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1. Introduction — Why These Notes?

UgetStatz + is the natural extension of the note set UgetStatz. The purpose of UgetStatz + is
to dig deeper into especially the topic of regression and time series analysis. In addition, the
issue of sampling is discussed, and it is practically shown how to draw a sample. Finally,
UgetStatz + shows some simple methods for analyzing questionnaires ie. non-parametric
methods and logistic regression. Most of the analysis can be undertaken by use of tne
Analysis Toolpack in Excel or the add-in Megastat.

The material should be appropriate for a5 ECTS course.

Nils Karl Sgrensen



2. Table of Contents

No.

Set 1:

Set 2:

Set 3:

Set 4:

Set 5:

Set 6:

Set 7:

Title:

Model Selection, Autocorrelation and Tests
Transformation of Linear Models
Modeling Issues of Tourism

Methods in Sampling

Nonparametric Methods

Two-way ANOVA

The use of SPSS and Logistic Regression

Total number of pages

Detailed tables of content are provided at each chapter note

Pages
22
12
23
14
20

13

110



Nils Karl Sgrensen ©
Advanced Tools Statistics

Set 1: Model Selection, Autocorrelation and Tests

by Nils Karl Sorensen
Outline page
1. Integrated statistical Modeling and the use of Regression 2
2. The Partial F-test 7
3. Analyzing Autocorrelation and the Durbin-Watson Test Statistic 8
4. More General Tests for Model Selection 13
Appendix I: Critical Points for the Durbin-Watson Test Statistic 21

Appendix II: US National Accounts 1929 to 1972 22



1. Integrated Statistical Modeling and the use of Regression
(BO Section 14.10 & 14.11)

Let us use our knowledge from the previous course in statistics to perform an integrated
model sequence. After having outlined for example a macroeconomic theory for example
for the money demand, the consumption function or the investment function we now want
to perform a statistical investigation. Let us assume that we have found some statistics from
the national statistical bureau. Then such an analysis is split into two parts namely the
descriptive statistical part and a regression part. These parts could contain:

Descriptive statistical part
Here the following should be considered:

Set up some nice time series or cross-section plots

Compute descriptive statistics and comment on the evolution of the data

If we use cross-section data: Draw Box-plot(s) and comment on data

If we use time series data: Look for special events (like the 2007 recession) and
consider the issue of seasonality

Regression part

o Set up a matrix of correlation. Identify the variables with the highest correlation to y
and comment. Discuss signs and relate to the prior from economic theory. Do we
find what we expect? As an alternative we could calculate the variance inflation

. . | . . o
Jfactor for variable j defined as VIF, = . where R’ is coefficient of determination

2
j
for the regression model that related x; to all other independent variables x. If
multicollinarity is present the VIF; will be high (R} near one) and vice versa. This

measure is provided by Megastat.

e Could multicollinarity be present (correlation among x variables).

e Based on an initial estimation of the full model a model selection is undertaken.
During this process we should observe:

0 We attempt to obtain the simplest model with the highest R* coefficient.

0 We attempt to minimize the ‘“standard error of regression” shown in the
Excel or Megastat output.

0 We attempt to eliminate multicollinarity.

0 All t-statistics should be significant (p-value < 0.05).

e For the final model some selected highlights of the model control can be shown.



These things can all be undertaken by the use of Excel. Let us perform the regression part of
this analysis on a small artificial data set. We want estimate an import (/MP) function for
the artificial nation “Ruritania” for a 10 year period. We assume that the import depend on
money supply (MS), gross domestic product (GDP) the exchange rate of US dollar versus
the local Peso (USDvP), and finally the interest rate (RENT). Below we find the statistics:

Data
Year Imports Money supply GDPbill.  Exchange Interest rent
(IMP) (MS) bill. pesos rate USD (RENT)
bill. pesos pesos per Pesos
1 97.14 80 202.40 7.45 7.5
2 103.63 90 203.00 7.12 6.7
3 107.65 95 205.50 7.01 6.4
4 113.81 100 212.10 6.85 6.1
5 115.32 98 219.80 7.02 6.3
6 116.96 97 226.80 7.56 6.4
7 118.46 100 227.40 7.62 6.3
8 120.47 102 235.20 7.44 6.2
9 121.21 95 239.80 7.23 6.7
10 121.40 95 242.40 7.02 6.7

What should we expect from the theory of macroeconomics? When money supply
increases, so do demand, so imports should increase. The same holds for GDP. If the
interest rate decreases it will be cheaper to lent money. So a low interest rate should
stimulate imports. Here we expect negative correlation. Correlation on exchange rate
depends on the definition of the exchange rate. Here a low exchange rate should make
imports cheaper. So here we expect a negative relation.

Let's look at some plots

Bill Imports (IMP) Bill Money supply (MS)
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From the plots we can observe that imports and GDP and money supply should be
positively correlated. Further imports and the exchange rate as well as the interest rate
should be negatively correlated. Notice that the exchange rate and the interest rate have a
very similar pattern. If they are correlated with imports as well as with them self we observe
a problem of multicollinarity. We want to estimate a model of the form:

IMP, = By + p;MS, + p,GDP, + p;USDrP, + B,RENT, + ¢,
Expected signs: (+) (+) () ()

Let us first look at the matrix of correlation:

IMP MS GDP USDvP RENT
y: Imports (IMP) 1.00
x1: Money Supply (MS) 0.81 1.00
x2: GDP 0.92 0.53 1.00
x3: Exchange rate (USDvP) 0.06 —0.08 0.21 1.00
x4. Interest rate (RENT) —0.62 =0.96 —0.27 0.20 1.00

Notice, that many of our observations from the plots are confirmed. Besides from the
exchange rate all variables are highly correlated with imports. Further, we were wrong with
the correlation between the exchange rate and imports. We also observe a severe correlation
between the money supply and the interest rate (—0.96). Also among GDP and money
supply (0.53) multicollinarity is observed. Let us show the results from the estimation of the
model:



Regression Statistics

Multiple R 1.00
R-squared 0.99 This is very high!
Adjusted R-square 0.99
Standard Error 1.00
Observations 10
ANOVA
df SS MS F-test P-value
Regression 4 604.62 151.16 152.00 0.00
Residual 5 4.97 0.99
Sum 9 609.60
Standard Lower 95 Upper 95
Coefficient deviation t-stat P-value % %
Constant 78.87 112.72 0.70 0.52 -210.89 368.62
X1: MS -0.02 0.73 -0.03 0.98 -1.90 1.86
X2: GDP 0.45 0.09 4.96 0.00 0.21 0.68
X3: USDvP -1.12 1.50 -0.75 0.49 -4.98 2.73
X4: RENT -8.26 10.26 -0.81 0.46 -34.63 18.11

We have in order to save space omitted the residuals diagrams. The coefficient of
determination is very high and from the ANOVA table it is observed that the F-test is
significant. Consequently it is meaningful to estimate the model.

However the model is very poor! The only variable that is significant i1s GDP. All other
variables are not significant. The money supply even takes the wrong sign!

In order to proceed we will try to eliminate the most severe problem of multicollinarity
namely among the money supply and the interest rate. So we estimate the model without the
interest rent. We exclude the interest rate because the money supply is higher correlated
with the other variables than the interest rate.

We obtain the following output from Excel, and let us in this case include the residual

analysis in the output.

Model without the Interest Rate

Regression Statistics

Multiple R 1.00
R-squared 0.99
Adjusted R-square 0.99
Standard Error 0.97
Observations 10

This is smaller than above



ANAVA

df Y MS F-test P-value
Regression 3 603.98 201.33 215.04 0.00
Residual 6 5.62 0.94
Sum 9 609.60
Standard Lower 95 Upper 95
Coefficient deviation t-stat P-value % %
Constant -11.52 10.33 -1.12 0.31 -36.80 13.75
X1: MS 0.57 0.06 9.18 0.00 0.42 0.72
X2: GDP 0.38 0.03 14.29 0.00 0.31 0.44
X3: USDvP -1.72 1.27 -1.35 0.22 -4.82 1.38
MS Residuals GDP Residuals
15 1 15
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+* ' @
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Compared to the initial estimation we now observe the correct sign for the money supply.
Notice that the size of the coefficient of the GDP-variable has remained quite constant. Both
variables are now significant. The sign on the exchange rate variable is as expected, but it is
not significant. This means that the model should be reestimated without this variable. This
will due to low correlation with MS and GDP as seen from the matrix of correlation not
affect these variables. Finally the analysis of residuals as well as the plot for normality looks
quite satisfactory.



2. The Partial F-test and Variable Selection

In Section 1, we performed a selection of the included variables by inspection of the p-
values only. However, when comparing models several alternatives is optional depending
on the nature of the data.

First, the partial F-test is frequently used to test the significance of a set of independent
variables in a regression model. We use this F-test to test the significance of a portion of a
regression model.

We will present the partial F-test, using a little model example. Suppose that we are
considering the following models:

Full model: y=P0,+0x + Bx, + Bx; + Bix, + &
Reduced model: y=p0,+0x+px,+¢

By comparing the two models, we are asking the question: Given that variables x; and x; are
already in the regression model, would we be gaining anything by adding x; and x, to the
model? Will the reduced model be improved in terms of its predictive power by the addition
of the two variables x; and x,.

Let us consider this issue by setting a test of a hypothesis. The null hypothesis that the two
variables x; and x, additional value once x; and x, are in the regression model. The
alternative hypothesis that the two lope coefficients are not both zero. The hypothesis test is
stated as:

Ho: B3=PB4=0 (given that x; and x; are in the model)
Hi: B; and B4 are not both zero

The test statistic for this hypothesis is the partial F-statistic given as:

i _ (SSE, —SSE,)/r
[rsn=(k+1)]
MSE,.

Where SSE} is the sum of squares for error of the reduced model; SSE is the sum of squares
for error of the full model; MSEr is the mean square error of the full model; MSEy =
SSEg/[n—(k+1)]; k 1s the number of independent variables in the full model (k=4 in the
case above); and r is the number of variables dropped from the full model in creating the
reduced model (in the present case r=2).

The difference SSE — SSEFr is called the extra sum of squares associated with the reduced
model. Since this additional sum of squares for error is due to  variables, it has » degrees of



freedom. In our model selection case in the previous section we had that SSE; = 5.62, SSEr
= 4.97 and MSEr = 0.99. Initial k=4 so r=1. With n =10 then:

(5.62-4.97)/1
0.99

F[l 10-(4+1)] = =0.66

Assuming 0=0.05 we find F/;.5; = 6.61. So we cannot reject Hy. This is also what we should
expect. The interest rate is namely not significant in the initial model, and should
consequently be excluded.

The partial F-test is especially good in situations when working with cross-section models.
In cases with times series data other problems occur as will be shown in the next Section.

3. Analyzing Autocorrelation and the Durbin-Watson Test
(BO Section 13.8)

Autocorrelation occurs in non-stationary time series' where the variables are dependent in
time. Autocorrelation may be either positive or negative of nature. Examples are given
below:

Error term Error term
A A

\ \ R ' N y lime

v

Positive autocorrelation Negative autocorrelation

We test for autocorrelation be setting up the Durbin-Watson test. We calculate the tester:

DW = zt 2( &

2
_6‘

! Notice, that the test for autocorrelation only has a meaning, when we work with time series data, and NOT when we
work with cross-section data. For example, in the latter case, data may be listed in alphabetic order. If we for example
applied the test on regional statistics for Germany, performing the test would imply that Mainz and Munich would be
directly related although the distance between the two cities is several hundred kilometers.



This expression is based on the estimation of the regression: ¢, = pe,—; + v, where the last
term is “the error term of the errors”. We can state the hypothesis as:

Hy: The error terms are not autocorrelated (p=20)
Hi: The error terms are autocorrelated (p #0)

The Durbin-Watson test is a two-sided test, where the alternative hypothesis (H;) is not
defined consistently. This is so because under H, the assumption to the error term is by itself
not fulfilled. This is exactly what we want to test for!

