Microarray of programmable electrochemically active elements

McCaskill, John; Maeke, Thomas; Straczek, Lukas; Oehm, Jürgen; Funke, Dominic; Mayr, Pierre; Sharma, Abhishek; Müller, Asbjørn; Tangen, Uwe; H. Packard, Norman; Rasmussen, Steen

Publication date: 2016

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 25. May, 2024
Microarray of programmable electrochemically active elements

John S. McCaskill¹, Thomas Maeke¹, Lukas Straczek², Jürgen Oehm², Dominic Funke³, Pierre Mayr³, Abhishek Sharma³, Asbjørn Müller⁴, Uwe Tangen¹,⁴, Norman Packard⁴,⁵, Steen Rasmussen⁴,⁵

Possible applications of the MICREAgents Dock, a two dimensional array of programmable electrochemically active elements, to ALife.

Device Origin and Design

The dock is a part of a larger project, MICREAgents (McCaskill et al., 2012). The original vision of the project included two major technological components: lablets and the dock. Lablets are small (~100 x 100 x 50 µm), autonomous electronic elements, comprising a form of smart, programmable, electrochemically active ‘dust’, and unlike conventional smart dust communicating via pairwise interactions rather than wireless radiation. Lablets are poured into a solution, and can interact with the surrounding solution, with each other, and with smart surfaces. A dock is such a static two dimensional array of 256 x 256 microelectrodes (see Fig. 1) beneath a fluid film and connected to a host computer, from which each of the sites may be independently controlled. One goal of MICREAgents was to develop this technology to enable a new form of evolution through the interaction of chemistry with these new hybrid informational-electrochemical elements.

Experimental examples

Electrochemiluminescence (ECL). See Fig. 2

Combinatorial galvanic deposition.

Application to ALife

The dock should be useful for novel origin of life experiments, to discover chemistry that enables the transition from nonliving to living matter. A version of the Miller-Urey experiment could be implemented, with the dock’s spatial separation and control giving far more experimental range. Redox potentials provide a specific source of energy, and specifically coated electrodes provide a programmable distribution of mineral or organic catalysts that can allow controlled investigation of complex spatially resolved chemical evolution.

The dock is also able to interact in programmable ways with microparticles, including the lablets discussed previously. Such interplay between autonomous programmable mobile electrochemical elements and smart docking surfaces may allow the construction of artificially self-reproducing systems with both electronic and chemical facets, see e.g. (Tangen et al., 2015). Further, McCaskill has proposed electronic genomes that can direct chemistry and are heritable. Wills and McCaskill have conceived the construction of artificially self-reproducing systems with both electrochemical elements and smart docking surfaces may allow the interplay between autonomous programmable mobile microparticles, including the lablets discussed previously. Such a static two dimensional array of 256 x 256 microelectrodes (see Fig. 1) beneath a fluid film and connected to a host computer, from which each of the sites may be independently controlled. One goal of MICREAgents was to develop this technology to enable a new form of evolution through the interaction of chemistry with these new hybrid informational-electrochemical elements.

Figure 1. Left: a view of the dock close to actual size (4.6 mm square). Right: A close-up of the dock. A unit cell of the 128 x 128 array contains four electrodes (outlined by the black dotted lines), with a differential sensors and a split actuator.

Figure 2. An implementation of spatial ECL (Ru(bpy)₃²⁺ based) on the (CMOS)1 dock, with each lighted site stimulated by the application of a voltage to a microelectrode (global counter electrode).

Figure 3. Portable experimental setup for the dock. The microscope camera is mounted atop of an adjustable aluminium tube, mounted onto a 3D printed scaffold (black - with lights inside), fitted onto a 3D printed dock holder (red). The raspberry pi host computer (running Linux) is shown on the right. Cables are removed for clarity.

Portable experimental setup

A portable experimental setup is constructed using a 3D-printed scaffold with a USB microprocessor mounted on top of the dock’s computer controller, see Fig 3. Because of the nature of the dock’s electronic fabrication, it is relatively easy to make many copies, so each student able to use their own copy of a dock. The dock could also be used in an educational context, with each Scaffolding with a USB microscope mounted on top of the dock’s computer (running Linux) is shown on the right. Cables are removed for clarity.

References

1. Microsystems Chemistry and BioIT (BioMIP), Ruhr University Bochum, Germany
2. Analog Integrated Circuits (AIS), Ruhr University Bochum, Germany
3. Integrated Systems (IS), Ruhr University Bochum, Germany
4. Center for Fundamental Living Technology, University of Southern Denmark, Denmark
5. Santa Fe Institute, New Mexico, USA
6. European Center for Living Technology, Venice, Italy