPT(𝐺2) = 15, and BAD(𝐺1) = BAD(𝐺2) = 14.

6.2.2. Maximum Bipartite Matching

The vertices on the right-hand side are known in advance, and the vertices on the left arrive online. The gadgets are drawn to
have vertex 1 be the one with highest priority, and all possible first vertices look identical. The optimal decision is to accept in 𝐺1

and reject in 𝐺2. (See Fig. 15.)

The (maximum) number 𝑠 of input items (the number of vertices given) for any of the two gadgets is 3, OPT(𝐺1) = OPT(𝐺2) = 3,
and BAD(𝐺1) = BAD(𝐺2) = 2.

6.2.3. Maximum Satisfiability (MAX-3-SAT)

An input item (𝑥, 𝑆+, 𝑆−) consists of a variable name 𝑥, a set 𝑆+ of clause information tuples for those clauses in which 𝑥 appears
positively, and a set 𝑆− of clause information tuples for those clauses where the variable 𝑥 appears negated. The clause information
tuples for a particular clause contain the name of the clause, the total number of literals in that clause, and the names of the other
variables in the clause, but no information regarding whether those other variables are negated or not. The goal is to satisfy the
maximum number of clauses.

𝐺1 = 𝐶1 ∧𝐶2 ∧𝐶3 ∧𝐶4 ∧𝐶5 ∧𝐶6 ∧𝐶7 ∧𝐶8,

where

Theoretical Computer Science 984 (2024) 114318

25

J. Boyar, K.S. Larsen and D. Pankratov

0 1 2 3

4 5 6 7

8

Fig. 16. Topological structure of a gadget for job scheduling of unit time jobs with precedence constraints.

𝐶1 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) 𝐶2 = (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)
𝐶3 = (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) 𝐶4 = (𝑥1 ∨ 𝑥2 ∨ ¬𝑥3)
𝐶5 = (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) 𝐶6 = (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3)
𝐶7 = (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) 𝐶8 = (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝐺2 = 𝐶1 ∧𝐶2 ∧𝐶3 ∧𝐶4 ∧𝐶5 ∧𝐶6 ∧𝐶7 ∧𝐶8,

where

𝐶1 = (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) 𝐶2 = (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)
𝐶3 = (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) 𝐶4 = (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3)
𝐶5 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) 𝐶6 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3)
𝐶7 = (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) 𝐶8 = (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

Suppose without loss of generality that the highest priority input is

(𝑥1,{(𝐶1,3,{𝑥2, 𝑥3}), (𝐶2,3,{𝑥2, 𝑥3}), (𝐶3,3,{𝑥2, 𝑥3}), (𝐶4,3,{𝑥2, 𝑥3})},

{(𝐶5,3,{𝑥2, 𝑥3}), (𝐶6,3,{𝑥2, 𝑥3}), (𝐶7,3,{𝑥2, 𝑥3}), (𝐶8,3,{𝑥2, 𝑥3})}).

Note that the optimal decision for 𝑥1 is unique for each of these gadgets and is “True” for 𝐺1 and “False” for 𝐺2. The maximum
number 𝑠 of input items for a gadget is 3, OPT(𝐺1) = OPT(𝐺2) = 8, and BAD(𝐺1) = BAD(𝐺2) = 7.

6.2.4. Unit Job Scheduling with Precedence Constraints

In this problem, we have a single machine and the requests are unit time jobs with precedence constraints, indicating which jobs
must be scheduled before which others. There could be a cyclic set of constraints. The goal is to schedule a maximum number of jobs
that are compatible. The input items are of the form (𝐽, 𝑆+, 𝑆−), where 𝐽 is the name of a job, 𝑆+ is the set of jobs such that if they
were scheduled together with 𝐽 they would have to be scheduled before 𝐽 , and 𝑆− is the set of jobs such that if they were scheduled
together with 𝐽 they would have to be scheduled after 𝐽 .

The gadget is a directed graph, specifying the precedence constraints. (See Fig. 16.)

This gadget consists only of isomorphic items (each vertex has in-degree 2, out-degree 2, and 4 different neighbors in all). Thus,
this gadget can represent both 𝐺1 and 𝐺2 with renaming. Every optimal solution contains Job 0 and excludes Job 8, so 𝐺1 has the
job labeled 0 in this gadget as the highest priority item and 𝐺2 has the job labeled 8 in this gadget as the highest priority item.
The maximum number 𝑠 of input items for a gadget is 9, OPT(𝐺1) = OPT(𝐺2) = 6 (for instance, schedule jobs 1, 0, 2, 5, 4, 6), and
BAD(𝐺1) = BAD(𝐺2) = 5.

6.3. Lower bounds on the advice needed for optimality

In this section, we consider adaptive priority algorithms that solve problems to optimality.

Theorem 7. Assume that the collection of gadget pattern pairs{
(𝐺𝑎

𝑗
,𝐺𝑟

𝑗
) ∣ 1 ≤ 𝑗 ≤ 𝑘

}

for a problem 𝐵 is (𝑠, 𝜌)-reducible. Then, any optimal adaptive priority algorithm, ALG, with advice in the oblivious priority function model
must use at least ⌊𝑛∕𝑠⌋ advice bits on worst case instances with 𝑛 input items.

