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Abstract

An effective model for protein structures is important for the study of protein geometry, which,
to a large extent, determine the functions of proteins. There are a number of approaches
for modelling; one might focus on the conformation of the backbone or H-bonds, and the
model may be based on the geometry or the topology of the structure in focus. We focus
on the topology of H-bonds in proteins, and explore the link between the topology and the
geometry of protein structures. More specifically, we take inspiration from CASP Evaluation
of Model Accuracy and investigate the extent to which structural similarities, via GDT TS,
can be estimated from the topology of H-bonds. We report on two experiments; one where
we attempt to mimic the computation of GDT TS based solely on the topology of H-bonds,
and the other where we perform linear regression where the independent variables are various
scores computed from the topology of H-bonds. We achieved an average ∆GDT of 6.45 with
54.5% of predictions inside 2 ∆GDT for the first method, and an average ∆GDT of 4.41 with
72.7% of predictions inside 2 ∆GDT for the second method.

1 Introduction

It is widely recognised that the diverse func-
tions of proteins are highly dependent on the
three-dimensional structures of their native
conformations. An effective model for de-
scribing the geometric structures of proteins
is therefore important for the study of pro-
tein structures. One of the earliest models for
describing the backbone conformation of pro-
teins is the Ramachandran plots, which plots
the dihedral angles (ϕ,ψ) before and after
each Cα atoms in two-dimensional distribu-
tions [30]. The method has since been updated
and extended to be used in structural valida-
tion [19, 32] and a number of other purposes
(see, for example, [6] for a review). The exten-
sions to the Ramachandran plots include com-
bining two consecutive pairs of conformation
angles [17], and characterising entire proteins

by the averages over ϕ and ψ [7]. Another ap-
proach is to use the coordinates of backbone
atoms instead of dihedral angles. Examples of
this approach include the notion of curvature
and torsion taken from differential geometry
[27, 28], and projection of nearby atoms to a
small sphere centred at each Cα atoms [22].
While the above methods are all based on the
geometry of the backbone, an alternative ap-
proach is possible by considering its topology.
A number of studies have used ideas from knot
theory to study the link between topology and
geometry of proteins [18, 9, 33]. Yet another
approach is to focus on H-bonds, which is one
of the main mechanisms determining and sta-
bilising the native structure of the proteins
[5, 34, 21]. Studies suggest incorporating H-
bond geometry improves the quality of pro-
tein structure models [12, 20]. In [23], spa-
tial rotations were introduced as a systematic

1

ar
X

iv
:2

11
1.

14
48

9v
1 

 [
q-

bi
o.

B
M

] 
 2

9 
N

ov
 2

02
1



three-dimensional descriptor of H-bond geom-
etry, and were found to correspond well to the
concrete secondary structures and other local
structural motifs. The dataset from [23] has
further been used by Penner in [24, 25] to esti-
mate free energy of coronarirus spike proteins,
with a view to identifying specific sites of in-
terest for vaccine development. If we concen-
trate on the topology of H-bonds, we obtain
a graph, with backbone atoms as vertices and
the covalent and H-bonds as edges. Such H-
bond graphs were used to study the dynamics
of membrane proteins [35], and for structural
comparison [29]. In [26], an extension to this
structure was used to study protein structures.