The distribution for the Durbin-Watson test is non-standard and found in Appendix I at the
end of these notes or in Bowerman, Appendix A, tables A.11-A.13. k£ is the number of
explanatory variables (the number of X’s). There are two critical values to be found named
d; and dy. The range of the critical value is between 0 and 4. The interpretation can be
summarized in the following figure:

Positive Not No Not Negative
autocolT. defined autocorr. defined autocorr.
[ I I | | I
0 dp dy 4—dy 4—d;. 4
acc. H; acc. Hy acc. H;
p>0 p=0 p<0

Example

A ski resort wants to determine the effect that the weather have on the sales of lift tickets
during the Christmas week. Weekly sales of ski lifts tickets (y) are assumed to depend on
total snowfall in inches (x;) and the average temperature in Fahrenheit (x,). For a data set
ranging over 20 years we obtain:

Tickets
Tickets Snowfall Temperature
) (x1) (x2) o000
6835 19 11 p—
7870 15 -19 2000 |
6173 7 36 5000 -
7979 11 22 4000 1
7639 19 14 2000 -
7167 2 -20 0+
8094 21 39 1 3 5§ 7 9 11 13 15 17 19
9903 19 27
9788 18 26
9557 20 16 Snowfall
9784 19 -1 30 -
12075 25 -9 25
9128 3 37 20
9047 17 -15 15 -
10 1
s -
0 F————r—e————
1 3 5 7 9 11 13 15 17 19




10631 0 22

Temperatur
12563 24 2
11012 22 32
10041 7 18
9929 21 32
11091 11 -15

From the plots it is observed that the relation among the variables not is optimal. So we do
not expect the most significant result. This is also confirmed by the matrix of correlation
shown below. We obtain from Excel by use of the command: Tools/data
analysis/correlation:

Tickets Snowfall  Temperature
Y: Tickets 1.00
X1: Snowfall 0.33 1.00
X2: Temperature -0.11 -0.02 1.00

Let us now estimate a model of the form:
Y, =P+ Bx, + fox, + & wheret = 1,2,...,20

From Excel we obtain:

Regression Statistics

Multiple R 0.35 This is a poor correlation
R square 0.12
Adjusted R square 0.02
Standard Error 1711.68
Observations 20
ANOVA
df Y MS F-test P-value
Regression 2 6793798.5 3396899.1 1.16 0.34
Residual 17 49807214 2929836.1
Sum 19  56601012.2
Standard Lower Upper
Coefficient  Deviation t-stat P-value 95% 95%
Constant 8308.01 903.73 9.19 0.00 6401.31 10214.71
X1: Snowfall 74.59 51.57 1.45 0.17 -34.22 183.41
X2: Temperature -8.75 19.70 -0.44 0.66 -50.33 32.82

10



This is not a very good result, and much worse than our expectations from the plots! The F-
test is not significant (p = 0.34 > 0.10), so the overall model is not significant. Further, only
the constant term is significant. It looks like that neither snowfall nor temperature has an

influence on the sales of tickets.

The plots of residuals are also not very nice! Both plots reveal some kind of systematic
behavior. Let us perform the Durbin-Watson test first by calculation of the formula given

above in Excel. We then obtain:

Temperature Residuals Snowfall Residuals
3000,00
2000,00 1 R
P0Q.00 2000,00 L .
. + 1000,00 4

1000,00 . e
) ) oo R _E ) 0,00 t o |
T T oo " T T 1 1|} ’ EI:I
-40 -20fh00,00 2 e 80 -1000,00 & . 5

000,00 . R -2000,00 . *

-3000,00 + -3000,00

_4000.00 -4000,00

& &1 (& — 3:—1)2 (31)2
-2793.99 7806391.51
-1723.23 -2793.99 1146528.83 2969525.68
-2342.03 -1723.23 382911.49 5485102.65

-956.95 -2342.03 1918431.85 915762.73
-1963.73 -956.95 1013597.71 3856238.75
-1465.27 -1963.73 248460.53 2147024.00
-1439.07 -1465.27 686.38 2070933.63

414.07 -1439.07 3434133.96 171452.12

36491 414.07 2416.75 133157.32

-102.82 36491 218765.62 10571.25

49.96 -102.82 23341.64 2496.31

1823.37 49.96 3144985.16 3324691.68

920.10 1823.37 815908.57 846578.74

-660.40 920.10 2497979.80 436131.76

2515.57 -660.40 10086807.91 6328096.53

2482.26 2515.57 1109.74 6161605.15

1343.06 2482.26 1297779.75 1803801.32

1368.40 1343.06 642.44 1872527.09

334.65 1368.40 1068645.60 111990.59

1831.16 334.65 2239532.65 3353135.13

Sum 29542666.38 49807213.95

_ 2954266638 _

 49807213.95

11




It is assumed that n=20 and k=2.
With a level of significance equal to 0.05, we have from the
critical values in Appendix I that

DLZI.IO DU:154
Hypothesis:

Ho: No first order autocorrelation

H;: Positive first order autocorrelation
As DW <Dy, H; is accepted.
Alternatively, we can find the DW-value by use of Megastat. Here the test is much easier to

perform. In the menu for regression, a label with the text Durbin-Watson can be found. Just
mark the label, and the test will be performed. The menu looks as:

Regression Analysis

S — i a —

Input ranges:

i

| DatarsBs3:scs23 ] X Independent variable(s) oK

| Dataisasz:sas23 .| Y. Dependent variable

e

[ variance Inflation Factors
[~ Standardized Coefficents (betas)
[ Test Intercept [ Force Zero Intercept

| Al Possible Regressions

Cancel
‘ No predictions :I Help
] _] predictor
[ Options i Residuals:
95% | Confidence Level [ Output Residuals

| Diagnostics and Influential Residuals

[ Plot Residuals by Observation

| Plot Residuals by Predicted Y and X

[ stepwise Selection j’ [ Normal Probabity Plot of Residuals

We then find that positive autocorrelation is present. How do we solve the problem? A
solution could be to include a positive linear trend. This is a variable taking the values 7' =
1,2,..,20. It 1s a strongly positive variable. We must from the plots expect this variable to be
strongly correlated with the sales of tickets as this has a positive trend.

The result with inclusion of a positive linear trend from Excel is:

12



Regression Statistics

Multiple R 0.86 This is has increased a lot!
R square 0.74
Adjusted R square 0.69
Standard Error 957.24 This has decreased a lot!
Observations 20
ANOVA
df SS MS F-test P-value
Regression 3 41940217.4 13980072.5 15.26 0.00 Significant!
Residual 16 14660794.8 916299.676
Sum 19 56601012.2
Standard
Coefficient  deviation t-stat P-value Lower 95 %  Upper 95 %
Constant 5965.59 631.25 9.45 0.00 4627.39 7303.78
X1: Snowfall 70.18 28.85 2.43 0.03 9.02 131.35
X2: Temperature -9.23 11.02 -0.84 0.41 -32.59 14.13
X3: Trend 229.97 37.13 6.19 0.00 151.25 308.69

Compared to the first regression an improvement can be observed. Snowfall is now
significant, but temperature has no effect on the model, and should be excluded. Further the
coefficient of determination has increased and the standard error has decreased.
Consequently this is the model to be preferred.

For this model the Durbin-Watson test can also be undertaken. This will result in a DW-
value equal to 1.88. Now k=3 because the trend is included. The critical values can again be
found be use for the appendix. In this case d;=0.998 and dy=1.676. As 1.676<1.88 no
autocorrelation is observed. The inclusion of the trend variable eliminates the presence of
autocorrelation.

4. More General Tests for Model Selection

The Durbin-Watson test for autocorrelation can be criticized in several ways. First, it is only
possible to examine for first order autocorrelation. For example, it is not possible to
consider for example in influence of &,—,. That is the residual error 4 periods ago. Second,
the Durbin-Watson statistic is not defined for some outcomes of the value of the DW-tester.
Third, the alternative hypothesis is not properly tested (this is actually due to the second
critic).

In Section 2, we considered the F-test being a little bit similar to the Durbin-Watson test for
autocorrelation. Here we compared two models, and used the F-statistic to determine the
significance of an improvement of the initial model. The test presented in Section 2 is
intuitive more appealing that the Durbin-Watson test, because the F-statistic has a well

13



defined statistical distribution. However, there is still the problem with the definition of the
alternative hypothesis.

The multiplier tests is a class of tests that seeks to solve the problems above by use of the
methods outlined in Section 2; 1.e. the F-test and the Durbin-Watson test outlined in Section
3.

There are three different multiplier tests namely the Wald test, Likelihood Ratio (LR) test
and the Lagrange Multiplier (LM) test. In principle, the tests investigate the same
hypotheses, but the theoretical point of departure is different for each test.

The tests are most easily explored by an example taken from macroeconomics. Consider an
import function estimated on time series data. Let M denote imports and let ¥ be GDP.
Further ¢ is time. The time period considered runs from / to 7. The model can be written as:

M, =py+ B Y- + ¢ wheret = 1,2,....T
The model states that imports in the present period depend on the level of income in the last

period. We now want to examine if the level of investment / in the last period also should
have been included in the model. The following hypotheses can be stated:

H(): Mt ZIB() + ﬁ]Yt_] + &y where ¢ = ],2, ,T (Model O)
HIZ Mt:ﬁ() +ﬁ1Yt*1 "‘ﬂgltf] + &y where ¢t = ],2,...,T (Model 1)

Further m 1s the number of additional variables included in the model under the alternative
hypothesis. The three tests can be stated as:

Wald Test
Tester &, =Tx w =y
SSE,
LR Test
SSE
Tester =T xlogl —2 |= 42
Eir g( SSE, J Xn
LM Test
SSE, — SSE
Tester =Tx| —0 =71 = 2
3 ( SSE, J Km

14



A nice thing with these tests is fact that they follow the chi-squared distribution. So the tests
are in the same class of tests as the distribution free goodness of fit tests outlined in
Bowerman Chapter 12.

The tests look very similar. What is the difference? Remember that the coefficient of
determination is equal to

SSE

R*:1-—"7"

SST

For each of the models the R’ can be calculated. Then the distribution of the R’ for the
different models can be displayed in a diagram. At some point the model will be over fitted
and R’ will start to decrease. The distribution of R’ can then be displayed as a quadratic
function

Model size
A

<4+— | LR test

LM test

Wald test

The only difference between the Wald and the LM test is the reference. For the Wald test it
is the alternative whereas it for the LM test is the null hypothesis. The LR test is a little
different taking its point of departure in the model size analysis.

For all tests it is true that they are small sample tests. Further, it is generally true that

Sy 2 2 é:LR_

The LM-test as a Diagnostic Test

The LM-test can be used to reveal autocorrelation in a more general way. This test is much
more flexible than the Durbin-Watson test, and the chi-square distribution is better defined
than the Durbin-Watson statistic.

Assume from the example above that we have accepted that the lagged value of the

investments should be included in the functional form of the import function. Let this model
be valid under Ho.