Proof. We use the proof of Theorems 5 and 6. Note that the reduction algorithm in Fig. 4 uses the same amount of advice for the
algorithm for 2-SGKH as for the algorithm for problem 𝐵 and makes exactly the same number of errors in guessing bits for 2-SGKH
as it makes on first input items of gadgets for problem 𝐵. Thus, if it solves 𝐵 to optimality, it also solves 2-SGKH to optimality. Since

Theoretical Computer Science 984 (2024) 114318

26

J. Boyar, K.S. Larsen and D. Pankratov

𝑛′ bits of advice are required on 𝑛′-bit inputs to 2-SGKH [8], 𝑛′ bits of advice must be required for 𝑛′ gadgets as input to problem 𝐵.
If the maximum gadget size is 𝑠, then at least ⌊𝑛∕𝑠⌋ are necessary to achieve optimality. □

In the following, we consider completable problems. A problem 𝐵 is completable if every consistent set 𝑆′ of 𝑛′ < 𝑛 input items
can be completed to a consistent set 𝑆 of 𝑛 input items in such a way that if 𝐶 ′ ⊆ 𝑆′ is not an optimal solution for 𝑆′, there is
no subset 𝐶 = 𝐶 ′ ∪ 𝐸 of 𝑆 with 𝐸 a subset of additional 𝑛 − 𝑛′ items such that 𝐶 is an optimal solution for 𝑆 . In other words, a
problem is completable if there is a way to give the remaining input items without giving an algorithm the opportunity to fix an
earlier non-optimal decision. For Minimum Vertex Cover and many other problems, for example, one can complete the set 𝑆′ to 𝑆
by adding 𝑛 − 𝑛′ isolated vertices.

The result in Section 4 for Vertex Cover in the decision-based priority function model can be generalized to give the same result
as above.

Theorem 8. Assume that the collection of gadget pattern pairs{
(𝐺𝑎

𝑗
,𝐺𝑟

𝑗
) ∣ 1 ≤ 𝑗 ≤ 𝑘

}

for a completable problem 𝐵 is (𝑠, 𝜌)-reducible. Then, any optimal adaptive priority algorithm, ALG, with advice in the decision-based priority
function model must use at least ⌊𝑛∕𝑠⌋ advice bits on worst case instances with 𝑛 input items.

Proof. To define a problem where 𝑘 = ⌊𝑛∕𝑠⌋ bits of advice are necessary and sufficient for optimality in the decision-based priority
function model, we consider an arbitrary algorithm, ALG′, for problem 𝐵, and an adversary, ADV′. We create 𝑘 disjoint universes,
1, 2, … , 𝑘, copies of the universe , with different names for the input items in each copy, and define the universe, ′, for
ALG′ to be the union of these 𝑘 universes. The input for ALG′ is the union of 𝐻1, 𝐻2, … , 𝐻𝑘, where 𝐻𝑖 is an isomorphic copy of
either 𝐺𝑎

𝑖
or 𝐺𝑟

𝑖
.

We now define 2𝑘 distinct sequences of input items for ALG′, by describing how one of these 2𝑘 sequences of input items is
defined: ALG′ selects input items one at a time, and ADV′ knows from which of the 𝑘 universes the input items originate.

Since we are assuming that ALG′ solves the problem to optimality, the adversary can assume that the current priority function is
determined based on ALG′ making the correct accept/reject decisions up to this point. Now, ADV′ does the following: Assume that
ALG′ has already received input items originating from 𝑖 of the universes from which ′ was defined and the adversary has a current
subset 𝑋 ⊆ 𝑈 ′. If that is the case, then 𝑋 contains exactly enough input items to complete one gadget from each of the universes
from which ALG′ has received some input item (how this is maintained is explained below). From universes not included in these 𝑖
universes, 𝑋 still contains all possible namings of vertices from the gadgets.

Now, ALG′ receives its next input item which will be the input item in 𝑋 of the highest priority in this round, and that input item
is the next in the input sequence we are defining. This item is determined by the current priority function which only depends on the
input items received so far and its decisions so far.

If that next input item, 𝑣, is from one of the 𝑖 universes, nothing further is done. However, if that next input item originates from
a universe, 𝑗 , not among the 𝑖, then the following is done.

By the first item condition and the disjoint copies condition, the input item 𝑣 identifies for which gadget pattern pair, (𝐺𝑎
𝑗
, 𝐺𝑟

𝑗
),

in the collection 𝑣 is the distinguishing item, ADV′ chooses 𝐺𝑎
𝑗

or 𝐺𝑟
𝑗
, and then removes from 𝑋 all input items originating from 𝑗 ,

except enough to make up exactly the gadget that was chosen (consistent with whichever of 𝐺𝑎
𝑗

or 𝐺𝑟
𝑗

was chosen), with the naming
consistent with 𝑣 being the distinguishing item from that gadget.

Continuing this inductively defines one sequence of the 2𝑘 distinct sequences of input items. The number of input items in each
sequence is at most 𝑠𝑘 ≤ 𝑛. If it is less than 𝑛, irrelevant input items can be added, since 𝐵 is completable.

If a priority algorithm with advice for problem 𝐵 in the decision-based model uses fewer than 𝑘 bits of advice for instances with
𝑠𝑘 input items, the same advice must be given for at least two of the sequences, 𝐼1 and 𝐼2, defined above. ALG′ therefore uses the
same priorities and makes the same decisions on 𝐼1 and 𝐼2 until some difference is detected. Thus, consider the first time in the
processing of 𝐼1 and 𝐼2, where an input item 𝑣 that has current highest priority is the first input item of a gadget from some 𝑖, but
the gadgets included in 𝐼1 and 𝐼2 from 𝑖 are different.