In this paper, we investigate the link be-
tween H-bond topology of proteins and their
geometric structures. We take inspiration
from CASP Evaluation of Model Accuracy
(EMA) [10], and investigate how well we can
estimate the GDT TS of the submitted struc-
tures using H-bond graphs of the submitted
and target structures. GDT TS has been
criticised, among others, for being dependent
on the lengths of proteins and for having
somewhat arbitrary distance cutoffs [37, 11].
Nonetheless it is a widely accepted measure
used to compare protein structures, and we
use it here as an indication of structural sim-
ilarities. We designed two experiments. In
the first experiment, we attempt to follow
the algorithm for computing GDT TS, but
with only the proteins’ topological informa-
tion (from their H-bond graphs) as the in-
put. The second experiment is a linear re-
gression where independent variables are cer-
tain similarity scores computed from the pro-
tein H-bond graph, and the dependent vari-
able is GDT TS. We note here, that our meth-
ods are not intended as an attempt for the
CASP EMA. Indeed, both methods require
the target structure’s H-bond graph as part
of the input data, which is not available in
CASP. They are intended as an investiga-
tion into the usefulness of protein topology
in comparison of protein structures. How-
ever, one could of course imagine combining
our methods with an algorithm to predict H-
bond graphs from primary sequences to be
used in CASP EMA or similar experiments.
Indeed, the idea for the investigation origi-
nated in a novel approach to the protein fold-
ing problem, inspired in part by [23]. It is
based on a two-stage process, where in the

first stage one or more H-bond graphs are pre-
dicted from a primary sequence, then in the
second stage the geometric structure is pre-
dicted from the H-bond graph(s). We have a
method to enumerate possible H-bond graphs,
as well as a method to predict local geometric
structure of proteins from H-bond graphs [1, 3,
2]. The current study fits in this programme
as a “proof of concept” for the idea that H-
bond topology of proteins is strongly linked
to their geometric structures. Our model is
purely based on the topology of protein struc-
tures, therefore is less affected by the dynamic
nature of the proteins, which is important in
their diverse functions [13]. Furthermore, it is
independent of alignment, which simplifies its
use in potential high throughput applications.

2 Methods and Results

2.1 Dataset

The dataset consists of 33 target structures for
CASP14 together with the submitted candi-
date structures, downloaded from CASP data
archive [8] (There were 34 target structures
available for download, but one, T1044, did
not have any corresponding candidates and
was dropped.). The size of proteins, measured
in the number of residues, ranged from 74 to
922 (Figure 1). Majority of the target struc-
tures had length less than 300 residues, with
6 targets having more than 300 residues. The
range of the number of candidate structures
per protein was from 204 to 599, with the ma-
jority of targets receiving more than 500 sub-
missions (Figure 2; Participants are allowed
to submit more than one candidate structure).
The larger target structures seems to have re-
ceived as many submissions as the smaller tar-
get structures.

We also utilised data from CASP13 to
construct our regression model (Section 2.3).
There were 20 target structures available for
download, with length ranging from 52 to 405
residues, and two structures having more than
300 residues (Figure 3)

The data was processed to obtain informa-
tion about the H-bonds, following the proce-
dure described in [23]. The H-bonds were de-
termined by the DSSP program [14], with the
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Figure 1: Frequency of target structures in
CASP14 by length.

Figure 2: Number of candidates per target
structure in CASP14. Short targets are those
with fewer than 300 residues, and the long tar-
gets are with more than 300 residues.

additional conditions [4];

HO-distance < 2.7Å

angle(NHO), angle(COH) > 90◦.

For the majority of proteins in the result-
ing data, the number of H-bonds was roughly
half of the length measured as the number of
residues (Figure 4).

2.2 GDT-like algorithm based
on H-bond graphs

We attempt to mimic the GDT algorithm [38],
but based only on protein H-bond graphs, i.e.
based on information about the protein’s hy-
drogen bonds, but not its geometric structure.

Let T be the graph of the target pro-
tein, with vertices {v1, . . . , vl} representing
the residues, ordered along the backbone,
and edges {e1, . . . , em} representing the back-
bone peptide bonds and H-bonds. Similarly,

Figure 3: Frequency of target structures in
CASP13 by length.