15



H(): Mt ZIB() + ﬁ]Yt_] +ﬂ21t—] + & where ¢t = ],2, v, I (Model O)

When we estimate this model the residuals may not be white noise. For example, it could be
that the residuals follow a process looking as:

AR(4): & = P1E€r1 T P2Er2 T P3&rs T psgra T vy

This process is an extension of the process considered in Section 3. Instead of a single lag
there are now four lags. The term v, is the “error of the error” term. This process is called an
autoregressive process of order 4. The model states that the errors are related 4 periods back
in the past. This process can be generalized as:

AR(P): & = PrE€r1 T P2Er2 T P3&rz + oo T Pp&rp T Vi

We can incorporate the AR(4) process in our model and test if it is being improved. The
import function now looks as:

H;: M, =Bo+ 1Yy + Boli—1 +pi&cs t prez t pses t psgrs T v (Model 1)
The test is now undertaken the following way:

e Estimate the model under the null (Hy) and save the residuals — SSE,
e Use the residuals and estimate the model under the alternative — SSE;
e In the present case the model is extended with four lags so m=4

Perform now:

Tester &y = TX(MJ =y

SSE, "

Example

In Appendix II statistics are given for an annual data set on US national accounts ranging
over the period from 1929 to 1972. Using these statistics an imports function of the form
given above can be estimated. The Excel output for the model estimated under Ho is given
as:

16



Model HO

Regression Statistics

Multiple R 0.949
R-squared 0.901
Adjusted R-square 0.899
Standard Error 4.409
Observations 43
ANOVA

df SS MS F-test P-value
Regression 1 728254  7282.54 374.59 0.00
Residual 41 797.10 19.44 SSE(=797.1
Sum 42 8079.64

Coef St error t-stat P-value  low 95% high 95%
Constant -8.77 1.63 -5.38 0.00 -12.06 -5.47
Y-lag 0.07 0.00 19.35 0.00 0.07 0.08

Regression statistics are in order, and the coefficients are significant. The extended model
under H, is estimated with the following result:

Model H;
Regression Statistics
Multiple R 0.950
R-squared 0.902
Adjusted R-square 0.897
Standard Error 4.449
Observations 43
ANOVA
df Y MS F-test P-value

Regression 2 728778  3643.89 184.07 0.00
Residual 40 791.86 19.80 SSE=791.9
Sum 42 8079.64

Coef St error t-stat P-value low 95% high 95%
Constant -9.07 1.75 -5.19 0.00 -12.61 -5.54
Y-lag 0.08 0.01 7.59 0.00 0.06 0.10
I-lag -0.03 0.06 -0.51 0.61 -0.14 0.09
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Although the overall regression statistics has improved, the performance of the lagged
investment coefficient is not satisfactory. First, the coefficient is not significant, and second,
the coefficient takes the wrong sign. We expect that an increase in investment will cause
imports to rise.

How are the 3 tests performing? First, note that the model is expended by a single
parameter, so m=1. In addition, the number of observation is equal to 7=43. Next, the three
testers are being set up.

Wald Test

Tester &, =T x SSE, —SSE, | _ 43, (wj =0.2823~
SSE, 791.9

LR Test
SSE 797.1

Tester =T xlog —2 |=43xlog —— |=0.1222 = y;

ix g( SSE, j g( 791.9) d
LM Test
Tester &, =Tx S5E, = 5SE\ | _ g3, (wj =0.2805~ z;
SSE, 797.1

Comparison of the size of the testers reveals that &, >¢&,,, >&,, > 0.2823>0.2805>0.1222
as expected.

At the 95 % (0=0.05) level we find that y/=3.84. As 3.84 (>) is larger than all the testers Ho
is accepted.

The conclusion is that the outcome of all the tests is consistent with the finding above. The
lagged investments should not be included in the model.

Let us finally consider the case where the LM test is used as a diagnostic test. We have

already estimated the model under the null. Now we estimate the model with 4 additional
lags of the errors. The model is shown on page 16 mid. The residuals under the null look as:
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Residuals over time

20.00 -
[ |
10.00 - -
noo -
1930 1940 'l.l'ﬂ)iﬁﬁ'.'-!ﬁ-' 1970

-10.00 -

So autocorrelation of some degree could be present!

The model is a little bit special to set up. The residuals are estimated under Ho and then the
residuals are lagged as shown below. If the residuals not are lagged an additional period the
estimation will break down.

Year M Yo | P &1 &2 &3 14
1934 7.1 141.5 5.3 4.97 2.85 3.35 3.25
1935 8.7 154.3 9.4 5.20 4.97 2.85 3.35
1936 9.3 169.3 18.0 5.92 5.20 4.97 2.85
1937 10.5 193.0 24.0 5.59 5.92 5.20 4.97
1938

1939

The following result is obtained under H;:

Model H;

Regression Statistics
Multiple R 0.99
R-squared 0.99
Adjusted R-square 0.98
Standard Error 1.45
Observations 39
ANOVA

df SS MS F-test P-value

Regression 6 4872.48 812.08 384.89 0.00
Residual 32 67.52 2.11 SSE; =67.5
Sum 38  4940.00
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Coef St error t-stat P-value Low 95% high 95%

Constant 1928.02 0.70  2747.32 0.00 1926.59 192945
Y-lag 0.05 0.00 11.95 0.00 0.04 0.05
I-lag 0.10 0.02 4.05 0.00 0.05 0.15
E-l11 -0.29 0.16 -1.87 0.07 -0.61 0.03
E-12 0.04 0.20 0.19 0.85 -0.36 0.44
E-13 0.17 0.20 0.83 0.41 -0.25 0.58
E-14 -0.27 0.16 -1.72 0.10 -0.59 0.05

The LM-tester is now:

Tester Eon :TX(MJ:”X(M

=35.68~ y;
SSE, 791.7 ) A

At the 95 % (0=0.05) level we find that y;=9.49. As 9.49 is smaller than 35.68 Hi is

accepted. So the model above is the best, and autocorrelation of order four is present in the
initial model.

The interpretation of the outcome of the test should be taken carefully! Inspection of the
Excel output reveals that lag 1 is weak significant only, and lag 4 is on the margin to be
weak significant. This suggests that the model is reestimated with these two lags only. This
1s seen already at the initial estimation from the P-values.

This underlines that these test in general has weak performance compared to the initial

modeling sequence with inspection of the P-values.

Reference
Engle, R. F., 1982, Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics.
In: Griliches and Intrilligatior (editors) Handbook of Econometrics, North-Holland.
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Appendix I: Critical Points for the Durbin-Watson Test Statistic
95 % level (o= 0.05)

k=1 k=2 k=3 k=4 k=35

d | d | 4 | dy d | dy | d | dy d | dy

10 | 0879 1.320(0.697 1.641 | 0525 2.016 | 0376 2414 0.243 2822
110927 132410758 1.604 | 0595 1.928 | 0.444 2283|0316 2.645
12 10971 1.331 /0812 1579|0658 1.864 (0512 2177|0379 2506
13 | 1.010 1340|0861 1562|0715 1816|0574 2094|0445 2.390
14 | 1045 1.38%0 | 0905 1.551 | 0767 1.779 | 0.632 2030|0505 2.296
15 11077 1361|0946 1543|0814 1.750 | 0685 1977|0562 2.220
16 | 1,106 1.371 10982 1.539 | 0857 1.728 | 0.734 1935|0615 2.157
17 | 1,133 1381 | 1015 1.536 | 0897 L.710 | 0.779 1900 | 0.664 2.104
18 | 1,158 1.391 ] 1.046 1.535| 0933 1.69 | 0.820 1.87210.710 2.060
19 | 1.1IRD 1.401 1 1.074 1.536| 0967 1.685 | 0859 |1.B4R|0.752 2023 I
20 | 1.201 14110 1100 1.537 | 0998 1.676 | 0.894 1.828|0.792 1.991
2 1221 14200 1,125 1538 1.026 1.669 | 0927 1.812]| 0829 1.964
22 | 1239 1.420 | 1.147 1.541 | 1.053 1.664 | 09358 1.797 | 0.863 1.940
23 | 1257 1.437 ] 1.068 1.543] 1.078 1.660 | 0986 1.785]0.895 1.920

24 [ 1.273 1446 | 1.188 1.546| 1.101 1.656 | 1.013 1.775| 0925 1.902
25 | 1.288 1.454 | 1.206 1.550)1.123 1,654 | 1.038 1.767 | 0.953 1.886
26 | 1.302 1.461 | 1.224 1.553|1.143 1.652|1.062 1.759 0979 1873
27 | 1.316 1.469 | 1.240 1556 1.162 1.651 | 1.084 1.753 | 1.004 1.86]
28 | 1.328 1476|1255 1.560| 1.181 1,650 | 1104 1.747 | 1.028 1.850
20 | 1341 1483 | 1.270 1563|1198 1.650| 1,124 1.743 | 1.050 1.84]
30 | 1352 1489 | 1.284 1.567 | 1.214 1.650 | 1.143 1.739 | 1.071 1.833
31 | 1363 1496|1297 1570 1.229 1.650 | 1.160 1.735| 1.090 1.825
32 | 1373 1502|1309 1.574 | 1.244 1650 | 1172 1732 | 1109 1819
33 | 1.383 1.508 | 1321 1.5771.258 1.651 [ 1.193 1730|1127 1813
34 1393 15141333 1.580 1.271 1.652 [ 1.208 1.728 | 1.144 1808
35 | 1.402 1519 1.343 1.584 | 1.283 1.653 | 1.222 1.726 | 1.160 1.803
36 | 1411 1.525 | 1.354 1.587 | 1.295 1.654 [ 1.236 1.724 | 1175 1.799
37 | 1419 1530 1.364 1.590 | 1.307 1.655 | 1.249 1.723 | 1190 1795
38 | 1427 1535 1.373 1594 | 1.318 1.656 | 1.261 1.722| 1.204 1.792
39 | 1435 1.540| 1.382 1.597 | 1.328 1.658 | 1273 1.722| 1.218 1.789
40 | 1442 1.544 | 1,391 1.600 | 1.338 1.659 | 1.285 1.721 [ 1.230 1.786

45 [ 1475 1.566 | 1430 1.615| 1.383 1,666 | 1.336 1.720 | 1.287 1.776
50 | 1.503 1.585| 1462 1.628 | 1.421 1.674 | 1.378 1.721| 1.33§8 L.77I
55 | 1.528 1.601 | 1.490 1.641 | 1.452 1,681 | 1414 1724 1.374 1.768
60 | 1.549 1.616|1.514 1652|1480 1,689 | L444 1727 [ 1408 1.767
65 | 1.567 1.629 | 1.536 1.662 | 1.503 1.696 | 1471 1.731 | 1438 1.767
70 | 1.583 1.64]1 | 1.554 1.672|1.525 1,703 | 1.494 L1735 L464 1.768
75 | 1.598 1.652 1 1.571 1.680 | 1.543 1.709 | 1.515 1.739 | 1487 1.770
80 | 1,611 1.662 ]| 1586 1688 (1560 1.715| 1.534 1.743 | 1L.507 1.772
85 | 1.624 1671 | 1.600 1.696| 1.575 1.721 | L.550 L1747 L.525 1.774
904 1.635 1679|1612 1.703 | 1.589 1.726 | 1.566 1.751 | 1.542 -1.776
95 | 1.645 1.687 | 1.623 1.709 | 1.602 1.732 | 1.579 1755 | 1.557 1778
100 | 1.654 1694|1634 1.715| 1.613 1.736 | 1.592 1.758 | 1.571 1.780
150 | 1.720 1.746 | 1.706 1.760 | 1.693 1.774 | 1.679 1.788 | 1.665 1.802
200 | 1.758 1778 | 1.748 1789 1.738 1.799 | 1.728 1.810 | 1.718 1.820]

Source:

Durbin, J. and G. S. Watson, 1951, Testing for Serial Correlation in Least Squares
Regression, Biometrika 30, pp. 158—178.
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Appendix II: US National Accounts 1929 to 1972

