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Large-Nc and large-NF limits of SUðNcÞ gauge theories with fermions
in different representations
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We present calculations of certain limits of scheme-independent series expansions for the anomalous
dimensions of gauge-invariant fermion bilinear operators and for the derivative of the beta function at an
infrared fixed point in SUðNcÞ gauge theories with fermions transforming according to two different
representations. We first study a theory with Nf fermions in the fundamental representation and Nf0

fermions in the adjoint or symmetric or antisymmetric rank-2 tensor representation, in the limit Nc → ∞,
Nf → ∞ with Nf=Nc fixed and finite. We then study the Nc → ∞ limit of a theory with fermions in the
adjoint and rank-2 symmetric or antisymmetric tensor representations.

DOI: 10.1103/PhysRevD.99.116022

I. INTRODUCTION

In this paper we extend the recent study in Ref. [1] on
calculations of scheme-independent series expansions for
the anomalous dimensions and the derivative of the beta
function at an infrared fixed point (IRFP) of the renorm-
alization group in gauge theories with two different fermion
representations. In Ref. [1], this study was carried out at an
IRFP of an asymptotically free vectorial gauge theory with
a general gauge group G, containing massless fermions
transforming according to two different representations of
G [2]. In [1] the theory was taken to have Nf copies
(flavors) of Dirac fermions, denoted f, in the representation
R of G, and Nf0 copies of fermions, denoted f0, in a
different representation R0 of G. Here we analyze interest-
ing limits of two specific theories of this type, both of
which have the gauge group SUðNcÞ.
In the first type of theory, R is the fundamental

representation, denoted F, and R0 is any of three types
of two-index representations, namely the adjoint (Adj), or
the symmetric or antisymmetric rank-2 tensor representa-
tions, denoted S2 and A2, respectively. We call this an FR0
theory. We investigate this FR0 theory in the limit

Nc → ∞; NF → ∞ with r≡ NF

Nc
fixed and finite

and ξðμÞ≡ αðμÞNc is a finite function of μ: ð1:1Þ

Wewill use the symbol limLNN for this limit, where “LNN”
stands for “large Nc and NF” [with the constraints in
Eq. (1.1) imposed]. This LNN limit, which is often called
the ’t Hooft-Veneziano limit, has the simplifying feature
that rather than depending on the four quantities Nc, NF,
R0, and Nf0 , the properties of the theory only depend on
three quantities, namely r, R0, and Nf0 . A general property
that makes the LNN limit of FR0 theories useful is that for
large but finite Nf and Nc, the approach to the LNN limit
is rapid, because the correction terms to the limiting
expressions vanish like 1=N2

c. This was shown in [3–5]
for theories with fermions in a single representation, and we
report the generalization of this property in the present
paper for the FR0 theory. Because of this rapid conver-
gence, one can use calculations of anomalous dimensions
and other physical quantities in the LNN limit with a given
value of r in a unified manner to compare with correspond-
ing calculations in specific SUðNcÞ theories with various
values of Nf and Nc satisfying Nf=Nc ≃ r.
In the second type of theory that we analyze, R and R0

are both two-index representations. We takeR ¼ Adj andR0
to be S2 or A2 and study the Nc → ∞ limit of this theory.
The leading large-Nc behavior of the S2 and A2 representa-
tions is the same, so that wewill often refer to these jointly as
T2, where the symbol T2 stands for rank-2 tensor represen-
tation. We thus denote this second type of theory as an AT
theory,whereA stands forAdj andT forT2. In contrast toFR0
theories, in which NF → ∞, in AT theories the requirement
of asymptotic freedom requires that both Nf ¼ NAdj and
Nf0 ¼ NT2

be finite.
In the present paper we shall study the properties of these

gauge theories at an infrared fixed point. We explain the
general theoretical background in the context of an FR0
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theory and then consider the AT theory. In an FR0 theory,
the requirement of asymptotic freedom places correlated
upper (u) bounds on r and Nf0 , which we denote as ru and
Nf0;u. Provided that these bounds are satisfied, the ultra-
violet (UV) behavior of the theory can be well described
perturbatively. Then one can explore how the running
gauge coupling gðμÞ changes as a function of the
Euclidean energy-momentum scale μ where it is measured.
This is described by the beta function βðαðμÞÞ ¼ dαðμÞ=
d ln μ, where αðμÞ ¼ gðμÞ2=ð4πÞ. (The argument μ will
often be suppressed in the notation.) Since the theory is
asymptotically free, one can calculate the beta function in a
self-consistent manner in the weakly coupled UV region
and then use it to explore the flow (evolution) of the theory
from the UV to the IR. For values of r and Nf0 near to the
above-mentioned upper limits, the beta function has an IR
zero, so the theory flows from the UV to this IR fixed point.
For fixed Nf0 , as r approaches ru from below, the value of
α ¼ αIR at the IRFP goes to zero. One thus infers that in this
regime, the IR theory is in a deconfined non-Abelian
Coulomb phase without any spontaneous chiral symmetry
breaking (SχSB). Lattice studies of these types of gauge
theories (usually with fermions in a single representation
of the gauge group) with weakly coupled IR fixed points
have supported this conclusion, e.g., by demonstrating the
absence of a bilinear fermion condensate that would signal
spontaneous chiral symmetry breaking [6,7]. At the IRFP,
the resultant theory is scale invariant and is deduced to
be conformally invariant [8]. This IR regime is thus often
referred to as the conformal window or regime. As r and/or
Nf0 is decreased, the IR coupling αIR increases, and
eventually, for sufficiently small r and Nf0 , the IR theory
becomes strongly coupled, with confinement and SχSB.
Analogous comments apply to AT theories. Our calcula-
tions of anomalous dimensions of fermion bilinears enable
one to identify theories that have SχSB and quasiconformal
behavior appropriate for models of dynamical electroweak
symmetry breaking, with values ∼Oð1Þ of these anomalous
dimensions.
Our scheme-independent calculational framework

requires that the IRFP be exact, which is the case in the
conformal regime. Hence we restrict our consideration to
this regime. The properties of the resultant conformal field
theory are of fundamental interest. Previous works have
investigated these properties for a variety of theories with a
general gauge group G and Nf fermions ψ i, i ¼ 1;…; Nf
transforming according to a single representation R of G,
using perturbative calculations of the anomalous dimension
of the operator ψ̄ψ, denoted γψ̄ψ , and of the derivative of the
beta function, dβ=dα ¼ β0, both evaluated at the IRFP [3–5],
[9–16]. We denote these as γψ̄ψ ;IR and β0IR. Early calculations
of this sort were performed using a perturbative expansion
in powers of αIR, the value of α at the IRFP, calculated to the
same loop order [9,10]. Although γψ̄ψ ;IR and β0IR are physical

quantities and hence are independent of the scheme used for
regularization and renormalization, the series expansions for
these quantities, calculated to finite order in powers of αIR,
are scheme dependent. This is the same as in higher-order
calculations of scattering cross sections in various quantum
field theories, such as quantum chromodynamics (QCD).
However, it is possible to reexpress the series as expansions
in powers of a manifestly scheme-independent quantity,
denoted Δf, that approaches zero at the upper end of the
conformal regime [17], and for theories with a single fermion
representation, these calculations were carried out toOðΔ4

fÞ
for γψ̄ψ ;IR and toOðΔ5

fÞ for β0IR [4,5,12–15]. The calculation
of a scheme-independent series expansion for γψ̄ψ ;IR to
OðΔn