Figure 4: Number of H-bonds versus length
for the target structures in CASP13 & 14.

let C be the graph of the candidate pro-
tein, with vertices {w1, . . . , wl} representing
the residues, ordered along the backbone, and
edges {f1, . . . , fn} representing primary and
H-bonds. For a set S, let #S denote the
number of elements in S, and for a graph
G, let V(G) and E(G) denote the set of ver-
tices and edges in G, respectively. We have
l = #V(T )(= #V(C)). The idea is to start
with small subgraphs of C and T (correspond-
ing to the same backbone segment), and to
“grow” them incrementally, until the differ-
ence between the subgraphs is over a pre-
determined threshold value. We repeat this
for different initial subgraphs, and determine
the maximum subgraph of C, Ĉsub, whose dif-
ference from the corresponding subgraph of T
(the correspondence is defined below in the
detailed description) is below some threshold
value r. The score for the candidate graph,
which we call gr, is then given by

gr = 100× #V(Ĉsub)

#V(C)
. (1)
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We give a detailed description of the algo-
rithm below, together with the pseudocode
in Algorithm 1. Let d(A,B) be a distance
function between graphs A and B and let
r ∈ (0,∞). We compute the score of simi-
larity between the graphs T and C as follows;

1. Set i = 1.

2. We select a subgraph Csub(i) of C, con-
sisting of three vertices {wi, wi+1, wi+2}
starting from the ith position and the
edges connecting them. Select a subgraph
Tsub(i) of T in the same way.

3. Compute the distance measure di =
d(Tsub(i), Csub(i)).

4. If di ≥ r, where r is the pre-determined
limit, the initial segment is already over
the limit value. Increment i by 1, go to 2.

5. If di < r, “grow” the subgraph Csub(i)
by adding all edges that are connected to
Csub(i), together with the vertices con-
nected to these edges. Call the selected
edges and vertices, together with Csub(i),
Csub2(i). Select Tsub2(i) from T in the
same way.

6. Compute the distance measure di =
d(Tsub2(i), Csub2(i)).

7. Repeat the above two steps (“growing”
subgraphs and computing the distance
measure), until di ≥ r. If di ≥ r, move to
the next starting segments by increment-
ing i by 1, go to 2.

8. If Csub(i) = C, we have the entire graph
under the limit value.

9. After going through all start-
ing segments, we have a set
S =

{
Csub(i)

∣∣i ∈ {1, . . . , l − 2}
}

of
maximal Csub(i)’s. Select the longest
Csub(i) in S, which we call Ĉsub.

10. gr = 100× #V(Ĉsub)
#V(C) .

For the current analysis we define the dis-
tance function d by

d(A,B) = #(E(A)	 E(B)), (2)

where 	 denotes the symmetric difference of
two sets;

A	B = (A \B) ∪ (B \A).

Algorithm 1 Pseudocode for GDT-like algo-
rithm
for i in {1, . . . , l − 2} do

Let Csub(i) be the subgraph of
C obtained by taking three vertices
{wi, wi+1, wi+2} and the edges connecting
them in C

Let Tsub(i) be the subgraph of
T obtained by taking three vertices
{vi, vi+1, vi+2} and the edges connecting
them in T

Compute the distance measure di =
d(Tsub(i), Csub(i))

if di ≥ r then
Continue to next i

end if
while True do

Let Tsub2(i) be the subgraph of T ob-
tained by taking Tsub(i) together with all
edges connected to the vertices in Tsub(i),
and the end-vertices of these edges (i.e.
”grow” the subgraph by 1 edge+vertex pair)

Let Csub2(i) be the subgraph of C
obtained in the same manner

Compute the distance measure di =
d(Tsub2(i), Csub2(i))

if d(i) ≥ r then
Break out of while loop

end if
Set Tsub(i) = Tsub2(i)
Set Csub(i) = Csub2(i)
if Tsub(i) == T then

Break out of while loop
end if

end while
end for
Ĉsub = max

{
Csub(i)