Up until (and including) this point, all input items have been the same for the two sets. Thus, ALG′ must make the same decision
for 𝑣 in both 𝐼1 and 𝐼2, but, by the distinguishing decision condition, one of those decisions leads to a solution which is not optimal,
by the additivity of the objective function. Thus, ALG′ is not optimal, and 𝑘 bits of advice are necessary. □

The templates from the theorems in this section are quite similar and general, applying to binary decision problems where
collections of gadget pattern pairs satisfying the required conditions can be created. One can check that all of the gadget pattern
pairs presented in [13] are appropriate, thus giving immediate lower bounds for several problems.

Recall that an exact algorithm created in the obvious way (trying all advice strings of the maximal required length) from adaptive
priority algorithms with advice is called a priority exact algorithm. For any problem satisfying the conditions of the previous theorem,
any priority exact algorithm obtained for the problem examines at least 2𝑛∕𝑠 possibilities. This can rule out the possibility of improve-

ments using priority exact algorithms for certain problems that already have known complexities better than this. When the size of
the gadget patterns is small, this gives larger lower bounds. For example, for Minimum Vertex Cover the size of the gadget patterns
is 𝑠 = 7, since all possible gadgets have seven vertices. Thus, the lower bound for Minimum Vertex Cover (on triangle-free graphs

Theoretical Computer Science 984 (2024) 114318

27

J. Boyar, K.S. Larsen and D. Pankratov

Fig. 17. An example of a 4-thorny path.

with maximum degree 3) is Ω(2
𝑛

7) ⊂Ω(1.142𝑛), which is larger than the best known exact algorithms for this problem, showing that
those algorithms are not priority exact algorithms (derived from a priority algorithm with advice in the decision-based or oblivious
priority function models). For Maximum Independent Set, our previous gadget patterns [13] have size 𝑠 = 8, but the gadget patterns
for Minimum Vertex Cover also work for Maximum Independent Set (the problems are complements of each other), so the lower
bound we obtain for Maximum Independent Set is also Ω(2

𝑛

7).
Unfortunately, these lower bound results only apply to priority exact algorithms as defined from priority algorithms with advice

in either the decision-based or the oblivious priority function models (obtained from a priority algorithm with advice by running the
algorithm on all possible advice strings, all of the same length). As mentioned earlier, there are usually better implementations of
these algorithms as branch-and-reduce algorithms, giving the possibility of better analyses of their running times.

In particular, these lower bounds were all proven using constant-sized gadget patterns, each one being a connected component of
the entire graph. In practice, though, each connected component (gadget) should be treated independently, each only requiring one
bit of advice. Then, if a lower bound of 𝑓 (𝑛) is proven on the number of advice bits needed for a problem of size 𝑛, consisting of 𝑠
components, instead of running time Ω(2𝑓 (𝑛)), only 𝑂∗(2𝑠) =𝑂∗(1) time is necessary (trying the advice strings “0” and “1” for each
component). Thus, it seems very limited how broadly these lower bounds can be interpreted.

Brahe [15] has a construction for Maximum Independent Set and Minimum Vertex Cover using a connected graph which also
gives a linear lower bound on the amount of advice required for optimality in the decision-based priority function model (those
specific connected graphs were explicitly designed to have triangles, so they are not triangle-free, but they still have maximum
degree 3). Thus, the technique of running the algorithm independently on each connected component fails there, and one obtains an
exponential lower bound for exact algorithms based on the adaptive priority algorithms with advice in the decision-based priority
function model.

7. The thorny path problem

In this section, we consider another problem using adaptive priority algorithms with advice. Using different techniques, we prove
lower bounds for this problem in the unrestricted and decision-based models. We conjecture that the lower bound in the unrestricted
model is not tight. We prove matching upper and lower bounds in the decision-based priority function model. These bounds establish
a hierarchy, showing that for any positive integer 𝑘, there is a problem for which 𝑘 of bits of advice is necessary and sufficient for
optimality.

We call a tree a thorny path if it has a root, 𝑠, with two children, and at any depth greater than zero and smaller than the maximum
depth of the tree, there are exactly two nodes; one with zero and one with two children.

We define the thorny path problem as follows. Given a forest 𝐺 consisting of a number of trees, each of which is a thorny path, as
well as a start vertex 𝑠 of one of the thorny paths of 𝐺, the goal is to construct a path from 𝑠 to one of the two leaves of maximum
depth. The universe of input items is = ℤ3. An input item (𝑢, 𝑣, 𝑤) is a vertex 𝑢 with a left child 𝑣 and a right child 𝑤. One can
think of 𝑢, 𝑣, and 𝑤 as vertex names or object identifiers. The universe of decisions is = {0, 1, ⊥}. Given an input item (𝑢, 𝑣, 𝑤), the
decision 0 means to include edge (𝑢, 𝑣) in the solution, the decision 1 means to include edge (𝑢, 𝑤) in the solution, and the decision
⊥ means to not include any of the two edges in the solution. The thorny path problem is parameterized by a single parameter 𝑘 ∈ℕ,
which is one less than the maximum depth in the thorny path containing 𝑠. We refer to the parameterized thorny path problem as
the 𝑘-thorny path problem. An example of a thorny path is shown in Fig. 17.

We begin with a simple observation.

Lemma 5. In the decision-based priority function model, the 𝑘-thorny path problem can be solved by an adaptive priority algorithm with 𝑘
bits of advice.