fÞ requires, as inputs, conventional series expansions
(in powers of α) of γψ̄ψ to n-loop order and of β to (nþ 1)-
loop order. The scheme-independent calculation of β0IR to
OðΔn

fÞ requires, as an input, the conventional series calcu-
lation of β to n-loop order. Thus, the scheme-independent
calculations of these quantities in theories with a single
fermion representation have used, as inputs, conventional
four-loop [18] and five-loop [19,20] series for β and four-
loop series for γψ̄ψ [21]. Recently, higher-order calculations
for gauge theories with multiple fermion representations
were performed [22,23]. Reference [1] used the results from
[22,23] to calculate scheme-independent series for the
anomalous dimensions of both types of fermions and for
β0IR in a theory with two different types of fermion repre-
sentations. It is of considerable interest to use the calculations
of Ref. [1] to explore various limits of such theories, and we
undertake this work here.
This paper is organized as follows. In Sec. II we discuss

the general framework for our work and the LNN limit.
In Secs. III and IV we present our results for anomalous
dimensions of fermion bilinears and for the derivative of
the beta function at the IRFP in the LNN limit of the FR0
theory. In Sec. Vwe present our results for theNc → ∞ limit
of the AT theory. Our conclusions are given in Sec. VI.

II. GENERAL FRAMEWORK AND LNN LIMIT
OF FR0 THEORY

A. Upper limits on r and Nf 0

In this section we discuss the general theoretical frame-
work for our calculations. The Nf fermions f in the
representation R ¼ F are denoted as ψ i, i ¼ 1;…; Nf,
and the Nf0 fermions are denoted as χj, j ¼ 1;…; Nf0 .
Since the adjoint representation is self-conjugate, the
number of fermions in this representation, NAdj, refers
equivalently to a theory with NAdj Dirac fermions or 2NAdj

Majorana fermions, so that in this case, NAdj may take on
half-integral physical values. In both the FR0 and AT
theories, one may consider a formal extension in which Nf

and/or Nf0 are generalized to (positive) real numbers, with
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the implicit understanding that physical cases occur at
integral (and, for the adjoint representation, also half-
integral) values. Indeed, in the LNN limit of the FR0
theory, NF is replaced by the real variable r.
In general, the property of asymptotic freedom requires

that

NfTf þ Nf0Tf0 <
11CA

4
; ð2:1Þ

where CA, Tf, and Tf0 are group invariants [24]. In the
large-Nc limit, the behaviors of group invariants for the S2
and A2 representations are the same to leading order, so, as
noted above, one can consider these representations
together as T2. For example, Tf0 ¼ ðNc � 2Þ=2 for f0 ¼
S2; A2, so

lim
Nc→∞

TS2

Nc
¼ lim

Nc→∞

TA2

Nc
¼ 1

2
: ð2:2Þ

To treat the three representations Adj; S2; A2 in a unified
manner, we define

λR ¼ lim
Nc→∞

TR

Nc
ð2:3Þ

so that

λAdj ¼ 1 ð2:4Þ
(since TAdj ¼ Nc) and

λS2 ¼ λA2
≡ λT2

¼ 1

2
: ð2:5Þ

In an FR0 theory, for fixed Nf0 , the inequality (2.1) implies
the upper (u) limit NF < NF;u, where

NF;u ¼
11

2
Nc − 2Nf0Tf0 ; ð2:6Þ

and for fixed NF, this inequality (2.1) implies the upper
bound Nf0 < Nf0;u, where

Nf0;u ¼
11Nc − 2NF

4Tf0
: ð2:7Þ

In the LNN limit of the FR0 theory, the inequality (2.1)
becomes

rþ 2λf0Nf0 <
11

2
: ð2:8Þ

For fixed Nf0 , this implies the upper (u) limit r < ru, where

ru ¼
11

2
− 2λf0Nf0 ; ð2:9Þ

and for fixed r, the upper bound on Nf0 is Nf0 < Nf0;u,
where

Nf0;u ¼
11 − 2r
4λf0

: ð2:10Þ

If one envisions a two-dimensional diagram describing the
FR0 theory with the horizontal axis being r and the vertical
axis being Nf0 (formally generalized from the integers to
the real numbers), then the inequality (2.8) defines a region
in the first quadrant bounded by the line segment rþ
2λf0Nf0 ¼ 0 extending from the point ðr; Nf0 Þ ¼ ð0; Nf0;uÞ
on the upper left to the point ðr; Nf0 Þ ¼ ðru; 0Þ on the lower
right. This line has slope

dNf0

dr
¼ −

1

2λf0
: ð2:11Þ

In order to have a theory with two fermion representations,
we exclude the values r ¼ 0 and Nf0 ¼ 0.
In the LNN limit of the FR0 theory we define the

differences

Δr ¼ ru − r ¼ 11

2
− 2λf0Nf0 − r ð2:12Þ

and

Δ̌f0 ¼ lim
LNN

ðNf0;u − Nf0 Þ

¼ 11 − 2r
4λf0

− Nf0 : ð2:13Þ

We observe that

Δr ¼ 2λf0Δ̌f0 : ð2:14Þ

B. Anomalous dimensions of fermion bilinears
and series expansions

We denote the full scaling dimension of an operatorO as
DO and its free-field value as DO;free. The anomalous
dimension of this operator, embodying the effect of
interactions, denoted γO, is given by

DO ¼ DO;free − γO: ð2:15Þ

The gauge-invariant fermion bilinears considered here are

f̄f ≡ ψ̄ψ ¼
XNf

j¼1

ψ̄ jψ j ð2:16Þ

and

f̄0f0 ≡ χ̄χ ¼
XNf0

j¼1

χ̄jχj: ð2:17Þ
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The anomalous dimension of ψ̄ψ is the same as that of the

bilinear
PNf

j;k¼1 ψ̄ jT aψk, where T a is a generator of the Lie
algebra of SUðNfÞ [25], so we use the same symbol γψ̄ψ for
both. The same remark holds for γχ̄χ.
Because αIR → 0 at the upper end of the conformal

regime, a series expansion for an anomalous dimension of a
fermion bilinear or for β0IR can be reexpressed as a series
expansion in powers of the manifestly scheme-independent
quantities Δr and/or Δf0. For finite Nc and Nf ¼ NF, the
scheme-independent series expansions of γψ̄ψ ;IR and γχ̄χ;IR
are, respectively,

γψ̄ψ ;IR ¼
X∞
j¼1

κðfÞj Δj
f ð2:18Þ

and

γχ̄χ;IR ¼
X∞
j¼1

κðf
0Þ

j Δj
f0 : ð2:19Þ

In the LNN limit of the FR0 theory, κðFÞj ∝ N−j
c and

κðf
0Þ

j ∝ N0
c, so one defines a rescaled κðFÞj coefficient as

κ̂ðFÞj ¼ lim
LNN

Nj
cκ

ðFÞ
j ; ð2:20Þ

and one defines the limit

κ̄ðf
0Þ

j ¼ lim
LNN

κðf
0Þ

j : ð2:21Þ

The scheme-independent series expansions for the
anomalous dimensions of the gauge-invariant fermion
bilinear operators in the FR0 theory, evaluated at the
IRFP, namely γψ̄ψ ;IR and γχ̄χ;IR, are then as follows, in the
LNN limit:

γψ̄ψ ;IR ¼
X∞
j¼1

κ̂ðFÞj Δj
r ð2:22Þ

and

γχ̄χ;IR ¼
X∞
j¼1

κ̄ðf
0Þ

j Δ̌j
f0 : ð2:23Þ

We denote the truncations of these series to the power p
of the respective expansion variable Δr or Δf0 as γψ̄ψ ;IR;Δp

r

and γχ̄χ;IR;Δ̌p

f0
, respectively. A corresponding discussion

of scheme-independent series expansions of anomalous
dimensions of bilinear fermion operators in the AT theory
is given in Sec. V.