Toizl

Gross

Na-

tional Gro:s Privete

Prod- Disposeble  personal Consumption Governmens P
Year et dncome. Expenditures Domestic Investmens  EXporis  Imports md.:‘:f‘::: it
1929 203.6 150.6 139.6 40.4 11.8 10.3 2.0
1930 183.5 139.0 130.4 27.4 10.4 9.0 2¢.3
1931 169.3 113.7 126.1 16.9 8.9 7.9 5,4
1932 144.2 1ns.1 114.8 4.7 7.1 6.6 24.2
1933 141.5 112.2 112.8 5.3 7.1 741 233
1934 134 120.4 113.1 9.4 7.3 7.1 16.6
1935 169.5 131.8 125.5 10.0 7.7 0.7 27.0
1936 193.0 140.4 138.4 24.0 8.2 9.3 3.5
1937 203.2 153.1 143.1 29.9 9.8 10.5 30.1
1918 192.9 143.6 140.2 17.0 9.9 8.0 3.9
1939 209.4 155.9 148.2 24.7 10.0 .7 18,2
1940 127.2 166.1 155.7 13.0 1.9 5.9 16.4
1941 263.7 190.3 165.4 41.6 1.2 10.8 56.1
142 2978 211.4 161.4 21.4 7.8 9.9 7.1
1943 337.1 1.8 165.0 12.7 6.0 12.6 164.4
1944 361.3 1.6 171 .4 14.0 7.6 13.4 181.7
1945 355.2 29.7 14).0 19.6 10.2 11.9 155.4
16 2.6 n1.0 201.5 52.3 19.6 1.2 4B.4
1947  309.9 218.0 206.3 51.5 .6 10.3 19.5
1948 3.7 29.8 210.8 60.4 131 12.0 46.1
1949 324.1 a10.8 216.5 48.0 18.1 1.7 53.1
1950  15%.1 249.6 2303 6.3 16.3 13.6 53.8
1951 381.4 185.7 232.8 70.0 19.3 14.1 75.4
1952 1951 83.3 239 .4 .5 18.2 15.2 92.1
1953 4118 275.4 250.8 61.2 17.8 16.7 99.8
1954  407.0 178.3 255.7 9.4 i5.8 15.8 88.9
1955  438.0 296.7 3742 75.4 20.9 17.7 85.2
1956  446.1 309.3 201 .4 74.3 24.2 19.1 BS.3
1957  451.% i13.8 289.2 68.8 26.1 19.9 £9.3
1958 447.3 ja.s 290.1 60.9 2.1 20.9 94.2
1959  475.9 131.0 307.3 73.6 23.8 23.5 94.7
1960  487.7 340.2 316.1 72.4 1.3 23.0 94.9
1961  497.2 1%0.7 m.s 6.0 28.0 n9 100.5
1962 9.0 157.3 135 .4 9.4 30.0 23.3 107.5
1963 $31.0 181.3 153.3 62.5 1.1 26.6 109.6
1964  SB1.) 407.9 ma 87.8 36.5 28.2 1.2
1963 617.8 413.0 197.7 9.2 37.4 3.2 114.7
1966  €38.1 458.9 418.1 109.3 40.2 6.1 126.5
1967  675.2 471.% 430.1 101.2 42.1 3B.5 140.2
1968  706.6 493.0 452.7 105.2 45.7 4.7 147.7
1960 T728.6 511.6 4691 110.5 48.4 48.3 145.9
1970 7221 31.2 477.0 I04.0 52.2 0.0 139.0
1971 741.7 354.7 495.4 108.6 5.6 5.8 131.6
1972 789.7 §18.7 524.8 123.8 56.9 $8.7 142.9

Source:

Michael Lovell, M, 1975, Macroeconomics, Measurement, Theory, and Policy, Wiley.
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1. Non-linear Models

In some situations it is not possible to model a linear relationship among the dependent
variables y and one or more of the independent x variables. The plot of residuals will
continue to exhibit some kind of curvature. In such a case we can set up either a polynomial
model or some kind nonlinear or transformed model.

1.1. Polynomial Models
The one-variable polynomial regression or quadratic model is given by:

y=pp+pix +ﬁ2X2 +,33x3+ N o/ A

where m is the degree of the polynomial - the highest power of X appearing in the equation.
The degree of the polynomial is the order of the model. The model is easily estimated by
Excel by transformation of x. Some forms of this model are given in the illustration below:

Hllustrations of Models of Polynomial Order Two and Three

Y Y

A A
y=b,+bX

y=by +bX +b,X?
. (b, <0)

v
v

X] Xl

1.2. Simple Types of Non-Linear Models Estimated by Excel

The “add trend line function” in Excel lists several possible transformations for the simple
regression model. Let us consider an example.

The table on the next page shows a relation between the average hourly wages obtained by
Masters of Economics by seniority, i.e. the number of years since graduation. As visible a
non linear relation is present. A decreasing behavior in time is observed. What kind of
relation should be used in order to estimate this model properly?



Wage Hourly wage by senority 1997
Senority DKK  Ln(senority) Ln(Wage)
1 189 0,000 5,242 450 -
2 194 0,693 5,268 Wage rate DKK
3 210 1,099 5,347 400 1
4 225 1,386 5,416 150 4
5 248 1,609 5513 200 |
6 255 1,792 5,541
7 281 1,946 5,638 250
8 299 2,079 5,700 200 -
9 320 2,197 5,768
10 327 2,303 5,790 150 1
11 391 2,398 5,969 100
12 371 2,485 5916 o |
13 341 2,565 5,832 B Years
14 394 2,639 5,976 !
15 357 2,708 5,878 1 2 3 4 5 6 7 & 9 10 11/ 14 15 18
16 414 2,773 6,026 /,
Use the “add trendline” and “power function” to obtain: e

Use “options” to mark
“show equation”

for

and “show R?”.

Add Trendline %] Source Data...

~Trend/Regression type

Options I

Add Trendline...
Clear

Linear

=

Logarithmic

Place the mouse on an

f\tg = observation and right

Palynomial click. Then the menu

@)ove appears.

J

Fower Exponential Moving Average
Based on geries:
-
=

oK I Cancel

We then obtain the following:

Hourly wage by senority 1997

TWages rate DKK

y = 159,9x"%1%#
R?=0,9026

Years

1 2 3 4 5 6 7 & & 10 11 12 13 14 15 186

Hourly wage by senority 1997

Twage rate Dxx

y=15,091x + 172,73
150 1 R* = 0,9266

Years

1 2 3 4 5 8 7 & &% 10 11 12 13 14 15 18




For comparison purpose the linear trend line is also considered. Although the coefficient of
determination is the highest for the linear model this will be insufficient for forecasting
purposes. So the power functional form is selected in order to provide the most efficient
model to explain the evolution of the hourly wage rate.

1.3. Other Transformations

Let us consider some cases where a non-linear model may be changed to a linear model by
use of an appropriate transformation. Most models that can be transformed to linear models
are called intrinsically linear models.

Consider first the multiplicative model:
y= ﬂoxl xz xs

This is a multiplicative model of three variables x;, x, and x; with multiplicative errors.
Assuming this behavior for the errors the model we are examining the Cobb-Douglas
production function for three variables for example labor, capital and human capital. We can
transform this model to a linear regression model by use of a logarithmic transformation.
Taking natural logs (sometimes denoted by In) of both sides of the equation gives the
following linear model

logy =4, + plogx, + B,logx, + B, logx, + loge
Notice that the usual assumptions with regard to the errors are valid, so initially the errors
are not additive. If this was the case the model would not be an intrinsically linear model. In
Excel we can take the natural logarithm by insert/function/In. This results in a statement
“=In(cell)”, and then copy.

Next consider the exponential model. For example, an exponential model in two
independent variables can be stated as

y= PP+ Paxe o

Taking the natural logs of both sides gives us the following regression model:
logy =g, + B, logx, + S, logx, + log e

Let us now move to a more straight forward non-linear model. Consider the logarithmic
model:

y=p0+plogx+e



We can linearized by substituting the variable x’=logx into the equation. This gives us the
linear model inx':

y=p+px +¢

Another nonlinear model that may be linearized by an appropriate transformation is the
reciprocal model. A reciprocal model in several variables can be stated as:

1

Bo+ B+ Boxy + Poxy + €

y

This model becomes a linear model upon taking the reciprocals of both sides of the
equation. In practical terms, we run a regression of 1/y versus the x; variables unchanged.

1.4. Variance Stabilizing Transformations

Remember that one of the assumptions of the regression model is that the regression errors ¢
has equal variance. If the variance of the errors increases or decreases as one or more of the
independent variables changes, we have the problem of heteroscedasticity. In this case our
regression coefficient estimators are not efficient. This violation of the regression
assumptions may sometimes be corrected by use of a transformation. We will consider three
major transformations of the dependent variable y to correct for heteroscedasticity.

1. The square root transformation: ' =./y
This is the last “severe” transformation. It is useful when the variance of the

regression errors is approximately proportional to the mean of y, conditional on the
values on the independent variables x;.

2. The logarithmic transformation: ' =log y (by any base)

This is a transformation of a stronger nature and is useful when the variance of the
errors is approximately proportional to the square of the conditional mean of y.

3. The reciprocal transformation: y'=1/y
This is the most severe of the three transformations and is required when the
violation of equal variance is serious. This transformation of the errors is useful when
the variance of the errors is approximately proportional to the conditional mean of y
to the fourth power.



2. Modeling the US Electricity Supply

The article Returns to Scale in Electricity Supply by Marc Nerlove uses the model outlined
in Section 1.3, and investigates for economics of scale in the US electricity sector vintage
1955. This is a classic article in econometrics. Nerlove uses a cross-section data set covering
145 privately owned electricity plants.

This issue of returns to scale has important bearing on the institutional arrangements
necessary to secure an optimal allocation of resources. About 80 % of the electricity supply
is supplied by private owned firms. A special problem with the production of electricity is
that power cannot be stored.

The model considered for the production that determines supply has the form:

¢ = total production costs
y = output (measured in kwh)

x; = labor input p; = wage rate
x, = capital input p> = “price” of capital
x3 = fuel input p3 = price of fuel

¢ = a residual explaining neutral variations in efficiency of the firms

The generalized Cobb-Douglas production function can be stated as:

y=Poxi*xy xe (1)
Minimization of costs implies:
C=PiXy + PrXy + P3Xg (2)

Solution to the system of (2) minimized subject to (1) implies the marginal productivity
conditions™:

PiXy _ PaXy _ P33

B B B (3)

However, if the efficiency of firms varies neutrally, as indicated by the error term in (1), and
input prices varies from firm to firm, then the levels of input are not determined
independently but are determined jointly by use of the firm’s efficiency, level of output, and
the factor prices it must pay to labor, capital and fuel.

! The solution to this problem can be found in a standard textbook on Microeconomics. For the mathematical
description of this function see for example lan Jacques Mathematics, sixth edition, FT Prentice Hall, pages 169 and
394. This is the textbook used in Tools for Quantitative Analyses I.



This problem of identification is known as the confluent relation problem. However, it is
possible to fit the reduced form of the system of equations such as (1) and (3) and derive
estimates of the structural parameters from estimated of the reduced form parameters. An
important reduced form turns out to be the cost function:

C:kyl/;‘plﬁ1/rp2ﬁz/rpf3/r v (4)
where
k= ’”(ﬂoﬂlﬂlﬁz *ps° )71” (5)
_ -l
Ve ©)
and
r=p+ B+ B (7)

In our case & is a parameter measuring the level of technology imboided in the components
of the cost function. Further, v is the monotonic transformation of the residuals ¢.

The most important parameter is » measuring the degree of returns to scale. If » > I there
are increasing returns to scale (IRS); if » = I there are constant returns to scale (CRS), and if
r < I there are decreasing returns to scale (DRS).

A production function that is appropriate for estimation can now be stated as:

C:K+EY+ﬁP1+&P2+&P3+E (8)
r r r r

where capital letters denote logarithms (/n) of the corresponding lower case letters. Note

that under the special case with constant returns to scale »=17 and the estimates of the f’s

give the correct estimates of the model.

The model (8) is called the unrestricted model. Here it will be called MODEL 1. How do
we incorporate the restriction that the coefficients of the prices of the inputs add up to one?
This can be done for example by dividing costs and two of the prices by the remaining
price?. When fuel price is used as the divisor, the result is:

C-n=K+rv+lp-p)+ L)+ @)
r r r

This is called MODEL I1.