Proof. The first priority function gives highest priority to an input item of the form (𝑠, ⋅, ⋅) and an advice bit is used to select the
correct child. Subsequent priority functions give highest priority to items with the most recently selected child as the first entry and
an advice bit is used to choose the next child correctly. No advice is necessary at depth 𝑘, since including either edge gives a valid
solution, a leaf at depth 𝑘 + 1. □

Theoretical Computer Science 984 (2024) 114318

28

J. Boyar, K.S. Larsen and D. Pankratov

Now we turn to lower bounds, starting with the unrestricted priority function model. We do not give upper bounds. Note, however,
that advice giving the name of a leaf in the thorny path can be used to follow parents up to the root, without using additional advice.
This advice can be quite large, however, since the universe size is unbounded.

Theorem 9. In the unrestricted priority function model, the 𝑘-thorny path problem cannot be solved by an adaptive priority algorithm with
log𝑘 − 1 bits of advice.

Proof. Assume that we have 𝓁 adaptive priority algorithms without advice, ALG1, … , ALG𝓁 . We fix 𝑚 large enough (depending on
𝓁, to be specified later) and let 𝑥1, … , 𝑥𝑚 ∈ ℤ ⧵ {1} be distinct. Let be the input universe, consisting of all triples with distinct
items formed from {𝑠, 𝑥1, … , 𝑥𝑚}, with the only exception being that 𝑠 only appears as a first element of any triple. We construct
a thorny path instance (that is, a subset of the input universe that will be used as input) with one thorny path such that each
algorithm ALG1, … , ALG𝓁 makes a mistake on . We construct iteratively. In step 𝑗, we construct a subinstance 𝑗 that guarantees
that algorithm ALG𝑗 makes a mistake. The thorny path of 𝑗 starts at vertex 𝑠 and ends in two leaves. In addition to 𝑗 , we keep
track of a leaf 𝑣𝑗 that is going to be extended in step 𝑗 + 1. We also keep track of a set of input items 𝑆𝑗 ⊆ 𝑆 that can be used to
extend our instance beyond 𝑗 . 𝑆𝑗 will not contain any input items where the first entry is currently a non-leaf element of 𝑗 . The
condition that ALG𝑗 makes a mistake on 𝑗 also continues to hold no matter how 𝑗 is extended with elements from 𝑆𝑗 .

For the base case, 0 is empty, and none of the algorithms have made a mistake yet. We set 𝑣0 = 𝑠 and 𝑆0 = .

Assume that we have constructed a thorny path 𝑗 and the leaf of 𝑗 to be extended using items from 𝑆𝑗 is 𝑣𝑗 . Moreover each
of ALG1, … , ALG𝑗 makes a mistake on 𝑗 and continues to make that mistake no matter how 𝑗 is extended by elements from 𝑆𝑗 .
Consider running ALG𝑗+1 on input 𝑗 ∪𝑆𝑗 (in spite of it being an invalid input). In each iteration, the algorithm gives highest priority
to an input item from 𝑗 or from 𝑆𝑗 . Consider the first time ALG𝑗+1 selects an input item from 𝑆𝑗 .

If ALG𝑗+1 has already made a mistake on an input item from 𝑗 , then we can simply take 𝑗+1 = 𝑗 , 𝑣𝑗+1 = 𝑣𝑗 , and 𝑆𝑗+1 = 𝑆𝑗 . All
the properties are easy to verify in this case.

Otherwise, let (𝑥, 𝑦, 𝑧) be the first element from 𝑆𝑗 that is requested by ALG𝑗+1. Without loss of generality, assume that the
decision of ALG𝑗+1 is to accept edge (𝑥, 𝑦) and not (𝑥, 𝑧). If 𝑥 = 𝑣𝑗 , then we extend 𝑗+1 = 𝑗 ∪{(𝑥, 𝑦, 𝑧)} and 𝑆𝑗+1 is 𝑆𝑗 with all items
involving 𝑦 or 𝑥 removed, as well as those items that have 𝑧 as second or third coordinate. Observe that this ensures that ALG𝑗+1
makes a mistake on item (𝑥, 𝑦, 𝑧) and this fact is unaffected by further extensions of 𝑗+1. In this case, we have 𝑣𝑗+1 = 𝑧.

The last case to consider is when ALG𝑗+1 requests (𝑥, 𝑦, 𝑧) from 𝑆𝑗 and 𝑥 ≠ 𝑣𝑗 . In this case, we also consider an item (𝑣𝑗 , 𝑥, 𝑤) ∈ 𝑆𝑗
for some 𝑤 that is different from any other value appearing in the construction so far. By the way 𝑆𝑗 is constructed, and taking 𝑚
large enough, such a 𝑤 is guaranteed to exist. We extend 𝑗+1 = 𝑗 ∪ {(𝑣𝑗 , 𝑥, 𝑤), (𝑥, 𝑦, 𝑧)}. Again, without loss of generality, assume
that ALG𝑗+1 accepts (𝑥, 𝑦) rather than (𝑥, 𝑧). We again set 𝑣𝑗+1 = 𝑧 and 𝑆𝑗+1 to be the set 𝑆𝑗 with all items involving 𝑥, 𝑦, 𝑤, or 𝑣𝑗
removed, as well as those items that have 𝑧 as the second or third coordinate. This guarantees that ALG𝑗+1 makes a mistake on item
(𝑥, 𝑦, 𝑧) and continues to make a mistake on this item no matter how 𝑗+1 is extended with elements from 𝑆𝑗+1.

After all 𝓁 algorithms have made a mistake, leaving a final 𝑣𝑗 and 𝑆𝑗 , an input item from 𝑆𝑗 with 𝑣𝑗 as the first coordinate is
moved from 𝑆𝑗 to 𝑗 , finishing the construction.