C. Series for β0IR
The series expansion of β in powers of the squared gauge

coupling is

β ¼ −2α
X∞
l¼1

blal; ð2:24Þ

where a ¼ α=ð4πÞ and bl is the l-loop coefficient. As was
specified in Eq. (1.1), the product ξ ¼ Ncα is fixed in the
LNN limit. Hence, one deals with the rescaled beta function
that is finite in this LNN limit, namely

βξ ¼
dξ

d ln μ
¼ lim

LNN
Ncβ: ð2:25Þ

This has the series expansion

βξ ≡ dξ
dt

¼ −2ξ
X∞
l¼1

b̂lxl; ð2:26Þ

where x ¼ ξ=ð4πÞ and

b̂l ¼ lim
LNN

bl
Nl

c
: ð2:27Þ

Because the derivative dβξ=dξ satisfies

dβξ
dξ

¼ dβ
dα

≡ β0; ð2:28Þ

a consequence is that β0 is finite in the LNN limit (1.1).
There are two equivalent scheme-independent series expan-
sions of the derivative β0IR. One can take Nf0 as fixed and
Nf as variable and write the series as an expansion in
powers of ΔF:

β0IR ¼
X∞
j¼2

djΔ
j
F: ð2:29Þ

Equivalently, one may take Nf as fixed and Nf0 as variable
and express the series as an expansion in powers of Δf0 , as

β0IR ¼
X∞
j¼2

d̃jΔ
j
f0 : ð2:30Þ

Note that d1 ¼ d̃1 ¼ 0 for all G and fermion representa-
tions. In the LNN limit, dj ∝ N−j

c and d̃j ∝ N0
c, so we

define rescaled coefficients

d̂j ¼ lim
LNN

Nj
cdj ð2:31Þ
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and

d̄j ¼ lim
LNN

d̃j: ð2:32Þ

The scheme-independent expansions for β0 then take the
form

β0IR ¼
X∞
j¼2

d̂jΔ
j
r ð2:33Þ

and

β0IR ¼
X∞
j¼2

d̄jΔ̌
j
f0 : ð2:34Þ

We denote the truncation of the series expansion (2.33) to
maximal power Δp

r as β0IR;Δp
r
and the truncation of the series

expansion (2.34) to maximal power Δ̌p
f0 as β

0
IR;Δ̌p

f0
.

D. Relevant ranges of ðr;Nf 0 Þ
Our scheme-independent calculations require that the

IRFP be exact. This condition is satisfied in the conformal
regime but not in the QCD-like regime with spontaneous
chiral symmetry breaking. The upper boundary of this
regime is known precisely and is given by the inequality
(2.8). The lower boundary of the conformal regime is not
known precisely and has been the subject of intensive
lattice studies [6,7], particularly for simpler theories with
fermions in a single representation. Further lattice studies
could be carried out for theories with multiple fermion
representations. For instance, a study has been carried out
of an SU(4) gauge theory with Nf ¼ 2 Dirac fermions in
the fundamental representation andNf0 ¼ 2Dirac fermions
in the (self-conjugate) antisymmetric rank-2 tensor repre-
sentation [26,27], concluding that this theory is in the phase
with chiral symmetry breaking for both types of fermions.
For our present purposes, it will be sufficient to have a

rough guide to this lower boundary of the conformal
regime, which is provided by the condition that the two-
loop (rescaled) beta function should have an IR zero. This
condition is satisfied if the two-loop coefficient in the beta
function has a sign opposite to that of the one-loop
coefficient, i.e., if the inequality

13rþ 32λf0Nf0 − 34 > 0 ð2:35Þ

is satisfied. For a givenNf0 , this yields a lower (l) bound on
r, namely r > rl, where

rl ¼ 34 − 32λf0Nf0

13
; ð2:36Þ

and for a given r a lower bound on Nf0 , namely Nf0 >
Nf0;l, where

Nf0;l ¼ 34 − 13r
32λf0

: ð2:37Þ

We denote the set of values of r and Nf0 which satisfy the
asymptotic freedom constraint and the inequality (2.35) as
IIRZ, where the subscript IRZ refers to the condition that
the two-loop beta function has an IR zero. Henceforth, we
assume that if Nf0 is fixed, then r ∈ IIRZ and if r is fixed,
then Nf0 ∈ IIRZ. The upper end of the IRZ region is defined
the asymptotic freedom constraint (2.1), while the lower
end is defined by the line segment 13rþ32λf0Nf0−34¼0

in the first quadrant. This line segment extends from the
point ð0; 17=ð16λf0 ÞÞ at the upper left down to the point
ð34=13; 0Þ on the lower right, with slope

dNf0

dr
¼ −

13

32λf0
: ð2:38Þ

In Table I we list the values of rl and ru for a range of
values of NAdj and NT2

. For a given r, the condition of
asymptotic freedom sets the upper bound Nf0;u on Nf0 ,
and this determines the values of Nf0 given in Table I for
R0 ¼ Adj and R0 ¼ T2.
Provided that r and Nf0 satisfy the asymptotic freedom

constraint (2.1) and lie in the set of values IIRZ, in accord
with the asymptotic freedom condition (2.8), the ratio r is in
the interval IIRZ, the IR zero in the rescaled two-loop beta
function of the FR0 theory occurs at

ξIR;2l ¼ 4π½11 − 2ðrþ 2λf0Nf0 Þ�
13rþ 32λf0Nf0 − 34

; ð2:39Þ

where ξ was defined in (1.1). For a given Rf0 and Nf0 ,
as r↗ru, this IR zero, and more generally the n-loop IR
zero of βξ, vanishes. Similarly, for a given Rf0 and r, as

TABLE I. Values of rl and ru as functions of Nf0 for R0 ¼ Adj
and R0 ¼ T2 (S2 or A2) in the LNN limit of the FR0 theory.
As noted in the text, since the adjoint representation is self-
conjugate, half-integral values of NAdj are allowed, correspond-
ing to 2NAdj Majorana fermions.

R0 rl ru

NAdj ¼ 1=2 1.385 4.50
NAdj ¼ 1 0.154 3.50
NAdj ¼ 3=2 0 2.50
NAdj ¼ 2 0 1.50

NT2
¼ 1 1.385 4.50

NT2
¼ 2 0.154 3.50

NT2
¼ 3 0 2.50

NT2
¼ 4 0 1.50

NT2
¼ 5 0 0.50
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Nf0↗Nf0;u (with Nf0 generalized to a real number, as
above), the IR zero of the beta function vanishes.