∣∣i ∈ {1, . . . , l − 2}
}

Score = 100 ·#V(Ĉsub)/#V(C)
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The algorithm is also dependent on the limit
value r for the distance between two sub-
graphs. We tested for the effect of differ-
ent r values by computing the score gr for
r = 5, 10, 20, 40, 80 for all candidate struc-
tures and looking at their distributions, to-
gether with their correlation with GDT TS
(Figure 5). As a result r = 80 was excluded as
being too high (resulting in more than 20% of
all structures having score of 100). GDT TS
is computed as an average of scores for four
different cutoff values (1,2,4, and 8 Å) [16].
We imitate this by computing an average over
different sets of r-values. The distributions of
(average) scores for different sets of r-values
are shown in Figure 6. Based on these, we
chose the average over r-values 10, 20 and 40
as our final score, since the combination had
the widest spread of values. We call the final
composite score Γ-GDT;

Γ-GDT = (g10 + g20 + g40)/3. (3)

We then predicted the best candidate struc-
ture for each target by selecting the struc-
ture with the highest Γ-GDT, and look at the
difference between GDT TS of our prediction
and GDT TS of the best candidate for each
target structure, which we call ∆GDT. The
distribution of ∆GDT is shown in Figure 7.
The average ∆GDT for all targets was 6.45,
with the highest value of 36.38. We were able
to identify a candidate with ∆GDT < 2 in 18
targets, and with ∆GDT < 10 in 24 targets
(Figure 7). The distribution of GDT TS for
the best candidate structure against GDT TS
for the selected structure is shown in Figure 8.
It turned out the particular set of r-values we
chose for the computation of Γ-GDT gives the
best prediction result (Table 1).

r-values ∆GDT < 2 ∆GDT < 10
10,20,40 18 24
5,10,20 14 22
5,10,20,40 17 23

Table 1: Number of predictions (out of 33)
with specified ∆GDT range for different com-
binations of r-values.

We also tested for two different distance
function to (2). In the first, we reduced
the contribution made by an edge in the set
E(C)	E(T ), if there is an edge that lies close

to it. For x ∈ R, define a function f1 by

f1(x) =

{
1 if |x| > 4

|x| /4 otherwise.
(4)

We define a new distance function d1 by

d1(A,B) =∑
(p,q)∈A\B

min{f1(p− p′) + f1(q − q′)
2

|(p′, q′) ∈ B \A}

+
∑

(p,q)∈B\A

min{f1(p− p′) + f1(q − q′)
2

|(p′, q′) ∈ A \B}. (5)

In the second, we tried to reduce the contri-
bution by a “close” edge further by setting

f2(x) =

{
1 if |x| > 4
exp(|x|)−1
exp(4)−1 otherwise,

(6)

and

d2(A,B) =∑
(p,q)∈A\B

min{f2(p− p′) + f2(q − q′)
2

|(p′, q′) ∈ B \A}

+
∑

(p,q)∈B\A

min{f2(p− p′) + f2(q − q′)
2

|(p′, q′) ∈ A \B}. (7)

The prediction results for different distance
functions are shown in Figure 9. We see that
the performance of the original distance func-
tion d (2), which is a simple count of the ele-
ments in the symmetric difference of the sets
of edges, is significantly better than the two
modified distance functions.

2.3 Linear regression based on
the protein fatgraph model

The second method is a linear regression on
the similarity scores which we compute based
on the hydrogen bonds in the candidate and
target structures. Each hydrogen bond is
identified by the position of its donor- and ac-
ceptor atoms, so each bond can be expressed
as a 2-tuple of integers (p, q), where the donor
is the p’th atom along the backbone and the
acceptor the q’th.

5



Figure 5: Distribution of gr scores for different values of r, against GDT TS. ρ is the Spearman’s
correlation coefficient between GDT TS and gr scores.

Figure 6: Distribution of Γ-GDT for different combinations of r-values.

The first of our similarity scores is the pro-
portion of the bonds, which are correctly iden-
tified in the candidate structure. In other
words, if HT , HC are the sets of hydrogen
bonds respectively in the target structure and
in the candidate structure, then the first score
P is defined as;

P =
#(HT ∩HC)

#HT
,

where we use the fact that for two bonds (p, q)
and (p′, q′), (p, q) = (p′, q′) iff p = p′ and q =
q′.