2 It does not matter either economically or statistically which price is chosen.



The two first models assumes that the relevant “price” of capital is available and that this
price varies significantly from firm to firm. In reality most firms will finance its production
plant by loans at the market interest rate. In such case the price of capital is the same for all
firms. Incorporation of this assumption leave us with MODEL I11:

* bp B
C=K +rY+ ~Zip 3P+E (10)

ﬂz
*
where K*=K+==

The Excel file in Blackboard called US Electricity Supply Nerlove.xlsx brings the data.
Estimate by yourself and confirm my findings.

For MODEL | we obtain:

MODEL |
Regression Statistics
Multiple R 0.96
R-squared 0.93
Adjusted R-square 0.92
Standard Error 0.39
Observations 145
ANOVA
df SS MS F-test P-value

Regression 4 269.42 67.35 437.79 0.00
Residual 140 21.54 0.15
Sum 144 290.95

Coef St error t-stat P-value  low 95% high 95%
Constant -3.51 1.77 -1.98 0.05 -7.01 0.00
InY (output) 0.72 0.02 41.25 0.00 0.69 0.75
InW (wages) 0.43 0.29 1.49 0.14 -0.14 1.01
InQ (fuel) 0.43 0.10 4.25 0.00 0.23 0.62
InR (capital) -0.22 0.34 -0.66 0.51 -0.89 0.45

This is pretty good. The estimated coefficients of wages and especially capital are not
significant. Looking at the coefficients then the sum of the three coefficients is equal to 0.64
(0.43 + 0.43 - 0.22). This could indicate decreasing returns to scale, but not all variables are
significant, so we are not able to judge.

The plots of residuals are fairly good, and can be found on the next page:



InY Residuals plot Resid
2 - S 2 -
1 - ® o0 esid 1 -
L g ‘ ®
0 -+ 0
1 p 20 M 8 10 1 2_0
-2 - Iny 2 InQ
Resid InW Residuals plot Resid InR Residuals plot
2 ;
$ 2 %
1- * o 1 - ®
IS L ¢ *
0 -~ b4 ‘ > 0 - ¢ ' 5 ¥
0la 0% ! . 0.9 48 5 €2l 5.6
-1 - L 2 -1 - 2
2 InW 2 InR

The most critical of the plots of residuals is the plot of the logarithm of the output. This
issue is also considered in the illustration on page 179 and page 182 in the article. It is clear
that the model is not true. It looks as there are great diversity among the suppliers with low
output. An explanation on this issue could be that the small firms experience decreasing
returns to scale, whereas the large firms experience increasing returns to scale.

Next turn to the result for MODEL I1. Our data needs here some additional calculations
because the logarithm of the price of fuel has to be subtracted from the other variables. The
following output is obtained:

MODEL I1

Regression Statistics
Multiple R 0.97
R-squared 0.93
Adjusted R-square 0.93
Standard Error 0.39
Observations 145
ANOVA

df SS MS F-test P-value

Regression 3 294.58 98.19 640.10 0.00
Residual 141 21.63 0.15
Sum 144 316.21




Coef St error t-stat P-value  low 95% high 95%

Constant -4.69 0.88 -5.30 0.00 -6.44 -2.94
InY* (output) 0.72 0.02 41.34 0.00 0.69 0.76
INW* (wages) 0.59 0.20 2.90 0.00 0.19 1.00
InR* (capital) -0.01 0.19 -0.04 0.97 -0.38 0.37

Although appealing from a theoretical point of view this model is not performing
satisfactory. First, the coefficients do not sum to unity, and second there is still the problem
with the coefficient of the capital stock.

A solution could be to leave out the capital stock, but then with only two input variables the
restriction does not give a meaning.

This suggests that we estimate MODEL 111 leaving out the capital variable. The result is:

MODEL 111
Regression Statistics
Multiple R 0.96
R-squared 0.93
Adjusted R-square 0.92
Standard Error 0.39
Observations 145
ANOVA
df SS MS F-test P-value

Regression 3 269.35 89.78 585.93 0.00
Residual 141 21.61 0.15
Sum 144 290.95

Coef St error t-stat P-value  low 95% high 95%
Constant -4.65 0.34 -13.57 0.00 -5.33 -3.97
InY (output) 0.72 0.02 41.43 0.00 0.69 0.76
InW (wages) 0.48 0.28 1.70 0.09 -0.08 1.04
InQ (fuel) 0.41 0.10 4.21 0.00 0.22 0.61

This model is performing better! The only concern is that the coefficient of the wage
variable is only weak significant. Taking into consideration the confidence intervals of the
coefficients it is not possible to determine the degree of returns to scale, but overall it seems
to be close to unity.
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Finally, let us take size into consideration. In the data set the firms are sorted according to
output size and divided into five groups.

First the overall performance by group is considered.

Comparison Overall Regression

Group A GroupB GroupC GroupD GroupE

Multiple R 0.69 0.82 0.80 0.94 0.97
R-squared 0.47 0.67 0.65 0.88 0.93
Adjusted R-square 0.41 0.63 0.61 0.87 0.93
Standard Error 0.59 0.22 0.18 0.12 0.15
Observations 29 29 29 29 29

The table confirms the view that the model fits better for the larger plants. Turning to the
coefficients the following results are obtained:

Comparison of coefficients

Group A Group B Group C Group D Group E

Coef  Sig Coef Sig Coef Sig Coef Sig Coef Sig
Constant -3.14 ** -4,12 *** -6.03 *** -6.14 *** -8.07 ***
InY (output) 0.39 *** 0.66 *** 0.99 *** 0.93 *** 1.04 ***
InW (wages) -0.02 -0.40 -0.02 0.33 0.70 **
InQ (fuel) 0.42 0.49 *** 0.33 ** 0.43 ** 0.64 ***

Note: *** significant at the 1 % level; ** significant at the 5 % level; * significant at the 10 % level

The model for the small plants only performs good with regard to output. Especially the
wage rate is only significant for the larger plants. Notice, also that the sum of the
coefficients of the input variables increases as the size of the plants increases. This indicates
clearly economics of scale as the plant size increases. See also figure 2 in Nerlove page 180
displayed on the next page.
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1. Introduction

The present set of notes deals with time series modeling related to tourism. There is a wide
literature on tourism and statistical estimation of issues related to tourism. The literature can
divided into 3 themes: First, modeling of seasonal fluctuations, and secondly modeling
tourism demand. In both cases, the estimates very frequently are used to forecast the future
demand. Finally, various kinds of marketing analyses are used in order to identify the
segments the market.

2. Working with Seasonality and Dummy Variables

An important issue in tourism economics is seasonality. The reason is obvious. The season
peaks in different periods over the year, and consequently labour demand and the incomes
varies accordingly. For example in Denmark, tourism demand is peaking during the
summer, whereas the winter is the off season. In Norway, the seasonal pattern is different
with a peak in February as well as in July. This is due to the winter ski season.

Considered over a year monthly tourist arrivals in Denmark looks very much like the curve
of the normal distribution. See the examples below.

Bays-Ballot plots of hotel nights for the county of Bornholm, all nationalities
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Source: Sorensen (1999)

A Bays-Ballot is a diagram is showing the fluctuations per year at the seasonal frequencies
1.e. quarterly, monthly or weekly observations. The plot to the left displays the seasonal
pattern of the island of Bornholm located in the Baltic Sea, whereas the panel to the right
shows the seasonal pattern for all nationalities of hotel nights for the total of Denmark.
Observe the very stable pattern. Nothing is happening outside the season. Also here the



seasonal pattern is very stable. Of course, the tourism authorities do all what they can to
change this seasonal pattern and enlarge the season by developing new activities etc.

How can we model the seasonal pattern of tourism, and how can we use statistics to test for
the effect of the tourism policy? Let us first turn to the nature of seasonality.

In statistics we deal with two types of seasonality, namely deterministic and stochastic
seasonality.

e Deterministic seasonality is predetermined and constant from year to year. The
seasonal pattern is constant and will not move.

e Stochastic seasonality is changing, but based on an underlying trend. If stochastic
seasonality is present then we say that a unit root is present in the data series.

In both cases we can set up a regression and perform a test for an investigation of the type
of seasonality. We consider quarterly data in the following examples'. The calculations can
be found in the Excel file Example Dummy Seasonal.xls. Try to go though the steps by
yourself.

2.1. Deterministic Seasonality

Dummy variables are used to model deterministic seasonality. Let us for a given variable y
consider a situation with deterministic seasonality. A dummy variable can take either the
value zero or one.

In time series analysis we use not adjusted seasonal statistics at the quarterly frequency for
example. If seasonality is of deferministic nature we can set up the following model:

v, =By + BD + B,D, + BD; + ¢,

where D; =1 in quarter 1 and 0 otherwise
D, =1 in quarter 2 and 0 otherwise
Dj; =1 in quarter 3 and 0 otherwise

Notice that in this case only three dummy variables are required to represent four seasons.
In this formulation f; shows the extent to which the expected value of y in the first quarter
differs from the expected value in the fourth quarter, the omitted condition. f; and S, can be
interpreted similarly. Alternatively we can use 4 dummies and exclude the constant term.

We can then observe the p-values (t-tests) in the Excel output and examine the effect of
seasonality. This approach was applied by Barsky and Miron (1989).

' The set up can be expanded to monthly or bimonthly data as well, but complexity increases.



Example

We consider a quarterly data set of turnovers from renting Danish holiday cottages ranging
from 1994.4 to 2000.1. So we only have 22 observations. Consequently, the data set can
only serve as an illustration.

10000,0 Vill DKK
9000,0 15,0
8000,0
7000,0
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5000,0 00

4000,0
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1000,0 4
-15,0
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1994:4 1995:4 1996:4 1997:4 1998:4 1999:4 -20,0 - Year

Data are shown below with the seasonal dummies. The graph to the left shows the raw data,
whereas the graph to the right shows the fourth difference change in percent i.e.
((vi—vi—4)/v) *100. 1t is observed that a seasonal behavior is surely present in the data set
with a summer peak in the third quarter followed by a winter slump. The seasonal behavior
is preserved when calculation the percentage change, but the series becomes stationary
around zero.