III. ANOMALOUS DIMENSIONS OF FERMION
BILINEAR OPERATORS IN FR0 THEORY

In the LNN limit of the FR0 theory, from [1] we calculate
the following results for the coefficients in the scheme-
independent expansions of γψ̄ψ ;IR and γχ̄χ;IR, where f ≡ ψ is
in theF representation and f0 ≡ χ is in theR0 representation:

κ̂ðFÞ1 ¼ 4

25þ 4λf0Nf0
; ð3:1Þ

κ̂ðFÞ2 ¼ 4ð147þ 40λf0Nf0 Þ
ð25þ 4λf0Nf0 Þ3

; ð3:2Þ

κ̂ðFÞ3 ¼ 23½274243þ 135848λf0Nf0 þ 22048ðλf0Nf0 Þ2�
33ð25þ 4λf0Nf0 Þ5

;

ð3:3Þ

κ̄ðf
0Þ

1 ¼ 23λf0

18 − r
; ð3:4Þ

κ̄ðf
0Þ

2 ¼ 22ð1023 − 74rÞλ2f0
3ð18 − rÞ3 ; ð3:5Þ

and

κ̄ðf
0Þ

3 ¼ 22ð1670571 − 242208rþ 9184r2Þλ3f0
33ð18 − rÞ5 : ð3:6Þ

Here and below, we indicate the simple factorizations of
numbers appearing in denominators. (The numbers in the
numerators do not, in general, have such simple factoriza-

tions; for example, in κ̂ðFÞ3 , the number 274243 is prime.) We

record values of the κ̂ðFÞj as functions of r in Table II. For the

illustrative caseR0 ¼ Adj, we also list values of κ̄ðf
0Þ

j ¼ κ̄ðAdjÞj

inTable III.Generalizing the earlier findings for theorieswith

fermions in a single representation [3–5], we find that the
corrections to these limits (3.1)–(3.6) vanish like 1=N2

c
as Nc → ∞.
An important result that was found in previous work

[13,14] was that for a theory with a single representation,

κðfÞ1 and κðfÞ2 are manifestly positive, and for all of the
specific gauge groups and fermion representations that

were considered, κðfÞ3 and κðfÞ4 are also positive. This
property implied several monotonicity relations for the
calculation of γψ̄ψ to maximal power Δp

f , denoted γψ̄ψ ;Δp
f
,

namely that (for all p calculated there, i.e., 1 ≤ p ≤ 4),
(i) for fixed p, γψ̄ψ ;Δp

f
is a monotonically increasing

function of Δf, i.e., a monotonically increasing function
of decreasing Nf, and (ii) for fixed Nf, γψ̄ψ ;Δp

f
is a

monotonically increasing function of the maximal power p.
This positivity question was explored further in [1],

and it was shown that both κ̂ðFÞj and κ̄ðf
0Þ

j are positive for all
of the orders that were calculated, namely j ¼ 1, 2, 3. This
then implied the same monotonicity theorems as mentioned
above for all of the truncation orders calculated in [1],
namely 1 ≤ p ≤ 3. Here we extend this analysis to the LNN

limit of an FR0 theory. We again find that κ̂ðFÞj and κ̄ðf
0Þ

j are
positive for j ¼ 1, 2, 3 and for all r and values of Nf0

considered here, in particular, all of the values satisfying the
conditions (2.1) and (2.35) for all two-index representations
for f0. This implies four monotonicity relations for γψ̄ψ ;Δp

r

and γχ̄χ;Δp

f0
(in the conformal regime where our calculations

apply), which are the generalizations of the above-
mentioned two relations to the FR0 theory. We list these
as the first four relations below. One may also investigate

TABLE II. Values of κ̂ðFÞj with j ¼ 1, 2, 3 in the LNN limit of
the FR0 theory with R0 ¼ Adj, as a function of NAdj. (As noted in
the text, since the adjoint representation is self-conjugate, half-
integral values of NAdj are allowed, corresponding to 2NAdj

Majorana fermions.) The notation ae-n means 10−n. See Table I
for relevant ranges of NAdj as a function of r.

NAdj κ̂ðFÞ1 κ̂ðFÞ2 κ̂ðFÞ3

1=2 0.148 0.0339 0.718e-2
1 0.138 0.0307 0.624e-2
3=2 0.129 0.0278 0.546e-2
2 0.121 0.0253 0.480e-2

TABLE III. Values of κ̄ðAdjÞj with j ¼ 1, 2, 3 in the LNN limit of
the FR0 theory with R0 ¼ Adj and NAdj ¼ 1, as a function of r.
See Table I for relevant ranges of r as a function of NAdj.

r κ̄ðAdjÞ1 κ̄ðAdjÞ2 κ̄ðAdjÞ3

0.2 0.449 0.238 0.1345
0.4 0.4545 0.243 0.138
0.6 0.460 0.248 0.142
0.8 0.465 0.253 0.146
1.0 0.471 0.2575 0.150
1.2 0.476 0.263 0.154
1.4 0.482 0.268 0.159
1.6 0.488 0.273 0.163
1.8 0.494 0.279 0.168
2.0 0.500 0.285 0.173
2.2 0.506 0.291 0.178
2.4 0.513 0.297 0.183
2.6 0.519 0.303 0.189
2.8 0.526 0.310 0.194
3.0 0.533 0.316 0.200
3.2 0.541 0.323 0.206
3.4 0.548 0.330 0.213
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how γψ̄ψ ;Δp
r
depends on Nf0 and how γχ̄χ;Δp

f0
depends on r.

As an input to this determination, we find that the

coefficients κ̂ðFÞj are monotonically decreasing functions
of Nf0 . Our monotonicity relations are then as follows:
(1) For fixed p and Nf0 , γψ̄ψ ;Δp

r
is a monotonically

increasing function of Δr, and hence, given the
expression for Δr in Eq. (2.12), this anomalous
dimension decreases monotonically as r increases
(and vanishes as r approaches its upper limit, ru).

(2) For fixed p and r, γχ̄χ;Δp

f0
is a monotonically

increasing function of Δf0 ; i.e., this anomalous
dimension decreases monotonically with increasing
Nf0 (and vanishes as Nf0 , formally generalized from
integers to real numbers, approaches its upper limit,
Nf0;u).

(3) For fixed r and Nf0 , γψ̄ψ ;Δp

f0
is a monotonically

increasing function of the maximal power p.
(4) For fixed r and Nf0 , γχ̄χ;Δp

f0
is a monotonically

increasing function of the maximal power p.
(5) Because of the positivity of κðFÞj , combined with the

property that the κðFÞj are decreasing functions of Nf0

and the property that Δr is a decreasing function of
both r and Nf0 , it follows that for fixed p and r,
γψ̄ψ ;Δp

r
is a monotonically decreasing function of

Nf0 and for fixed p and Nf0 , γψ̄ψ ;Δp
r
is a decreasing

function of r.
Although we find that the coefficients κðf

0Þ
j are mono-

tonically increasing functions of r, this trend is outweighed
by the property that Δf0 is a monotonically decreasing
function of both r and Nf0 , so that for fixed p and r, γχ̄χ;Δp

f0

is a monotonically decreasing function ofNf0 asNf0↗Nf0;u

and for fixed p and Nf0 , γχ̄χ;Δp

f0
is a monotonically

decreasing function of r as r↗ru. In both of these limits,
γχ̄χ;Δp

f0
→ 0.

The first, second, and fifth relations, as well as the
relation just given, can be understood physically as a
consequence of the fact that these anomalous dimensions
result from the gauge interactions, and (a) for fixed Nf0 ,
increasing r to ru or (b) for fixed r, increasingNf0 (formally
generalized from integers to real numbers) to Nf0;u leads to
a vanishing value of αIR. Hence, in these limits, since
αIR → 0, so do the anomalous dimensions of these fermion
bilinears.
We next insert these calculated coefficients κ̂ðFÞj and

κ̄ðAdjÞj into the general scheme-independent expansions
(2.18) for f with R ¼ F and (2.19) for f0. We show the
results for γψ̄ψ ;IR;Δp

r
and γχ̄χ;IR;Δ̌p

Adj
in Tables IV–VII for two

illustrative cases, namely Rf0 ¼ Adj, Nf0 ≡ NAdj ¼ 1, and
NAdj ¼ 2. We present plots of γψ̄ψ ;IR;Δp

r
and γχ̄χ;IR;Δ̌p

r
with

1 ≤ p ≤ 3 for these two theories in Figs. 1–4.