The second similarity score Sn depends on a
parameter n ∈ N. For a non-negative integer

x ∈ Z, define

fn(x) =

{
1− x/n if x ≤ 2n

−1 otherwise
. (8)

For a bond (p, q) ∈ HC , set

sC((p, q))

= max
{
fn(
∣∣p− p′∣∣) + fn(

∣∣q − q′∣∣)
| (p′, q′) ∈ HT \HC

}
.

Similarly for (p, q) ∈ HT , set

sT ((p, q))

= max
{
fn(
∣∣p− p′∣∣) + fn(

∣∣q − q′∣∣)
| (p′, q′) ∈ HC \HT

}
.
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Figure 7: Distribution of ∆GDT against
length (measured in number of residues) for
33 target structures, predicted using Γ-GDT.

Figure 8: GDT TS for the best candidate
structure against GDT TS for the selected
structure.

Sn is then given by

Sn =
1

#((HT \HC) ∪ (HC \HT ))
× ∑

(p,q)∈HC\HT

sC((p, q))+

∑
(p′,q′)∈HT \HC

sT ((p′, q′))

 .

So for a given candidate structure, we can
compute Sn for different n’s.

Having calculated P and Sn, n ∈ I, where
I is a subset of {1, 2, . . . , 10}, for all candidate
structures, we perform a linear regression with
P , Sn as independent variables and GDT TS
as the dependent variable. We estimated the
regression model using data from CASP13,

Figure 9: Percentages of predictions with
∆GDT < 2, 2 ≤ ∆GDT < 10, and ∆GDT ≥
10 for different distance functions.

and applied the model to data from CASP14.
After testing for all subsets I ⊂ {1, 2, . . . , 10}
by running multiple regression with P and
Sn, n ∈ I as independent variables, we found
that setting I = {2} gave the best results with
CASP13 data. The regression equation, based
on all candidate structures in CASP13, was
determined to be

GDT TS = 10.70 + 0.63P + 1.26S2.

Using this equation, we estimated the
GDT TS for CASP14 candidate structures,
and selected the structure with the highest es-
timated GDT TS for each target. We were
able to identify a candidate structure with
∆GDT < 2 for 23 out of 33 targets, with
the average ∆GDT of 4.57 (Table 2). The
frequency distribution of ∆GDT is shown in
Figure 10. The large ∆GDT values were ob-
served in shorter proteins, although it must be
noted that most of targets have lengths less
than 300 residues.

We also investigated the effect of the score
function (8) by scaling it with the exponential
function;

f̃n(x) =

{
1− 2(exp(x)−1)

exp(2n)−1 if x ≤ 2n

−1 otherwise
. (9)

Compared to (8), the new score function (9)
gives smaller penalties to difference in bond
positions, especially when the difference is
small. Using the data from CASP13 and
(9), we found that setting I = {2, 6, 8, 10}
gave the best result with regards to identi-
fying the most candidates with ∆GDT < 2.
However, the Sn scores are strongly corre-
lated, and we decided to use I = {2} again.
This gave a result close to that obtained with

7



Figure 10: Distribution of ∆GDT against
length (measured in number of residues) for 33
target structures, by linear regression method.

I = {2, 6, 8, 10} (11 targets with ∆GDT < 2,
compared to 12 targets with ∆GDT < 2). The
regression equation was

GDT TS = 9.68 + 0.63P + 0.20S2.

The new score function (9) resulted in a small
improvement for prediction with CASP14
data, where we were able to identify a can-
didate structure with ∆GDT < 2 for 24 out
of 33 targets, and the average ∆GDT of 4.41
(Table 2).

We then removed the Sn scores from the
independent variables, and ran the regression
with only P scores as the independent vari-
able. The regression equation now read

GDT TS = 9.56 + 0.63P.

This only resulted in a small drop in our abil-
ity to identify the best candidate structure,
with ∆GDT < 2 for 22 out of 33 targets and
the average ∆GDT of 5.53 (Table 2).