Data set

Year Y: Mill DKK Q: Q, Qs Q, D,
1994:4 1,837.8 0 0 0 1

1995:1 1,184.4 1 0 0 0

1995:2 4,831.6 0 1 0 0

1995:3 8,992.9 0 0 1 0

1995:4 1,879.7 0 0 0 1 23
1996:1 1,354.7 1 0 0 0 14.4
1996:2 42845 0 1 0 0 -13
1996:3 9,207.6 0 0 1 0 2.4
1996:4 2,174.7 0 0 0 1 1.,7
1997:1 1,345.2 1 0 0 0 0.7
1997:2 3,849.7 0 1 0 0 -10.1
1997:3 8,987.9 0 0 1 0 2.4
1997:4 2,267.8 0 0 0 1 43
1998:1 1,196.0 1 0 0 0 -11.1
1998:2 3,972.4 0 1 0 0 3.2
1998:3 9,040.1 0 0 1 0 0.6
1998:4 2,384.6 0 0 0 1 52
1999:1 1,180.0 1 0 0 0 -13
1999:2 4,197.8 0 1 0 0 5.7
1999:3 7,642.2 0 0 1 0 -15.5
1999:4 2,270.2 0 0 0 1 4.8
2000:1 1,029.7 1 0 0 0 -12.7




Let us now perform the regression:

V=B + O+ B0, + 05 + ¢

(Notice we have omitted Q, because the constant term is included). We obtain:

Regression Statistics

Multiple R 0.99
R Square 0.99
Adjusted R Square 0.98
Standard Error 375.42
Observations 22
ANOVA
df SS MS F-test Signif. F
Regression 3 181,229,715.82 60,409,905.27 428.62 0.00
Residual 18 2,536,955.83 140,941.99
Total 21 183,766,671.65
Standard

Coefficients Error t Stat P-value  Lower 95% Upper 95%
Intercept 2,135.80 153.27 13.94 0.00 1,813.80  2,457.80
Q1 -920.80 216.75 -4.25 0.00 -1,376.18 -465.42
Q2 2,091.40 227.33 9.20 0.00 1,613.80  2,569.00
Q3 6,638.34 227.33 29.20 0.00 6,160.74 7,115.94

We observe a peak in the third quarter as expected a negative coefficient in the first quarter
as expected. In general, this model performs very well, and here seasonality is deterministic
of nature. A graph of the coefficients of the regression shows the seasonal behaviour:

Mill. DKK Seasonality Tourism Denmark 1995:4 to 2000:1
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The problem with this model is that data may be non-stationary, and have autocorrelation. If
this is the case (I did not check it) then we should use the differenced series instead. The
model is then:



D, = ﬁo + ﬁ1Q1 + ﬁzQz + ﬂ3Q3 + ¢,

By running this regression we obtain:

Regression Statistics

Multiple R 0.40
R Square 0.16
Adjusted R Square -0.02
Standard Error 8.92
Observations 18
ANOVA
df SS MS F Signif. F
Regression 3 208.85 69.62 0.87 0.48
Residual 14 1,114.31 79.59
Total 17 1323.16
Standard

Coefficients Error t Stat P-value  Lower 95% Upper 95%
Intercept 4.52 3.99 1.13 0.28 -4.04 13.08
Ql -6.82 5.64 -1.21 0.25 -18.92 5.28
Q2 -7.67 5.98 -1.28 0.22 -20.51 5.16
Q3 -8.24 5.98 -1.38 0.19 -21.08 4.59

This result is not satisfactory because we do not find significant parameters. If this model is
the true one then the nature of the seasonality is not deterministic. Instead it could be
stochastic. We examine for this in the next Section.



2.2. Stochastic Seasonality

During the 1980’ties a new trend emerged in time series analysis or econometrics
introduced by Clive Granger and Robert F. Engle. They argued that in a statistical sense
data series may be attracted by each other. If this is the case then the series will
cointegrated”.

Consider for example Keynesian consumption theory arguing that consumption is a function
of disposal income. If this is true then the fluctuations in consumption and disposal income
should be highly correlated.

Normally, we remove the trend from a data series by taking the first order difference. This is
the percentage change. If a data series has this property it is said to be integrated of order
one. If consumption and income at the annual level both are integrated of order one then
they will be attracted by each other and the difference among the two series will result in
only white noise. If this is true cointegration will prevail. This information can be used to
model their long run relation. A model along these lines will be considered in Section 3.

This theory can be extended to seasonal data. This case is more complex because we have
an increased number of observations, and because seasonal statistics usual has as specific
seasonal pattern. As a consequence, we only consider the issue of integration, and we only
consider quarterly statistics and leave away the monthly case.

Hylleberg et.al. (1990) hereafter HEGY developed a test for the examination of seasonal
integration. They wanted to examine for stochastic seasonality.

Stochastic seasonality will be present if we observe that over time there will be stochastic
fluctuations around a given pattern. If this is the case then we say that a seasonal unit root is
observed.

When a seasonal unit root is observed this information should be taken into account when a
statistical model for forecasting purposes is set up. This model should then be better than the

model with deterministic seasonal dummies presented in the previous section.

We can test for stochastic seasonality by running the following regression also called the
“HEGY-regression’:

Var =By + By + Boyoia ¥ BiVain + Biys T &

The auxiliary variables are defined as:

* In 2003 they received the Nobel Prize in economics for their work on cointegration. Clive Granger passed away in
2009. Both Clive Granger and Robert F. Engle has/had close relations to an econometric group in Denmark at the
University of Aarhus.



V=Yt Yot Yoty annual frequency
V2== =Y+ Y = Vi)
Vi==, = ¥Y>)

Ya =DV = Via

biannual frequency
1 and 3rd frequency

These transformations works like filters and remove all other variation then the one being
tested. As the transformations are linked to the f’s the investigation for stochastic
seasonality is linked to the t-test of the significance of the coefficients.

The “t-test” is then performed on the £’s. Here:

[; 1s the annual frequency (annual)

[ is the biannual frequency (second quarter)
B 1s the first seasonal frequency (first quarter)
[, 1s the third seasonal frequency (third quarter)

The hypotheses are:

Hy: If p; = 0 stochastic seasonality is present (seasonal unit root)
H;: If §; # 0 stochastic seasonality is not present (no seasonal unit root)

Then the tests are as t-tests. The critical values for the test are unfortunately not standard.
We cannot apply a normal distribution or a t-distribution. We can set up the following table
for some of the critical values assuming a level of significance equal 5 %:

Sample size ﬂ] ﬂg ﬂ3 ﬁ4
Observations: Years:
48 12 -2.96 -1.95 -1.90 -1.72
100 25 —2.88 -1.95 -1.90 —1.68
136 34 —2.89 -1.91 —1.88 —1.68
200 50 —2.87 —1.92 —1.90 —1.66

The interpretation of the critical values is as follows: If we for example have a sample with

B

100 observations (or around) and we estimate the t-statistic of f; to equal —1.80 i.e ———.

s(B)

Then —1.80 > —2.88 and we accept Hj so stochastic seasonality is present.

The critical values are taken from Hylleberg et.al. (1990). The test can be extended to the
monthly case. For an analysis of tourism data with HEGY tests for Australia on quarterly
data see Kim (1999). For an analysis on monthly tourism data by use of the HEGY test see
Serensen (1999). Critical values for tests at the quarterly, bimonthly and monthly frequency
can be found in Fransens and Hobijn (1997). References are found at the end of this section.



Example

Let us look at the data set from the example above. The result on the differenced data was
not convincing. Alternatively, the seasonal movements could be of stochastic nature. Again
we use the data series Y: Mill DKK. We apply the formulas above on this series, and
calculate the auxiliary variables. These are shown below at the left panel. As seen from the
regression formula some additional lagging of the variables are needed. This task is

undertaken in the data set shown to the right side.

Data set
Year Y4 Y, Y, Y3 Y, Yot Yo Yo Yarl
1994:4
1995:1
1995:2
1995:3
1995:4 419 16,888.6 3,466.0 2,951.9 419
1996:1 170.3 17,058.9 -3,636.3 7,638.2 170.3 16,888.6 3,466.0 2,951.9
1996:2 -547.1 16,511.8 4,183.4 -2,404.8 -547.1 17,0589  -3,636.3 2,951.9 7,638.2
1996:3 214.7 16,726.5 -4,398.1 -7,852.9 2147 16,511.8 4,183.4 7,638.2  -2,404.8
1996:4 295.0 17,021.5 4,103.1 2,109.8 295.0 16,726.5 -4,398.1 -2,404.8 -7,852.9
1997:1 9.5 17,012.0 -4,093.6 7,862.4 9.5 17,021.5 4,103.1 -7,852.9 2,109.8
1997:2 -434.8 16,577.2 45284 -1,675.0 -434.8 17,012.0 -4,093.6 2,109.8 7,862.4
1997:3 -219.7 16,357.5  -4308.7 -7,642.7 2197 16,5772 4,5284 17,8624 -1,675.0
1997:4 93.1 16,450.6 42156  1,581.9 93.1 16,3575 -4,308.7 -1,675.0 -7,642.7
1998:1 -149.2 16,301.4 -4,066.4 7,791.9 -149.2  16,450.6 4215.6 -7,642.7 1,581.9
1998:2 122.7 16,424.1 3943.7 -1,704.6 122.7 16,3014 -4,066.4 1,581.9 7,791.9
1998:3 52.2 16,476.3 -3,9959  -7,844.1 522 16,424.1 3,943.7 7,7919  -1,704.6
1998:4 116.8 16,593.1 3,879.1 1,587.8 116.8 16,4763 -3,9959 -1,704.6 -7,844.1
1999:1 -16.0 16,577.1 -3,863.1 7,860.1 -16.0 16,593.1 3,879.1 -7,844.1 1,587.8
1999:2 225.4 16,802.5 3,637.7 -1,813.2 2254  16,577.1 -3,863.1 1,587.8 7,860.1
1999:3 -1,397.9 15,404.6  -22398 -6,4622| -1,3979 16,802.5 3,637.7  7,860.1 -1,813.2
1999:4 -114.4 15,2902 23542  1,927.6 -1144 154046 -22398 -1,813.2 -6,462.2
2000:1 -150.3 15,139.9 -2,203.9 6,612.5 -150.3  15,290.2 23542  -6,462.2 1,927.6

First we graph the variables Y, to Y, on the left side data set
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These plots are instructive (actually, I think that these transformations are the most
informative and valuable part of the analysis). The upper left panel on page 9 reveals that
the underlying annual trend actually is negative. The upper right panel on page 9 shows the
biannual fluctuations. It shows really decreasing amplitude since 1997. The lower left panel
above giving us the first and third quarter fluctuations shows also slightly decreasing
amplitude. We should then expect varying amplitude at the biannual frequency, but
probably not at the other seasonal frequencies. Finally, the transformation Y4 should show

no systematic behaviour. This is surely the case here.

Next step 1s to perform the regression in Excel on the right side data set. The result is:

Result HEGY test

Regression Statistics

Multiple R 0.43
R Square 0.18
Adjusted R Square 0.11
Standard Error 434.45
Observations 16
ANOVA
df SS MS F Signif. F
Regression 4 466,687.00 116,671.75 0.62 0.66
Residual 11 2,076,215.45 188,746.86
Total 15 2,542,902.46
Standard Critical
Coefficients Error t Stat HEGY
Intercept 1480.51 3984.27 0.37
Y1 (t-1) -0.10 0.24 -0.40 —2.96 Hj accepted
Y2 (t-1) -0.02 0.03 -0.81 —-1.95 Hpy accepted
Y3 (t-2) -0.02 0.02 -0.96 —1.90 Hpy accepted
Y3 (t-1) -0.01 0.02 -0.52 —1.72 H, accepted

We use the critical values for 48 observations. This

values will properly be lower.
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Notice that we have changed output a little. We have left out the lower and upper 95 %
values and the p-value. Instead the critical values from table above are inserted. In general,
we accept Hy so a varying and changing seasonal component is found. However, our result
should be written with care because of the very little sample we use.

This explains why the deterministic model above based on differenced data performs so
poor. If we use the dummy variable approach we should use the non-transformed data only.

If we use differenced data a more complex model is required. We cannot use the regression
for the test. As evident from the regression output the overall performance of the “HEGY-
test regression” is poor, so something else should be applied.

References

Nils Karl Serensen, 1999, Modelling the Seasonality of Hotel Nights in Denmark by County
and Nationality. Tourism Economics 5, 9-23

Jae H. Kim, 1999, Forecasting Monthly Tourist Departures from Australia. Tourism
Economics 5, 277-291.

Svend Hylleberg, Robert F. Engle, Clive Granger and Sam Yoo, 1990, Seasonal Integration
and Cointegration. Journal of Econometrics 44, 215-238.

Svend Hylleberg, Nils Karl Serensen and Clara Jergensen, 1993, Seasonality in
Macroeconomic Time Series. Empirical Economics 18, 321-335.

Phillip Hans Fransens and Bart Hobijn, 1997, Critical Values for Unit Root Test in Seasonal
Time Series. Journal of Applied Statistics 27, 25-47.

Robert Barsky and Jeff Miron, 1989, The Seasonal Cycle and the Business Cycle. Journal of
Political Economy 97, 503-534.