TABLE IV. Values of the anomalous dimension γψ̄ψ ;IR;Δp
r
,

calculated to order p ¼ 1, 2, 3 and evaluated at the IR fixed
point in the LNN limit of the FR0 theory with R0 ¼ Adj and
NAdj ¼ 1, as a function of r. Here, Δr ¼ ð7 − 2rÞ=2 and ψ is the
fermion in the F representation. See Table I for relevant ranges
of r. See the text for further discussion.

r γψ̄ψ ;IR;Δr
γψ̄ψ ;IR;Δ2

r
γψ̄ψ ;IR;Δ3

r

0.2 0.455 0.789 1.014
0.4 0.428 0.722 0.908
0.6 0.400 0.658 0.810
0.8 0.372 0.596 0.719
1.0 0.345 0.5365 0.634
1.2 0.317 0.479 0.555
1.4 0.290 0.425 0.483
1.6 0.262 0.373 0.416
1.8 0.234 0.323 0.354
2.0 0.207 0.276 0.297
2.2 0.179 0.231 0.245
2.4 0.152 0.189 0.197
2.6 0.124 0.149 0.154
2.8 0.0966 0.112 0.114
3.0 0.0690 0.0766 0.0774
3.2 0.0414 0.0441 0.0443
3.333 0.0230 0.0238 0.0239
3.4 0.01379 0.01410 0.01411

TABLE V. Values of the anomalous dimension γχ̄χ;IR;Δp
F
, calcu-

lated to order p ¼ 1, 2, 3 and evaluated at the IR fixed point in
the LNN limit of the FR0 theory with R0 ¼ Adj andNAdj ¼ 1, as a

function of the value of r. Here, Δ̌Adj ¼ ð7 − 2rÞ=4, and χ is
the fermion in the Adj representation. See the text for further
discussion.

r γχ̄χ;IR;Δ̌Adj
γχ̄χ;IR;Δ̌2

Adj
γχ̄χ;IR;Δ̌3

Adj

0.2 0.742 1.390 1.995
0.4 0.705 1.288 1.803
0.6 0.667 1.187 1.620
0.8 0.628 1.088 1.447
1.0 0.588 0.991 1.284
1.2 0.548 0.895 1.130
1.4 0.506 0.801 0.985
1.6 0.463 0.710 0.850
1.8 0.420 0.621 0.724
2.0 0.375 0.535 0.608
2.2 0.329 0.452 0.501
2.4 0.282 0.372 0.402
2.6 0.234 0.295 0.312
2.8 0.184 0.222 0.230
3.0 0.133 0.153 0.156
3.2 0.0811 0.0884 0.0891
3.333 0.04545 0.0477 0.04785
3.4 0.02740 0.02822 0.02825

LARGE-Nc AND LARGE-NF LIMITS OF SU(Nc) GAUGE THEORIES … PHYS. REV. D 99, 116022 (2019)

116022-7



It is of interest to compare the values of γψ̄ψ ;IR;Δp
r
and

γχ̄χ;IR;Δ̌Adjrp
for r ¼ 10=3 with the results in the SU(3)

theory with NF ¼ 10, Rf0 ¼ Adj, and Nf0 ¼ 1 given,
respectively, in Tables V and VI of [1]. For that SU(3)
theory one has r ¼ 10=3. In that theory, for the successive
truncations to progressively high order for the scheme-
independent series for γψ̄ψ ;IR we obtained γψ̄ψ ;IR;ΔF

¼
0.0210, γψ̄ψ ;IR;Δ2

F
¼ 0.0218, and γψ̄ψ ;IR;Δ3

F
¼ 0.0218, as

listed in Table V of [1]. The LNN values that we have
listed for r ¼ 10=3 in Table IV are close to these for each
order of truncation. In the above-mentioned SU(3) theory
with NF ¼ 10, Rf0 ¼ Adj, and Nf0 ¼ 1 we calculated
γχ̄χ;IR;ΔF

¼ 0.0466, γχ̄χ;IR;Δ2
F
¼ 0.0490, and γχ̄χ;IR;Δ3

F
¼

0.0491, as listed in Table V of [1]. Again, the LNN values
that we have listed for r ¼ 10=3 in Table V are close to
these for each order of truncation. This is in agreement with
our general result that for even moderate values of Nc and
NF with NF=Nc ¼ r, and a given Rf0 and Nf0 , the resulting
anomalous dimensions are approximately given by the
LNN limit with these values of r, Rf0 , and Nf0 , since

correction terms to the LNN limit vanish rapidly, like 1=N2
c.

As mentioned above, this was shown earlier for theories
with fermions in a single representation of the gauge group,
and our results here generalize this property to the LNN
limit of the FR0 theory.

TABLE VI. Values of the anomalous dimension γψ̄ψ ;IR;Δp
r
,

calculated to order p ¼ 1, 2, 3 and evaluated at the IR fixed
point in the LNN limit of the FR0 theory with R0 ¼ Adj and
NAdj ¼ 2, as a function of r. Here, Δr ¼ ð3 − 2rÞ=2 and ψ is the
fermion in the F representation. See Table I for relevant ranges
of r. See the text for further discussion.

r γψ̄ψ ;IR;Δr
γψ̄ψ ;IR;Δ2

r
γψ̄ψ ;IR;Δ3

r

0.2 0.158 0.200 0.211
0.4 0.133 0.164 0.170
0.6 0.109 0.130 0.133
0.8 0.0848 0.0972 0.0989
1.0 0.0606 0.0669 0.0675
1.2 0.0364 0.0386 0.0388
1.4 0.0121 0.0124 0.0124

TABLE VII. Values of the anomalous dimension γχ̄χ;IR;Δ̌p
Adj
,

calculated to order p ¼ 1, 2, 3 and evaluated at the IR fixed point
in the LNN limit of the FR0 theory with R0 ¼ Adj and NAdj ¼ 2,
as a function of value of r. Here, Δ̌Adj ¼ ð3 − 2rÞ=4, and χ is the
fermion in the Adj representation. See the text for further
discussion.

r γχ̄χ;IR;Δ̌Adj
γχ̄χ;IR;Δ̌2

Adj
γχ̄χ;IR;Δ̌3

Adj

0.2 0.292 0.393 0.430
0.4 0.250 0.323 0.346
0.6 0.207 0.257 0.270
0.8 0.163 0.194 0.200
1.0 0.118 0.134 0.136
1.2 0.0714 0.0773 0.0779
1.4 0.0241 0.0248 0.0248

FIG. 1. Plot of γψ̄ψ ;IR;F;Δp
r
as a function of r in the FR0 theory

with R0 ¼ Adj and Nf0 ≡ NAdj ¼ 1. From bottom to top, the
curves (with colors online) refer to γψ̄ψ ;IR;F;Δr

(red), γψ̄ψ ;IR;F;Δ2
r

(green) and γψ̄ψ ;IR;F;Δ3
r
(blue).