Observe that each 𝑆𝑗 can be defined by some subset 𝐹 ⊆ {𝑠, 𝑥1, … , 𝑥𝑚}. Namely, 𝑆𝑗 consists of all triples formed from 𝐹 , as well
as triples formed by having the first coordinate equal to 𝑣𝑗 and the remaining two coordinates coming from 𝐹 . In each iteration going
from 𝑗 to 𝑗 + 1, at most 4 elements are removed from 𝐹 . At the end, three additional elements from 𝐹 are used for the last item.
Therefore, 𝑚 = 3 +4𝓁 is sufficient to guarantee a universe large enough that the construction terminates only after all algorithms are
fooled by the instance.

Finally, assume that 𝑏 advice bits are used by an adaptive priority algorithm with advice with the above construction as input.
We determine a lower bound on 𝑏. Running an algorithm in the unrestricted priority function with 𝑏 bits of advice is equivalent
to running 2𝑏 algorithms in parallel. Thus, we have 𝓁 = 2𝑏 algorithms that can all be fooled simultaneously by a 𝑘-thorny path
problem, where 𝑘 ≤ 2𝓁, since the last case above uses two layers to fool the algorithm in question. Since 𝑏 bits are insufficient and
2𝑏+1 = 2𝓁 ≥ 𝑘, it follows that log𝑘 − 1 bits are insufficient. □

The following theorem shows that the upper bound in Lemma 5 is tight for the decision-based priority function model. The proof
uses the same ideas as the proof of the lower bound in Section 4. In that proof, 2𝑘 different input sequences were created, and using
fewer than 𝑘 bits of advice led to at least two of them getting the same advice and an error being made on one of those two. Those
sequences can be seen as forming a binary tree, with inputs at the nodes in the tree and the two possible decisions leading to the two
subtrees. Thus, sequences that are the same up until input 𝑚 share the same path from the root to that input. This is not quite the
case for the thorny path problem, since it is possible for the adaptive priority algorithm to select an input item that is not connected
to the last one seen. However, the tree determines 2𝑘 root-to-leaf paths, which naturally define 2𝑘 thorny paths and their inputs.

Theorem 10. An adaptive priority algorithm with advice in the decision-based priority function model must use at least 𝑘 bits of advice to
solve the 𝑘-thorny path problem.

Proof. Let ALG be an adaptive priority algorithm with advice in the decision-based priority function model. We consider ALG’s
computation on the 𝑘-thorny path problem.

We construct 2𝑘 input instances of the 𝑘-thorny path problem. To explain the construction, we use a binary tree with 2𝑘+1 leaves
and 𝑠 as the root. The leaves will be the leaves in the thorny path problems, and each root-to-leaf path, along with the siblings of

Theoretical Computer Science 984 (2024) 114318

29

J. Boyar, K.S. Larsen and D. Pankratov

the vertices on the path, will be the thorny paths that should be followed by ALG to get to a leaf. The 2𝑘 different paths one can take
from 𝑠 to a parent of a leaf will represent the 2𝑘 input instances we are constructing. They will not be the input instances since input
instances could have further input items that are discarded by ALG. Each node in the tree has an associated ordered list of input
items, which are all the ones for which the algorithm chooses ⊥ (discard) until the next time it chooses 0 or 1 (left or right). Thus,
a path in the tree defines an input sequence consisting of the input items forming the path with the associated ordered lists of input
items added. More precisely, the ordered list of input items associated with a node 𝑢 appears in the input sequence just prior to the
input item with 𝑢 as root (of that input item; recall that an input item consists of three nodes, two of which are the children of the
first, the root).

The tree represents all execution paths ALG can take based on different advice. Along the way, we will also explain how the
adversary will change the input universe as an execution proceeds. In an execution (that follows one path), the universe is decreased
gradually as execution progresses down the path, and the universe that is used at a given point varies depending on which path was
chosen by ALG (based on its advice).

In constructing the tree, we start with 𝑠 in the root and we add nodes to the tree gradually by adding two children to a currently
childless node. Let 𝑢 be such a node of depth at most 𝑘. We consider ALG’s execution on the partial input defined by the path from 𝑠
to 𝑢 (including the input items associated with nodes on the path). The path, together with the associated lists, defines the decisions
ALG must make on this partial input.

Naturally, ALG just follows one path in the tree, making decisions to go left or right or discard based on the advice it gets.
However, if it is at 𝑢, then the next input item ALG’s priority function selects is only based on the partial input and its decisions.
Now, for an input item, (𝑥, 𝑦, 𝑧), either 𝑥 = 𝑢 or 𝑥 is not on the 𝑠-to-𝑢 path (this follows from how we treat the universe; see later).

If 𝑥 = 𝑢, we add the leaves 𝑦 and 𝑧 to the tree as children of 𝑢. All input items remaining containing 𝑢 or its sibling are removed
from the universe.

If 𝑥 ≠ 𝑢, the adversary removes all input items remaining that contain 𝑥, 𝑦, or 𝑧 from the universe. Thus, 𝑥 can never become
part of any root-to-leaf path that currently ends at 𝑢. The input item (𝑥, 𝑦, 𝑧) is then appended to the ordered list of discarded input
items associated with 𝑢.

There are no more input items added after there are 2𝑘+1 leaves at depth 𝑘 + 1. If the tree is never completed, there is a path
where ALG never finds a leaf, so ALG fails. Otherwise, the 2𝑘 different input sequences defined by the paths in the tree must have
distinct advice strings. Thus, at least 𝑘 advice bits are necessary. □

Note that this proof does not appear to work in the unrestricted priority function model, since it is not clear that the tree can be
defined in that case. For example, if advice (in addition to the decisions made) is used to determine which input item is chosen next,
an input that we placed off of a thorny path might actually only be chosen if it is on the path.