3. Introduction to Tourism Demand Analysis

For tourist organisations it is relevant to establish models for demand related to tourism.
Apart from attractions the tourist demand for a certain destination can depend on for
example the price level on the destination and the income in the home country of the tourist.
If the currency exchange rate is low then demand is high. If income in the home land is high
then the demand for holiday travels is high. Finally, extreme variations in prices of for
example oil can influence transport costs and tourism.
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The most commonly used functional form in tourism demand analysis is the power model.
This can be expressed as:

_ B pPry BBy 4Ps
0, = BRI PPYPT] A,

Where

o

Q; 1s the quantity of the tourism product demanded in destination i by tourists from
country j

P; is the price of tourism for destination i

Py 1s the price of tourism for substitute destinations

Y; 1s the income in origin country j

T; is consumer tastes in origin country j

Aj; 1s advertising expenditure on tourism by destination i in origin country j

u;; 1s the error term

Oo0Oo0o0oo0oo

The power model has much in common with the Cobb-Douglas production function already
considered. For example it may be transformed into a linear relationship using logarithms.

InQ, =4, + B InF + p,InP + f;InY, + ,InT, + f;In4, + ¢,

In order to estimate a demand relation, notice that it frequently not will be possible to find
statistics for all the variables included. Further, subscript ¢ has to be added for time series
data.

Example: UK visitors to South Korea

To illustrate the model in this section and the two next sections consider a data set on
inbound tourism demand for South Korea by UK visitors. The full analysis can be found on
the file Example ECM-model.xls. Try to go though the steps by yourself.

The total number of tourist arrivals UKTA is used as the dependent variable, and the data are
obtained from the Korea National Tourism Corporation (KNTC). Data cover the period
ranging from 1962 to 1994 (33 observations). Since the tourist arrivals variable includes
both business and leisure travelers, the gross domestic product of UK (UKGDP) is used as
the income variable, rather than personal disposal income.

In addition, to the model outlined above two variables are added. First, in order to reflect the
influence of business activities on tourism demand, a trade volume variable measured by the
sum of total imports and exports between South Korea and the UK is included. This variable
1s labeled UKTV. Second, we include a tourism price variable RCPI defined as:

KCPI, /JUKWEX,

RCPI, =
UKCPI,
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Where KCPI is the South Korean consumer price index; UKWEX is the UK pound versus
Korean won exchange rate, and finally, UKCPI is the UK consumer price index. All at time
t. Defined in this way we should expect a positive relation between RCPI and UKTA.

Restated in the terms of the power model above the variables are defined as:

InUKTA, = 3, + B, InUKGDP, + B, nUKTV, + 8, InRCPI, + ¢,

Or by an alternative notation with capital letters:

LUKTA, = B, + B,LUKGDP, + ,LUKTV, + B,LRCPI, + ¢,

This model also describes the long run behavior of the tourism demand. We shall estimate
the model in the next section.

In order to inspect how the variables are related consider the matrix of correlation:

Matrix of correlation

LUKTA LUKGDP LUKTV  LRCPI

LUKTA 1.00

LUKGDP 0.98 1.00

LUKTV 0.99 0.95 1.00

LRCPI 0.95 0.92 0.94 1.00

The table confirms all our expectations. But all the explanatory variables are also related to
each other so multicollinarity is present. This suggests that the model should be reduced.
This issue will be considered in the next Section
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4. The Error Correction Model

The Neoclassical growth theory developed among other by Robert Solow is (hopefully)
remembered from Macroeconomics’. This model claims that a “long run steady state” rule
of growth will exist.

Using the example considered above it is claimed that over time the relation among for
example hotel nights of UK visitors to for example South Korea will be positively related to

the income level in UK. As wealth (income) increases, an increase in the number of visitors
to South Korea is expected. This can be illustrated as follows:

Long Run Growth Path

UK Visitors to Korea (UKTA)

/ Time

A
<4—— Long run trend, £

Short run variation, ECM

UK Income (UKGDP)

v

So as time goes by, a positive relation should be observed. The ratio among UKTA (UK
Tourist Arrivals in South Korea) and UKGDP (UK income level) should then be a constant
if this long run model is valid, so:

k= UKTA 1 ukTa = B, + BLUKGDP
UKGDP.

where ¢ is time. If we take the logarithm (L), then our model becomes linear, and can be
estimated by OLS, and we can find k.

Engle and Granger (1987) extended this model by pointing out the influence of the short run
fluctuations on the long run evolution, and thereby giving name to the notion of the Error
Correction Model (ECM).

The Solow model has two problems. First, it does not explain how we come from one
equilibrium to another. Therefore, it is static in time and not dynamic. Second, it does not

? See for example the textbook for the course in Macroeconomics by Blanchard, Amighini and Giavazzi chapters 11 to
13.
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explain how short run fluctuations will influence on the long run growth. The ECM-
approach captures this.

Engle and Granger say that the two considered variables (UKTA and UKGDP) atfract each
other. In the short run, we will observe short run fluctuations around the long run trend
given by k. If the model is stable, then the short fluctuations will approach towards the
steady state long run growth rate.

Assume that the short run fluctuations happens immediately one period ahead of the long
run fluctuations. The short run variation is the change in the long run, ie. ALUKTA, where 4
1s the first difference operator ie. the change from year to year. The model is then for our
two variables:

ALUKTA, = py + i ALUKGDPt + 6(LUKTA, ; — 1y —A,LUKGDP,_ ;) + &,
“Short run” “Long run”
The coefficient o is called the error correction term. This form follows after a series of
mathematical manipulations undertaken by Engle and Granger (1987). Finally, g is the

residuals.

This form is not so easy to estimate. Engle and Granger suggest a two-step procedure as
follows:

1. Estimate the long run relation (notice, that this is a reduced version of the model
considered in the last Section):

LUKTA, = Ay + A,LUKGDP, + u,
2. Save the residuals from this regression. Now use them and estimate:
ALUKTA, = By + pIALUKGDP, + du, ; + ¢,
Notice, the lag corresponding to one period on the residuals from the first step regression is

included®. The first relation to be estimated is also called the cointegrating relation.

Example: UK Visitors to South Korea
Again we use the data set on inbound tourism demand for South Korea by UK visitors to
illustrate this model.

* If we used quarterly data, we should lag the residuals by 4 periods and use u, ,. If data were monthly we lag the
residuals by u, ;, etc.
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The long run model is:
LUKTA, = Ay + 2, LUKGDP, + J,LUKTV, + 23LRCPI, + u,
From this regression we save the residuals and estimate the ECM-model:
ALUKTA, = py + B ALUKGDP, + S,ALUKTV, + B;ALRCPI, + ou,_; + ¢,

Let us look at some results from Excel. First the long run relation:

Regression Statistics

Multiple R 0.99
R Square 0.99
Adjusted R Square 0.99
Standard Error 0.11
Observations 33
ANOVA
df SS MS F Signif. F

Regression 3 58.77 19.59  1,735.02 0.00
Residual 29 0.33 0.01
Total 32 59.10

Coefficients Std. Error t Stat P-value Lower 95%  Upper 95%
Intercept -3.32 1.10 -3.01 0.01 -5.57 -1.06
LUKGDP 2.28 0.28 8.09 0.00 1.70 2.86
LUKTV 0.43 0.04 9.99 0.00 0.34 0.52
LRCPI 0.29 0.12 2.51 0.02 0.05 0.53

All signs are positive as expected. The R” is very high because we are working with
logarithmic transformed variables.

From this regression we save the residuals, and use them in the next step. Here we obtain
the ECM-model as:

Regression Statistics

Multiple R 0.72
R Square 0.52
Adjusted R Square 0.45
Standard Error 0.08
Observations 32
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ANOVA

df SS MS F Signif. F

Regression 4 0.198 0,049 7,42 0.00
Residual 27 0.180 0,007
Total 31 0.377

Coefficients Std. Error t Stat P-value Lower 95%  Upper 95%
Intercept 0.056 0.022 2.60 0.02 0.012 0.100
ALUKGDP 0.921 0.415 2.22 0.04 0.069 1.772
ALUKTV 0.272 0.058 4.72 0.00 0.154 0.390
ALRCPI 0.258 0.160 1.61 0.12 -0.071 0.586
Resid(t-1) (ECM-term) -0.508 0.161 -3.16 0.00 -0.839 -0.178

All variables are again significant. Importantly, the RESID, ; (that is the ECM-term) is
significant. Therefore, the adjustment process is actually operating.

The plots of residuals are actually also very good.

ALUKGDP Residual Plot ALUKTV Residual Plot
0,2
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B o, * LAE N +
— >y + ; ; n&*.‘f*
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wif #* ¥ I 3 + '
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5. Time Series Forecasting and Evaluation

This Section addresses the question of time series forecasting. Many different types of time
series modeling can be stated as for example moving average models (ARIMA),
exponential smoothing methods, decomposing models, and models dealing specially with
issues of seasonality. We will leave these models to a course in forecasting or business
econometrics.

Let us for the present purpose just assume that we have estimated a regression model based
on time series statistics (at the annual, quarterly or monthly frequency), and now we want to
use this model for forecasting outside the time period used for the estimation. In such a
situation it is good to have saved some additional observations for post predictive testing.
This is illustrated in the figure below:

Post predictive
period

True evolution

Estimation period

» time

0 t+n t+n+m

We consider two models: I and II. We have to find the model that performs most efficient.
As earlier we can define the forecasting error in the post predictive period for a give point in
time denoted by t ase, =y, — y,. Here y,is the observed value and j,1s the forecasted value
by one of the two different models considered above. For the m observations in the post

predictive period we can calculate the mean absolute deviation or mean absolute error
(MAE) defined as:

MAE = izm

m t=1

&

This gives some kind of an average in absolute terms. For comparison purposes define the
mean absolute percentage error (MAPE) as:
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MAPE =

This is just MAE written in relative terms. Obviously, the model with minimum MAPE
should be chosen. From the figure above this looks to be present for model II. A more
handy measure than the MAPE, is the root mean squared percentage error, RMSPE. It can
be defined as:

2
1 m (C;

RMSPE =|—>" [—j
m =,

The evaluation of this measure is as with the previously measures. Use the model with the
minimum RMSPE.

Example: Forecasting UK Visitors to South Korea

As an illustration consider the data set on UK visitors to South Korea used earlier to set up
the ECM-model. The data period is ranging from 1962 to 1994. How can a model for
forecasting the number of tourist arrivals UKTA best be set up?

First data is divided into sub periods. For example consider the period 1962 to 1990 as the
period of estimation. The period from 1991 to 1994 i.e. 4 years is the post predictive period.
Assume that we want to forecast the non-transformed number of tourist arrivals’. In order to
develop the forecast model we initially present several alternatives. Next the model is
estimated for the estimation period. Then the forecasts of the post predictive period are
calculated. Finally, the measures of evaluation is calculated and compared. The example can
also be found in the file Example Forecasting.xIs.

Consider the following 5 models”:

Model I: Theory based model
Here a demand model is considered of the form:

UKTA, = 8, + BUKGDP, + B,UKTV, + B,RCPI, + ¢,

Here ¢ is time, UKTA is tourist arrivals from UK to South Korea, UKGDP is UK Gross
Domestic Product and UKTV is the trade variable defined as the sum of imports and exports

> This number is arbitrary. The models listed are just what I could come up with! There may be better models or ideas
than mine.



between UK and South Korea. Finally, RCPI is a price variable defined on page 12 in these
notes.

Model II: The Trend Model:
This model is stated as:

UKTA, = B, + BYEAR, + ¢,

Here YEAR is a linear trend defined as: YEAR, = 1962, 1963, 1964, ..., 1994. The model is
completely without any theoretically foundations, and states that the number of tourists
from UK to South Korea wills evolutes linearly over time.