FIG. 2. Plot of γψ̄ψ ;IR;F;Δp
r
as a function of r in the FR0 theory for

the case R0 ¼ Adj and Nf0 ≡ NAdj ¼ 2. From bottom to top, the
curves (with colors online) refer to γψ̄ψ ;IR;F;Δr

(red), γψ̄ψ ;IR;F;Δ2
r

(green) and γψ̄ψ ;IR;F;Δ3
r
(blue).
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IV. LNN LIMIT FOR SCHEME-INDEPENDENT
BETA FUNCTION COEFFICIENTS

IN FR0 THEORY

In the LNN limit, from [1], we calculate

d̂2 ¼
24

32ð25þ 4λf0Nf0 Þ
; ð4:1Þ

d̂3 ¼
25 · 13

33ð25þ 4λf0Nf0 Þ2
; ð4:2Þ

and

d̂4 ¼
24

35ð25þ 4λf0Nf0 Þ5
½2ð183391 − 330000ζ3Þ

þ 24ð1151þ 1800ζ3Þλf0Nf0

þ 24ð−3161þ 3744ζ3Þðλf0Nf0 Þ2
þ 28ð−23þ 24ζ3Þðλf0Nf0 Þ3�; ð4:3Þ

where ζs ¼
P∞

n¼1 n
−s is the Riemann zeta function. For the

d̄j, we find

d̄2 ¼
25λ2f0

32ð18 − rÞ ; ð4:4Þ

d̄3 ¼
210λ3f0

33ð18 − rÞ2 ; ð4:5Þ

and

d̄4 ¼
23λ4f0

35ð18 − rÞ5 ½3
3 · 46871þ 22 · 34ð143 − 768ζ3Þr

þ 22ð−5153þ 6912ζ3Þr2 þ 25ð23 − 24ζ3Þr3�:
ð4:6Þ

We then substitute these results for d̂j and d̄j in Eqs. (2.33)
and (2.34) with f0 ¼ Adj, respectively, to obtain the series
expansions for β0IR in the theory with R ¼ F and R0 ¼ Adj.
We present our results using the two equivalent scheme-

independent series expansions for β0IR in Tables VIII and IX
for our illustrativeFR0 theories in the LNN limit with Rf0 ≡
R0 ¼ Adj and NAdj ¼ 1 and NAdj ¼ 2, respectively, as a
function of r. From left to right in these tables, the columns
list r and the successively higher truncations of the series
expansions, namely β0IR;Δ2

r
, β0

IR;Δ̌2
Adj
, β0IR;Δ3

r
, β0

IR;Δ̌3
Adj
, β0IR;Δ4

r
,

and β0
IR;Δ̌4

Adj
. We see that for a given order p of truncation,

the alternate series expansion values β0IR;Δp
r
and β0IR;Δp

Adj

agree reasonably well with each other. This agreement
improves as r increases. In Figs. 5 and 6 we present plots
of the expansions of β0IR in powers of Δr and in powers of
ΔAdj for these FR0 theories with R0 ¼ Adj and NAdj ¼ 1; 2.

FIG. 3. Plot of γχ̄χ;IR;F;Δ̌p
Adj

as a function of r in the FR0 theory or
the case R0 ¼ Adj and Nf0 ≡ NAdj ¼ 1. From bottom to top, the
curves (with colors online) refer to γχ̄χ;IR;F;Δ̌Adj

(red), γχ̄χ;IR;F;Δ̌2
Adj

(green) and γχ̄χ;IR;F;Δ̌3
Adj

(blue).

FIG. 4. Plot of γχ̄χ;IR;F;Δ̌p
Adj

as a function of r in the FR0 theory
with R0 ¼ Adj and Nf0 ≡ NAdj ¼ 2. From bottom to top, the
curves (with colors online) refer to γχ̄χ;IR;F;Δ̌Adj

(red), γχ̄χ;IR;F;Δ̌2
Adj

(green) and γχ̄χ;IR;F;Δ̌3
Adj

(blue).
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As before for the anomalous dimensions of fermion
bilinears, it is of interest to compare these results in the
LNN limit with the results from Ref. [1] for specific values
of Nc and NF. Again, we pick Nc ¼ 3 and NF ¼ 10, for
which the appropriate comparison is with the LNN values
with r ¼ 10=3. We can compare these with the values that
we obtain in the LNN limit for the case NAdj ¼ 1 (for
NAdj ¼ 2, this value of r exceeds ru ¼ 3=2). The values in
the six columns of Table VIII for r ¼ 10=3 are 1.70 × 10−3,
1.68 × 10−3, 1.79 × 10−3, 1.79 × 10−3, 1.79 × 10−3, and
1.79 × 10−3, to be compared with the values in the

TABLE VIII. Values of β0IR as calculated to order OðΔp
r Þ via

Eq. (2.33), denoted β0IR;Δp
r
and to order OðΔ̌p

AdjÞ via Eq. (2.34),

denoted β0IR;Δp
Adj
, with p ¼ 2, 3, 4, in the LNN limit of the FR0

theory with R0 ¼ Adj and NAdj ¼ 1, as functions of r. Here

Δr ¼ 2Δ̌Adj ¼ ð7 − 2rÞ=2. The notation ae-n means a × 10−n.

r β0IR;Δ2
r

β0
IR;Δ̌2

Adj
β0IR;Δ3

r
β0
IR;Δ̌3

Adj
β0IR;Δ4

r
β0
IR;Δ̌4

Adj

0.2 0.668 0.544 1.326 1.0815 1.192 1.2475
0.4 0.589 0.485 1.135 0.941 1.031 1.0725
0.6 0.516 0.430 0.962 0.8115 0.883 0.9136
0.8 0.447 0.377 0.807 0.692 0.748 0.770
1.0 0.383 0.327 0.669 0.583 0.625 0.641
1.2 0.324 0.280 0.547 0.484 0.516 0.526
1.4 0.270 0.236 0.440 0.395 0.418 0.425
1.6 0.221 0.196 0.347 0.317 0.332 0.337
1.8 0.177 0.159 0.267 0.247 0.258 0.260
2.0 0.138 0.125 0.200 0.1875 0.194 0.1955
2.2 0.104 0.0951 0.144 0.137 0.141 0.141
2.4 0.0742 0.0689 0.0986 0.0949 0.0969 0.09725
2.6 0.0497 0.04675 0.0630 0.0613 0.0623 0.0624
2.8 0.0300 0.0287 0.0363 0.0357 0.03605 0.0361
3.0 0.0153 0.0148 0.0176 0.0174 0.0175 0.01755
3.2 0.552e-2 0.5405e-2 0.601e-2 0.599e-2 0.600e-2 0.600e-3
3.333 1.70e-3 1.68e-3 1.79e-3 1.79e-3 1.79e-3 1.79e-3
3.4 0.613e-3 0.609e-3 0.631e-3 0.631e-3 0.631e-3 0.631e-3

TABLE IX. Values of β0IR as calculated to order OðΔp
r Þ via

Eq. (2.33), denoted β0IR;Δp
r
and to order OðΔp

AdjÞ via Eq. (2.34),

denoted β0
IR;Δ̌p

Adj
, with p ¼ 2, 3, 4, in the LNN limit of the FR0

theory with R0 ¼ Adj and NAdj ¼ 2, as functions of r. Here

Δr ¼ 2Δ̌Adj ¼ ð3 − 2rÞ=2. The notation ae-n means a × 10−n.

r β0IR;Δ2
r

β0
IR;Δ̌2

Adj
β0IR;Δ3

r
β0
IR;Δ̌3

Adj
β0IR;Δ4

r
β0
IR;Δ̌4

Adj

0.2 0.0910 0.0844 0.122 0.117 0.121 0.121
0.4 0.0652 0.0611 0.0840 0.0815 0.0835 0.0836
0.6 0.0436 0.0414 0.05395 0.0528 0.0537 0.0537
0.8 0.0264 0.0253 0.03125 0.0308 0.0312 0.0312
1.0 0.0135 0.0131 0.0152 0.0151 0.0152 0.0152
1.2 0.485e-2 0.476e-2 0.523e-2 0.522e-2 0.523e-2 0.523e-2
1.4 0.539e-3 0.535e-3 0.553e-3 0.553e-3 0.0553e-3 0.553e-3

FIG. 5. Plots of β0IR, as calculatedwith the expansion (2.29) (solid
curves) and (2.30) (dashed curves)withp ¼ 2, 3, 4, as a function of
r in theFR0 theorywithR0 ¼ Adj andNf0 ≡ NAdj ¼ 1. The curves
(with colors online) are as follows: β0IR;Δ2

r
(solid red), β0

IR;Δ̌2
Adj

(dashed red), β0IR;Δ3
r
(solid green), β0

IR;Δ̌3
Adj

(dashed green), β0IR;Δ4
r

(solid blue), and β0
IR;Δ̌4

Adj
(dashed blue).