8. Open problems

The extension of the adaptive priority model to the advice tape model leads to many new research directions. We consider the
following open problems to be of particular interest:

• Design and analyze new adaptive priority algorithms with advice for (special cases of) classical optimization problems and
convert them to offline algorithms, by trying all possibilities for the advice as with priority exact algorithms or by implementing
them as branch-and-reduce algorithms. In particular, are there priority algorithms with advice that lead to faster (in terms of
the base of the exponent) exact exponential time offline algorithms than the best known?

• The previous question also applies to approximation algorithms, when the best known offline approximation algorithm is expo-

nential in terms of running time.

• Suggest how to extend the lower bound results to the unrestricted priority function model. A first example of such a lower bound
for an artificial problem was given in Section 7 for the thorny path problem.

• Suggest and investigate other extensions of the adaptive priority framework besides the information-theoretic advice tape ex-

tension. For instance, one could consider a class of adaptive priority algorithms where advice is given by an AC0 circuit. What
can be said about the power and limitations of such algorithms?

• More generally, study the structural complexity of priority algorithms with advice. What reasonable complexity classes can be
defined based on advice complexity and approximation ratio?

• The lower bounds implied by our reduction-based framework are of the form “constant inapproximability even given linear
advice.” Can this framework be extended to handle super-constant inapproximability with sublinear advice? More generally, the
goal is to design some framework that could work in this other realm of parameters. A good starting point would be to show
that we cannot obtain an approximation ratio of 𝑛1−𝜀 for Maximum Independent Set with 𝑂(log𝑛) bits of advice for any fixed
𝜀 ∈ (0, 1]. Note that under the assumption P ≠ NP, this lower bound follows from the famous result of Håstad [31]. The goal
here is to prove this lower bound unconditionally for the restricted class of priority algorithms with advice.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Theoretical Computer Science 984 (2024) 114318

30

J. Boyar, K.S. Larsen and D. Pankratov

Data availability

No data was used for the research described in the article.

Acknowledgements

We would like to thank Nicolai Bille Brahe for pointing out an ambiguity in an earlier version of this paper and the reviewers for
many helpful comments that improved our presentation.

The first and second authors were supported in part by the Independent Research Fund Denmark, Natural Sciences, grants
DFF-7014-00041 and DFF-0135-00018B, and the third author was supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada, grant RGPIN-2019-06971.

References

[1] D. Achlioptas, P. Beame, M. Molloy, A sharp threshold in proof complexity yields lower bounds for satisfiability search, J. Comput. Syst. Sci. 68 (2) (2004)
238–268.

[2] M. Alekhnovich, E.A. Hirsch, D. Itsykson, Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas, J. Automat. Reason.
35 (1–3) (2005) 51–72.

[3] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen, T. Pitassi, Toward a model for backtracking and dynamic programming, Comput.
Complex. 20 (4) (2011) 679–740.

[4] S. Angelopoulos, A. Borodin, On the power of priority algorithms for facility location and set cover, Algorithmica 40 (4) (2004) 271–291.

[5] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, A. Wigderson, On the power of randomization in on-line algorithms, Algorithmica 11 (1) (1994) 2–14.

[6] B. Besser, M. Poloczek, Greedy matching: guarantees and limitations, Algorithmica 77 (1) (2017) 201–234.

[7] M.P. Bianchi, H. Böckenhauer, T. Brülisauer, D. Komm, B. Palano, Online minimum spanning tree with advice, Int. J. Found. Comput. Sci. 29 (4) (2018) 505–527.

[8] H.-J. Böckenhauer, J. Hromkovič, D. Komm, S. Krug, J. Smula, A. Sprock, The string guessing problem as a method to prove lower bounds on the advice
complexity, Theor. Comput. Sci. 554 (2014) 95–108.

[9] H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, T. Mömke, Online algorithms with advice: the tape model, Inf. Comput. 254 (1) (2017) 59–83.

[10] A. Borodin, B. Lucier, On the limitations of greedy mechanism design for truthful combinatorial auctions, ACM Trans. Econ. Comput. 5 (1) (2016) 2:1–2:23.

[11] A. Borodin, M.N. Nielsen, C. Rackoff, (Incremental) priority algorithms, Algorithmica 37 (4) (2003) 295–326.

[12] A. Borodin, J. Boyar, K.S. Larsen, N. Mirmohammadi, Priority algorithms for graph optimization problems, Theor. Comput. Sci. 411 (1) (2010) 239–258.

[13] A. Borodin, J. Boyar, K.S. Larsen, D. Pankratov, Advice complexity of priority algorithms, Theory Comput. Syst. 64 (2020) 593–625.

[14] J. Boyar, L.M. Favrholdt, C. Kudahl, K.S. Larsen, J.W. Mikkelsen, Online algorithms with advice: a survey, ACM Comput. Surv. 50 (2) (2017) 19:1–19:34.

[15] N.B. Brahe, Exact algorithms from priority algorithms with advice for vertex cover in graphs of maximum degree 3, Master’s thesis, University of Southern
Denmark, Denmark, 2021.

[16] V. Chvátal, Determining the stability number of a graph, SIAM J. Comput. 6 (4) (1977) 643–662.

[17] V. Chvátal, Hard knapsack problems, Oper. Res. 28 (6) (1980) 1402–1411.