% of candidates with
∆GDT < 2 ∆GDT < 10

fn 69.70 84.85

f̃n 72.73 84.85
No Sn 66.67 84.85

Table 2: Prediction results for different score
functions, showing the percentages of tar-
gets (out of 33), where the selected candidate
structure had ∆GDT less than 2 and 10, re-
spectively.

3 Discussion

We have shown that the information on H-
bonds alone can, to a large extent, correctly
assess similarities in geometric structures of
proteins. Even though a direct comparison be-
tween our results and CASP EMA is not pos-
sible, the performance of our methods, mea-
sured as the percentages of predictions with
∆GDT < 2 and ∆GDT < 10, are clearly nu-
merically superior to the best performance in
CASP 14 EMA (Figure 11). It could be ar-
gued that both our methods essentially rely on
simply counting the matched (or unmatched,
in the case of Γ-GDT) H-bonds in two struc-
tures. The modified distance functions in the
Γ-GDT and the S scores in the linear re-
gression, which measures the differences be-
tween unmatched H-bonds, have negative or
relatively small positive effect on the over-
all accuracy of predictions. The fact that
these relatively simple methods can nonethe-
less assess similarities in protein structures
correctly, demonstrates the strong link be-
tween the topology and the geometry of pro-
teins.

Figure 11: Percentages of the predictions
with ∆GDT < 2, 2 ≤ ∆GDT < 10 and
∆GDT ≥ 10. The figures for CASP14 are
averages of all models, top 10 models, and the
best-performing model, ordered by the num-
ber of predictions with ∆GDT < 2. The data
for CASP14 was obtained from CASP Data
Archive (https://www.predictioncenter.
org/download_area/CASP14/) and processed
by the authors.

In the linear regression analysis, we observe
that the larger values of n in Sn scores, which
in effect enlarges the search window for “sim-
ilar” H-bonds, do not improve the prediction
accuracy. An explanation could be that it is
simply a consequence of using GDT TS as the
measure of structural similarity, as a small

8
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local difference (e.g. an extra turn where
there should be none) can result in a signif-
icantly lower GDT TS. Further investigation
is needed to ascertain the cause of this be-
haviour.

There are broadly two types of methods
used in CASP model accuracy estimation.
Consensus, or clustering methods take mul-
tiple candidate structures as input and tries
to identify a structure, that is the “best
match” for the input structures according to
some criteria. Single-model methods, on the
other hand, takes a single candidate structure
as an input and tries to estimate its accu-
racy, independent of other candidate struc-
tures. The consensus methods have gener-
ally outperformed the single-model methods,
and this resulted in the development effort be-
ing concentrated on the consensus methods in
the past [31]. More recently the single-model
methods have received more attention and de-
velopment effort [15], as the potential issues
with the consensus methods are recognised.
One issue, for example, is that the consen-
sus methods may not be very useful in the
environment outside the CASP-setup, where
a large number of candidate structures may
not be available for the input. Another po-
tential issue, related to the first, is that the
consensus methods may simply be taking ad-
vantage of the fact that many CASP models
are now able to produce high-quality candi-
date structures, which are, naturally, similar
to each other [36]. Our method is, by con-
struction, unlikely to be improved to outper-
form the best accuracy estimation methods,
as it ignores the geometric data in the can-
didate structures and only utilises the topo-
logical data. However, the relative simplicity
of our method means it should be relatively
easy to combine it with an existing method to
improve its performance. We chose not to at-
tempt it in this paper, as our focus here has
been to investigate the link between the topol-
ogy and the geometry of proteins, rather than
to participate in CASP EMA. Nonetheless, as
we mentioned in Introduction, one could eas-
ily imagine combining our method with an al-
gorithm for predicting hydrogen bonds from a
primary sequence. When a high-accuracy pre-
diction of hydrogen bonds becomes possible,
our method has the advantage that it could
be combined with both a consensus method
and a single-model method.
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