FIG. 6. Plots of β0IR as calculatedwith the expansion (2.29) (solid
curves) and (2.30) (dashed curves)withp ¼ 2, 3, 4, as a function of
r in theFR0 theorywithR0 ¼ Adj andNf0 ≡ NAdj ¼ 2. The curves
(with colors online) are as follows: β0IR;Δ2

r
(solid red), β0

IR;Δ̌2
Adj

(dashed red), β0IR;Δ3
r
(solid green), β0

IR;Δ̌3
Adj

(dashed green), β0IR;Δ4
r

(solid blue), and β0
IR;Δ̌4

Adj
(dashed blue).
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corresponding six columns of Table IX of Ref. [1], namely
1.75 × 10−3, 1.73 × 10−3, 1.84 × 10−3, 1.83 × 10−3,
1.84 × 10−3, and 1.84 × 10−3. One sees that for each entry
in the respective columns of Table VIII and the corre-
sponding Table IX in Ref. [1] the results are similar. As
before, this shows the usefulness of the calculations in the
LNN limit, since they approximately reproduce values of β0
to a given order of truncation in the scheme-independent
series expansions in an SUðNcÞ theory with NF fermions in
the fundamental representation with NF=Nc equal to r. As

was the case for the κ̂ðFÞj and κ̄ðf
0Þ

j , for large but finiteNf and

Nc, the approach to the LNN limit is rapid for the d̂j and d̄j,
since the subdominant terms again vanish like 1=N2

c.

V. AT THEORY

In this section we analyze the large-Nc limit of the AT
theory, i.e., a theory in which both the f and f0 fermions are
in two-index representations of SUðNcÞ. For finite Nc,
there are two types of AT theories, namely one with Rf ≡
R ¼ Adj and Rf0 ≡ R0 ¼ S2 and one with Rf ≡ R ¼ Adj
and Rf0 ≡ R0 ¼ A2. Since the S2 and A2 representations
have the same large-Nc behavior, the Nc → ∞ limits of
both of these theories are the same, with ðR;R0Þ ¼
ðAdj; T2Þ, where, as above, T2 stands for either S2 or
A2. This is the reason for our designation of these as the AT
theory. The fermions in the adjoint and T2 representations
are denoted ψ and χ.

A. Relevant interval of NAdj and NT2
for AT theory

In the Nc → ∞ limit of the AT theory, the asymptotic
freedom condition (2.1) reads

2NAdj þ NT2
<

11

2
: ð5:1Þ

Hence, for a given value of NAdj, NT2
must be less than the

upper bound NT2;u ¼ ð11=2Þ − 2NAdj, and for a given
value of NT2

, NAdj must be less than the upper bound
NAdj;u ¼ ð11=4Þ − NT2

=2. Let us envision the theories as
being specified by a point in the first quadrant, with the
horizontal axis being NAdj and the vertical axis being NT2

.
The upper boundary of the conformal regime is defined by
the line segment NAdj þ ðNT2

=2Þ ¼ 11=4. This line seg-
ment has slope

dNT2

dNAdj
¼ −2: ð5:2Þ

The expansion variables for the scheme-independent series
expansions in the AT theory are

Δ̌Adj ¼ NAdj;u − NAdj

¼ 11 − 2ð2NAdj þ NT2
Þ

4
ð5:3Þ

and

Δ̌T2
¼ NT2;u − NT2

¼ 11 − 2ð2NAdj þ NT2
Þ

2
; ð5:4Þ

where the Δ̌ notation signifies that we have taken the
Nc → ∞ limit. Thus,

Δ̌T2
¼ 2Δ̌Adj: ð5:5Þ

As is evident from Eqs. (5.3) and (5.4), Δ̌T2
and Δ̌Adj

depend on NAdj and NT2
only through the combination

2NAdj þ NT2
.

The condition that the two-loop beta function should
have an IR zero is

2NAdj þ NT2
>

17

8
: ð5:6Þ

The lower boundary of the region where the condition (5.6)
is satisfied is the line segment 2NAdj þ NT2

¼ 17=8 in the
first quadrant. This line segment has the same slope of −2
as the upper boundary. The region IIRZ is thus given by

IIRZ∶
17

8
< 2NAdj þ NT2

<
11

2
: ð5:7Þ

For NAdj and NT2
in the IRZ region, the two-loop (2l)

rescaled beta function βξ;2l has an IR zero at

ξIR;2l ¼ 2π½11 − 2ð2NAdj þ NT2
Þ�

8ð2NAdj þ NT2
Þ − 17

: ð5:8Þ

Note that the upper and lower boundaries of the IRZ
regime, the values of Δ̌T2

and Δ̌Adj, and the value of ξIR;2l
depend on NAdj and NT2

only via the combination
2NAdj þ NT2

. We will assume that NAdj and NT2
are such

that the theory has an IR zero in the conformal regime.

B. γAdj and γT2
in the AT theory

In the AT theory, the coefficients of both types of

fermions have finite large-Nc limits. We denote κðfÞj ≡
κðAdjÞ and κðf

0Þ
j ≡ κðT2Þ. With R2 standing for any of the

three two-index representations Adj; S2, and A2, we define

κ̌ðR2Þ
j ¼ lim

Nc→∞
κðR2Þ
j for R2; ð5:9Þ

so that

γψ̄ψ ;IR ¼
X∞
j¼1

κ̌ðAdjÞj Δ̌j
Adj ð5:10Þ
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and

γχ̄χ;IR ¼
X∞
j¼1

κ̌ðT2Þ
j Δ̌j

T2
: ð5:11Þ

We find that for the κj coefficients that we have calculated,

κ̌ðT2Þ
j ¼

�
λT2

λAdj

�
j
κ̌ðAdjÞj

¼ 2−jκ̌ðAdjÞj : ð5:12Þ
From [1], we have

κ̌ðAdjÞ1 ¼ 2κ̌ðT2Þ
1 ¼ 22

32
¼ 0.444444; ð5:13Þ

κ̌ðAdjÞ2 ¼ 22κ̌ðT2Þ
2 ¼ 341

2 · 36
¼ 0.233882; ð5:14Þ

κ̌ðAdjÞ3 ¼ 23κ̌ðT2Þ
3 ¼ 61873

23 · 310
¼ 0.130978: ð5:15Þ

The large-Nc limit for these coefficients in a theory with
a single fermion representation R ¼ Adj was previously

considered in Ref. [4], and the κ̌ðAdjÞj , j ¼ 1, 2, 3 agree with
Eqs. (6.18)–(6.21) in that paper.
Combining the relation Δ̌T2