[18] M. Davis, H. Putnam, A computing procedure for quantification theory, J. ACM 7 (3) (1960) 201–215.

[19] M. Davis, G. Logemann, D.W. Loveland, A machine program for theorem-proving, Commun. ACM 5 (7) (1962) 394–397.

[20] S. Davis, R. Impagliazzo, Models of greedy algorithms for graph problems, Algorithmica 54 (3) (2009) 269–317.

[21] S. Dobrev, R. Královič, D. Pardubská, Measuring the problem-relevant information in input, RAIRO Theor. Inform. Appl. 43 (3) (2009) 585–613.

[22] S. Dobrev, R. Královič, E. Markou, Online graph exploration with advice, in: 19th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), in: Lecture Notes in Computer Science, vol. 7355, Springer, Berlin, Heidelberg, Germany, 2012, pp. 267–278.

[23] S. Dobrev, R. Královič, R. Královič, Advice complexity of maximum independent set in sparse and bipartite graphs, Theor. Comput. Sci. 56 (1) (2015) 197–219.

[24] Y. Emek, P. Fraigniaud, A. Korman, A. Rosén, Online computation with advice, Theor. Comput. Sci. 412 (24) (2011) 2642–2656.

[25] F.V. Fomin, D. Kratsch, Exact Exponential Algorithms, Texts in Theoretical Computer Science. An EATCS Series, Springer, Berlin, Heidelberg, Germany, 2010.

[26] F.V. Fomin, F. Grandoni, D. Kratsch, A measure & conquer approach for the analysis of exact algorithms, J. ACM 56 (5) (2009) 25:1–25:32.

[27] P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Inf. Comput. 206 (11) (2008) 1276–1287.

[28] B. Gorain, A. Pelc, Deterministic graph exploration with advice, ACM Trans. Algorithms 15 (1) (2019) 8:1–8:17.

[29] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell Syst. Tech. J. 45 (9) (1966) 1563–1581.

[30] M.M. Halldórsson, K. Iwama, S. Miyazaki, S. Taketomi, Online independent sets, Theor. Comput. Sci. 289 (2) (2002) 953–962.

[31] J. Håstad, Clique is hard to approximate within 𝑛1−𝜀 , Acta Math. 182 (1) (1999) 105–142.

[32] J. Hromkovič, R. Královič, R. Královič, Information complexity of online problems, in: 35th International Symposium on Mathematical Foundations of Computer
Science (MFCS), in: Lecture Notes in Computer Science, vol. 6281, Springer, Berlin, Heidelberg, Germany, 2010, pp. 24–36.

[33] D.R. Karger, C. Stein, J. Wein, Scheduling algorithms, in: M.J. Atallah (Ed.), Algorithms and Theory of Computation Handbook, in: Chapman & Hall/CRC Applied
Algorithms and Data Structures Series, CRC Press, Boca Raton, Florida, USA, 1999.

[34] D. Komm, R. Královič, R. Královič, J. Smula, Treasure hunt with advice, in: 22nd International Colloquium on Structural Information and Communication
Complexity (SIROCCO), in: Lecture Notes in Computer Science, vol. 9439, Springer, Berlin, Heidelberg, Germany, 2015, pp. 328–341.

[35] D. Komm, R. Královič, R. Královič, C. Kudahl, Advice complexity of the online induced subgraph problem, in: 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS), in: LIPIcs, vol. 58, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2016, pp. 59:1–59:13.

[36] B. Korte, L. Lovász, Mathematical structures underlying greedy algorithms, in: International FCT-Conference on Fundamentals of Computation Theory (FCT),
Springer, Berlin, Heidelberg, Germany, 1981, pp. 205–209.

[37] B. Korte, L. Lovász, Structural properties of greedoids, Combinatorica 3 (3) (1983) 359–374.

[38] B. Korte, L. Lovász, Greedoids – a structural framework for the greedy algorithm, in: W.R. Pulleyblank (Ed.), Progress in Combinatorial Optimization, Academic
Press, Cambridge, Massachusetts, USA, 1984, pp. 221–243.

[39] B. Korte, L. Lovász, Greedoids and linear objective functions, SIAM J. Algebraic Discrete Methods 5 (2) (1984) 229–238.

[40] N. Lesh, M. Mitzenmacher, Bubblesearch: a simple heuristic for improving priority-based greedy algorithms, Inf. Process. Lett. 97 (4) (2006) 161–169.

[41] R.J. Lipton, A. Tomkins, Online interval scheduling, in: 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1994, pp. 302–311.

[42] C. McDiarmid, Determining the chromatic number of a graph, SIAM J. Comput. 8 (1) (1979) 1–14.

[43] S. Miyazaki, On the advice complexity of online bipartite matching and online stable marriage, Inf. Process. Lett. 114 (12) (2014) 714–717.

[44] P.A. Papakonstantinou, Hierarchies for classes of priority algorithms for job scheduling, Theor. Comput. Sci. 352 (1–3) (2006) 181–189.

[45] M. Poloczek, Bounds on greedy algorithms for MAX SAT, in: 19th Annual European Symposium on Algorithms (ESA), in: Lecture Notes in Computer Science,
vol. 6942, Springer, Berlin, Heidelberg, Germany, 2011, pp. 37–48.

http://refhub.elsevier.com/S0304-3975(23)00631-X/bib26A6CB2028E0067937FF899D2BFA3067s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib26A6CB2028E0067937FF899D2BFA3067s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib44364F95AF2863CB00B062C6BCD81956s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib44364F95AF2863CB00B062C6BCD81956s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibFFCBB75493334199A75650C34DD81AB2s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibFFCBB75493334199A75650C34DD81AB2s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibEE63631B952F2443D1119462205BE86Ds1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib0D47239F7C946335A9C710A76D44CBC8s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib10301E3A89B135157860F04240E7B12Es1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib26A13B5D20A08E1D4BEB486CBEDC1D66s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib7EC829677419A7EF5A5D8DCEFF86D15Es1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib7EC829677419A7EF5A5D8DCEFF86D15Es1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibB3E3640EF945C18A6E84E60A3F0810F7s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibB9443F2766D4F2CC15ED399943DF1D3Fs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibEE1FCF604F6F4F60F8D3ECC762F31595s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib1235E9FAE613FE7012AA89365C2545A8s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib771A6E16A217FADD4F89541FF2D80BBDs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibE6C72978649E9420CFEA66934A7048A7s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib68CFC2E79B960EA5A3863DD0CB4E5515s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib68CFC2E79B960EA5A3863DD0CB4E5515s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibB145C185D85ECCF1DF583BF1420B247Bs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibFC27F8F22DBD9816442FDB9A34F88864s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibBD937AED1E4A538CC13B7B876C991BC8s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibE3D637FBC804FF226F5B0E5FFD82B4F9s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib09574F31186B248A8D20ACF10C63AD6Ds1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib0C2F3ADF2A48BAB3ADB470F4DA57F3D0s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibD2DB982A4CA793B7CE891AB2D2295BA2s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibD2DB982A4CA793B7CE891AB2D2295BA2s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibC0A4C56ED4B53229EC5E84A9478F181Es1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibC6BDF6F65F3845DA9085E9AE5790B494s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib25B10B1E8AAA2F8E4D0D244D3902403Cs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib636BA2A619DCA1190ED424B7530ABC03s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib25D25EBC19F8BC729819069DF04FC909s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibAAFEB5D6FA4ABFA078D175A7785F0CD8s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib687A52F3901456BC6F5902B033E691AEs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib01AB366BD3AF2987FBD35208BF146C57s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib4AB8D9A33EE53E05E8B8A4B51E3AF37Cs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib6593D7B12FD418CDB35BBF438DE72F66s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib6593D7B12FD418CDB35BBF438DE72F66s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibEB3002BC18CF772A1DE98D374A9B5FE5s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibEB3002BC18CF772A1DE98D374A9B5FE5s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib0A3265045971A9312F964F502B0BEB80s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib0A3265045971A9312F964F502B0BEB80s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibE1B8A64C89B309EB13C1D04ECCDD684Bs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibE1B8A64C89B309EB13C1D04ECCDD684Bs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib33A669FE59D89A4F03221832DEF3ABB9s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib33A669FE59D89A4F03221832DEF3ABB9s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibE83B8EE9C4371C950716BFEC642F8741s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib2EF52E4F9D8A73346244ED121459EA9As1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib2EF52E4F9D8A73346244ED121459EA9As1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib99F3ED4BDA7DC5D238686470232DA361s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibBD5BC3C1FF2B5D3EB833C4A9C1376C45s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib4539E542ED8708B89F9F7EDDF5897D5Bs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib9ECEA2A115C8A715250B8EC264238732s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibFE9FD482BC0B620F89F5216D384872FDs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib7E78FC5BCB7511CA4F7BD051EB85058Fs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib77205226160929CB4AAB2F4E210F86E6s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib77205226160929CB4AAB2F4E210F86E6s1

Theoretical Computer Science 984 (2024) 114318

31

J. Boyar, K.S. Larsen and D. Pankratov

[46] M. Poloczek, G. Schnitger, D.P. Williamson, A. van Zuylen, Greedy algorithms for the maximum satisfiability problem: simple algorithms and inapproximability
bounds, SIAM J. Comput. 46 (3) (2017) 1029–1061.

[47] P. Pudlák, R. Impagliazzo, A lower bound for DLL algorithms for k-sat (preliminary version), in: D.B. Shmoys (Ed.), 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), ACM/SIAM, New York, New York/Philadelphia, Pennsylvania, USA, 2000, pp. 128–136.

[48] P. Raghavan, M. Snir, Memory versus randomization in on-line algorithms, IBM J. Res. Dev. 38 (6) (1994) 683–707.

[49] O. Regev, Priority algorithms for makespan minimization in the subset model, Inf. Process. Lett. 84 (3) (2002) 153–157.

[50] H. Whitney, On the abstract properties of linear dependence, Am. J. Math. 57 (3) (1935) 509–533.

[51] M. Xiao, H. Nagamochi, Confining sets and avoiding bottleneck cases: a simple maximum independent set algorithm in degree-3 graphs, Theor. Comput. Sci.
469 (2013) 92–104.

http://refhub.elsevier.com/S0304-3975(23)00631-X/bib96A5BAD0C976108713BDE90C33EB6401s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib96A5BAD0C976108713BDE90C33EB6401s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib4B363B53C55D8025601C720460D453CDs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib4B363B53C55D8025601C720460D453CDs1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bibAE03CD271D73CE676109A68A9F5A9368s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib60B25AF1D570DFE495B95DFF1B430508s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib2383D665410F57F71FEC026F198C2557s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib570892E54DEEAD989B0EFD3FEC5CF035s1
http://refhub.elsevier.com/S0304-3975(23)00631-X/bib570892E54DEEAD989B0EFD3FEC5CF035s1