¼ 2Δ̌Adj from Eq. (5.5) with

the relation κ̌ðT2Þ
j ¼ 2−jκ̌ðAdjÞj from Eq. (5.12), we derive an

interesting symmetry property, namely that, for all the
orders p ¼ 1, 2, 3 that we have calculated,

γψ̄ψ ;IR;Δ̌p
Adj

¼ γχ̄χ;IR;Δ̌p
T2
: ð5:16Þ

That is, for the ψ field in the Adj representation and the χ
field in either the S2 or A2 representation, the Nc → ∞
limits of the scheme-independent series expansions for
the anomalous dimensions of the corresponding bilinear
operators, γψ̄ψ ;IR and γχ̄χ;IR, are equal to each other at each
order that we have calculated. Furthermore, since the only
dependence on NAdj and NT2

enters via the combination
2NAdj þ NT2

, the anomalous dimensions in Eq. (5.16) also
depend on NAdj and NT2

only through the combination
2NAdj þ NT2

. In Table X we list values of γψ̄ψ ;IR;Δ̌p
Adj

¼
γχ̄χ;IR;Δ̌p

T2
for p ¼ 1, 2, 3 in the AT theory for some

illustrative values of NAdj and NT2
. As an example of

the dependence on 2NAdj þ NT2
, the values of γψ̄ψ ;IR;Δ̌p

Adj
for

the theories with ðNAdj; NT2
Þ ¼ ð1; 3Þ and ðNAdj; NT2

Þ ¼
ð2; 1Þ are the same.
It is of interest to consider the correction terms to the

Nc → ∞ limit in this theory. The coefficients κðAdjÞj with
j ¼ 1; 2 are independent of Nc and hence are equal to their

Nc → ∞ limits κ̌ðAdjÞj with j ¼ 1; 2. For κðAdjÞ3 , in a theory
with fermions in only a single representation, R ¼ Adj, we
recall that [see Eq. (6.20) in [4]]

κðAdjÞ3 ¼ 61873−42624N−2
c

23 ·310
ðone fermion rep:Þ; ð5:17Þ

so the correction term to the Nc → ∞ limit is proportional
to 1=N2

c. In contrast, we find that the corrections to
the Nc → ∞ limits (5.13)–(5.15) in the AT theory
involve terms proportional to 1=Nc rather than 1=N2

c.
Consequently, the approach to the Nc ¼ ∞ limit in the
AT theory is slower than the approach to the LNN limit
in the FR0 theory, since in the latter case the correction
terms are proportional to 1=N2

c.

C. β0IR series expansions in the AT theory

In the Nc → ∞ limit of the AT theory, the coefficients dj
and d̃j in the scheme-independent series expansions for β0IR
are finite. In accord with our labeling convention that Rf ¼
Adj and Rf0 ¼ T2, we denote dj ≡ dðAdjÞj and d̃j ≡ dðT2Þ

j

and define

ďðAdjÞj ¼ lim
Nc→∞

dðAdjÞj ð5:18Þ

and

ďðT2Þ
j ¼ lim

Nc→∞
dðT2Þ
j ; ð5:19Þ

so that in this Nc → ∞ limit, the two equivalent scheme-
independent expansions for β0IR are

β0IR ¼
X∞
j¼2

ďðAdjÞj Δ̌j
Adj ð5:20Þ

and

β0IR ¼
X∞
j¼2

ďðT2Þ
j Δ̌j

T2
: ð5:21Þ

For the cases j ¼ 2; 3; 4 that we have calculated, we find

ďðT2Þ
j ¼

�
λT2

λAdj

�
j
ďðAdjÞj

¼ 2−jďðAdjÞj : ð5:22Þ

TABLE X. Values of the anomalous dimension γψ̄ψ ;IR;Δ̌p
Adj

¼
γχ̄χ;IR;Δ̌p

T2
, calculated to order p ¼ 1, 2, 3 and evaluated at the IR

fixed point in the AT theory for illustrative values of NAdj and
NT2

. The respective entries are identical for the ðNAdj; NT2
Þ ¼

ð1; 3Þ and (2,1), and hence the latter are not shown.

NAdj NT2
2NAdj þ NT2

γψ̄ψ ;IR;Δ̌Adj
γψ̄ψ ;IR;Δ̌2

Adj
γψ̄ψ ;IR;Δ̌3

Adj

1 2 4 0.333 0.465 0.520
1 3 5 0.111 0.126 0.128
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We calculate

ďðAdjÞ2 ¼ 22ďðT2Þ
2 ¼ 24

34
¼ 0.197531; ð5:23Þ

ďðAdjÞ3 ¼ 23ďðT2Þ
3 ¼ 28

37
¼ 0.117055; ð5:24Þ

ďðAdjÞ4 ¼ 24ďðT2Þ
4 ¼ 46871

22 · 312
¼ 0.0220490: ð5:25Þ

Again, combining the relation Δ̌T2
¼2Δ̌Adj from Eq. (5.5)

with the relation ďðT2Þ
j ¼ 2−jďðAdjÞj from Eq. (5.22), we find

a second symmetry property characterizing the Nc → ∞
limit of the AT theory, namely that, for all the orders p ¼
1; 2; 3 that we have calculated,

β0
IR;Δ̌p

Adj
¼ β0

IR;Δ̌p
T2

: ð5:26Þ

We thus write these as β0
IR;Δ̌p

R2

, where R2 stands for either

Adj or T2. As discussed in [1], these two scheme-
independent expansions for β0IR are equivalent, and here
they are actually identically equal to each order that we
have calculated. As was the case with the anomalous
dimensions of the fermion bilinears, since the only depend-
ence on NAdj and NT2

enters via the combination
2NAdj þ NT2

, the scheme-independent series expansion
for β0 depends on NAdj and NT2

only through the

combination 2NAdj þ NT2
. In Table XI we list values of

β0
IR;Δ̌p

R2

for p ¼ 2; 3; 4 in the AT theory for some illustrative

values of NAdj and NT2
. As another example of the

dependence on 2NAdj þ NT2
, the values of β0

IR;Δ̌p
Adj

for

the theories with ðNAdj; NT2
Þ ¼ ð1; 3Þ and ðNAdj; NT2

Þ ¼
ð2; 1Þ are the same. As with the κðAdjÞj and the κðT2Þ

j

coefficients, we find that the leading-order corrections to
the Nc → ∞ limit are proportional to 1=Nc.

VI. CONCLUSIONS

In this paper we have calculated limiting forms of
scheme-independent series expansions for the anomalous
dimensions of gauge-invariant bilinear fermion operators
and of β0 evaluated at an infrared fixed point of the
renormalization group in asymptotically free SUðNcÞ
gauge theories. We have first studied a theory denoted
FR0 with NF fermions in the fundamental representation
and Nf0 fermions in the adjoint, or symmetric or anti-
symmetric rank-2 tensor representations, in the limit in
which Nc → ∞ and NF → ∞ with the ratio r ¼ NF=Nc
fixed and finite. Secondly, we have studied the Nc → ∞
limit of a theory with fermions in the adjoint and
symmetric or antisymmetric rank-2 tensor representa-
tions, denoted the AT theory. We have shown how these
limits yield useful simplifications of the general results
in [1]. We have also determined the nature of the
approaches to the respective LNN and Nc → ∞ limits
in the FR0 and AT theories. Our results further elucidate
the interesting and fundamental question of the properties
of a conformal field theory, specifically, an asymptotically
free gauge theory at a conformal infrared fixed point of the
renormalization group.
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