Model 111: A Polynomial Approach
The model states that the number of tourist arrivals depends on UKGDP in a non-linear way
taking UKGDP squared into consideration. The model looks as:

UKTA, = B, + BUKGDP,. + B,UKGDP’ + ¢,

Model 1V: Dynamic Model

This model also considers the UKGDP, but instead of the squared GDP, the lagged GDP is
included. This model states that past income for the last two years has an impact on the
current flow of tourists. This is a consequence of fact that the decision of taking a holiday
trip may take long time. Theoretically this model has its foundations from the theory of
consumption. The model can be written as:

UKTA, = 8, + BUKGDP, + B,UKGDP_, + BUKGDP_, + ¢,

Model V: Moving Average model:

This model takes into consideration the lagged values in the tourist flows from UK to South
Korea for the past two periods. Such a process is also called an MA (Moving Average)
process of order 2. The model claims that the tourist flow can be described by an inertia
process without any theoretical foundations. The model can be written as:

UKTA, = 8, + BUKTA,_, + BUKTA,_, + &,

Common for models IV and V are that the period of estimation is two periods shorter than
for the first 3 models. This is due to the presence of lagged values.

The next step is to estimate the five models from the start until 1990. The results are
summarized in the table next page. The table is build specifically to reduce space and
provide an easy comparison of a large Excel output. Notice, that the overall regression
statistics are located in the bottom of the table.
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Model Performance and Comparisons

Variable MODEL | MODEL 11 MODEL 111 MODEL IV MODEL V
Coef Sig Coef Sig Coef Sig Coef Sig Coef Sig

Constant -10,604  ** 2381754 *** 122861 -45,550 H** 501.11

UKGDP 198.76  ** -761.37  ** 493.79  **

UKTV 8.49 kx*

RCPI -1,849.22

Year / Trend 1,211.19 ***

UKGDP? 9.78 kxk

UKGDP (t-1) 277.85

UKGDP (t-2) 8.91

UKTA (t-1) 0.74 **x

UKTA (t-2) 037 *

Multiple R 0.99 0.94 0.98 0.97 0.99

R-squared 0.98 0.89 0.95 0.94 0.98

Adjusted R-square 0.98 0.89 0.95 0.93 0.98

Standard Error 1,659.56 3,639.18 2,428.14 2,836.78 1,524.84

Observations 29 29 29 27 27

Note: *** significant at the 1 % level; ** significant at the 5 % level; * significant at the 10 % level

The overall statistics gives the smallest values of the standard errors for the models I and
IV. In model I significant values is observed of the income and trade variable. The price
variable RCPI should be excluded. In models II and IIl all explanatory variables are
significant. This suggests that the tourists arrivals can be describes by a polynomial
functional form as well as by a simple trend. According to the standard error model III
outperforms model II. Overall model II is the worst of the models. Out of the dynamic
models model V performs best, and this completely non-theoretical model has the lowest
standard error! The model claims that the present tourism flow is a function of past flows.
As the size of the coefficient decreases in time last year tourist flows has the largest impact
on the present flow. In model IV only the present income has an impact on the flow of
tourists. So there is no time decision element involved in the process.

The next step is to calculate the predicted values of the variable UKTA for the period 1991
to 1994. This is done by substitution of the values of the explanatory variables into the
estimated models. This task is either done manually in Excel or by use of Megastat. In
Megastat under regression there is a special option for this, see the illustration on the next

page.

21



-

Regression Analysis Year | UKTA UKGDP| UKTV | RCPI 2

1962 602 48.89  28.623  0.1268
1988
Input ranges: 1989
1990 36054  100.00 2976.00  0.5618
| 1991 35848  98.04 332036  0.5831
1992 36284  97.52 315972  0.5974
1993 35923 9972 299316  0.7277
| 1994 40999  103.56 3325.29  0.7394 :I Y, Dependent variable Clear

\ Cancel

| Predictor values from spreadsheet cells LI

| | b

¥, Independent variable(s) QK

[ ]

Help

predictor

Mark the X-variables

Options hesuck; (yellow signature) in

85% v | Confidence Level [ Output Resid order to predict Y )
[ Variance Inflation Factors | Diagnostics and Influential Residuals
| standardized Coeffidients (betas) [ Durbin-Watson [ Cook'sD
[v Test Intercept [ Force Zero Intercept | Plot Residuals by Observation
[ Al Possible Regressions [ Plot Residuals by Predicted Y and X
| Stepwise Selection j . e bohn [ Normal Probabity Plot of Residuals

Undertaking this task for our five models results in the predictions by model presented in
the upper part of the table below.

Predictions and Models

Year Obs Model | Model Il  Model 111 Model IV Model V
1991 35848 36002 29734 32246 31534 40095
1992 36284 34508 30945 31647 30736 40545
1993 35923 33290 32156 34217 31660 40794
1994 40999 36852 33367 38930 34163 40686

Compared to the observed values the picture looks diversified. In order to obtain a more
precise picture of the forecast performance the evaluation indicators presented first in the
present section have to be calculated. First the residuals are computed defined as ¢, =y, — 3,

The result is given on the next page where the computed overall indicators also can be
found. Looking first at the residuals it can be observed that for most cases the forecasts
“under estimates” the observed number of tourist arrivals. In other words; the models are
performing too “conservative” relative to reality. This is also the truth in most forecasts in
real life. Out of the 20 predictions made the model only “overshoots” in 4 cases. Only
model I and V has this kind of behavior. In general, model V is too optimistic.
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The lower part of the table reports the calculation of the forecast indicators. All gives a
similar ranking of the models. Model I is the overall best model. As observed from the
residuals this model is especially good for the first two years. In forecast year 3 it is the
second best, and in forecast year 4 it is ranked as number 3.

Model I is followed by model III. — the polynomial model. Model V is ranked as number 3
due to the remarkable performance of the model in forecast year 4.

The forecast performance is a victory for the theory founded model I. This should also be
the case, but it may easily be different in real life!

Residuals
Year Model | Model Il Model 111 Model IV Model V
1991 -154 6114 3602 4314 -4247
1992 1776 5339 4637 5548 -4261
1993 2633 3767 1706 4263 -4871
1994 4147 7632 2069 6836 313
Model | Model Il Model 111 Model IV Model V
MAE 2101 5713 3003 5240 3267
MAPE 0.057 0.152 0.082 0.140 0.095
RMSPE 0.067 0.155 0.088 0.141 0.108
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1. Issues on Sampling

If you are working with for example marketing, one of the central topics is to find out the
preferences of the consumer. How do we sell our product? Who are in our primary
consumer segment? Do we supply what the consumer need etc.? Such issues can only be
investigated by a market survey. For such a purpose, we need to sample. This is the
motivation for this note. We need a list of the relevant consumers to contact. Sometimes we
have a list of all the relevant consumers to talk with. In this case it is easy. We just have to
sample. In most of the cases, the task is not so easy. What do we do in such a situation?

Interviews based on sampled data are only one out of several other methods to gather
information concerning the market behavior of the consumer. Other methods are focus
groups and consumer test panels. The present notes are restricted to sampling only.

In Bowerman in the basic statistics course (“Tools for Quantitative analyses, part 1I”’), we
dealt a little with random numbers. We used Excel or Megastat to draw random numbers,
and we showed that a large sample was better than a small sample.

We also dealt with sampling when we proved the central limit theorem. In particular, we
listed a number of conditions for a sample estimator to be representative for the total
population. The conditions to be met are:

The sample estimator should be unbiased
The sample estimator should be efficient
The sample estimator should be consistent
The sample estimator should be sufficient

The sample is unbiased, if the population mean and the sample mean are equal, and the
shape of the distributions are similar. The sample is efficient, if the population variance is
properly transformed into the sample variance. The sample is consistent, if it relative to its
size contains all the information in the total population. Finally, the estimator is sufficient, if
the calculations based on the sample is close to the results based on the total population. We
shall especially deal with the two first issues.

When conducting statistical research there are two ways of obtaining data.

1. Second data sources such as UN, EUROSTAT or National Statistical Offices
2. Primary data sources. In such a case we collect our sample personally

When we have second hand sources we know the total population. This also means that we
are in a position to calculate the mean and the standard deviation of the total. We can also
draw a histogram or similar of the total population. This is important, when we want to
compare the total population with the sample.



Why do we not use the total population as the point of departure for our research? In many
cases, this is not handy. Consider for example, a situation, where we have a dataset of
50,000 individuals, and we are interested in their preferences for buying a specific product.
If we want to conduct a telephone interview or an internet based survey; an investigation of
a sample of this size is intractable and also too costly.

Instead, it is possible to do interviews with say 500 persons. In such a case, we are
interested in drawing a sample equal to 500/50,000 = 0.01 or 1 percent of the total
population. How do we draw this list of candidates for the interview?

How large should a sample be? Many times it is the budget of the investigation that
determines this question! A better alternative is to use the formulas given in Bowerman in
the chapter on hypotheses testing. Here we gave tolerances of the mean and standard
deviation, and with a given level of significance, we were able to estimate the size of the
sample required in order to meet the conditions®.

Another reason for working with the sampled data is that we only want a list of persons,
firms or other units of items that we can use for the questionnaire. Then in the questionnaire
we shall ask the units about issues of relevance for our problem in consideration. This could
for example be a market survey for the preferences of a given product.

When doing research that involves sampling a procedure must include the following steps:

Choice of total population and characteristics (variables)

Setting up units of measurement and sampling frame

Taking the sample

Examining the validity of the sample

Use supplementary analysis in order to obtain a sample of the desired size
Conduct an investigation of the non-respondents, response rate etc.

Using the sample for the purpose

NogakowhE

For the present, we focus on the process of sampling. A completely other issue, is the design
of the questionnaire. We will not use much space on this issue, but the interested reader
should consult the literature on marketing research. A few remarks will be made in the note
on Nonparametric Methods.

Finally, the response rate is important. If it is too low, it is important to have additional
elements to use in or to supplement. A response rate should exceed minimum 60 percent.
However, by use of special techniques it is possible to obtain valid materials with a response
rate as low as 10 percent. In such a case the so-called Heckman procedure is used. This is
beyond the outline in the present course.

! See Bowerman Section 8.3 and 8.4.



2. How to Sample

Methods for sampling are called sampling designs, and the sample we take is called a
sample survey. The most common used methods in sampling are:

Random sampling
Stratified random sampling
Systematic sampling
Cluster sampling

In order to do random sampling, we need a list of random numbers. A list could look as:

Random Numbers
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This is just a list of any numbers ranging between 0 and 9, drawn by Excel.

Random Sampling
This is straight forward. We apply for example the table above. A sample plan is needed for
the task. For example we could take all items on the vertical list.

The first item to be selected is item 3, then item 4 (3+1), then item 9 (3+1+5), etc. We
proceed until the size of the sample to be used is reached. If the end of the list is reached we
just start from the top again.

We can test the validity of the sample by conducting a descriptive statistical analysis of the
total population as well as the sample and compare. In this way, we compare the total
population with N elements with the sample with n elements. If the sample is taken correctly
the total mean and the sample mean should not be significantly different from each other,
and the standard deviation of the sample should be larger because the number of
observations in the sample is smaller. As a result the divisor in the standard deviation is
smaller, and the numeric value of the standard deviation will be larger.



Random Sampling in Excel and Megastat

How can the table of random numbers above be generated by use of Excel or Megastat? In
Excel there are two different options. Select data/data analysis/sampling as shown in the
left panel and obtain the box to the right.

Data Analysis o X Sampling l T -5
Analysis Tools Input
—
Exponential Smoothing - Input Range: £
F-Test Two-Sample for Variances Cancel Cancel
Fourier Analysis Labels
Moving Average Hjzelp Sampling Method LyEsl
Random Mumber Generation = Periodic
Rank and Percentile
Regression Period:
pling
t-Test: Paired Two Sample for Means % @) Random
Number of Samples:
Output options
Output Range: 27
@) New Worksheet Ply:
New Workbook

Here the following can be identified:

e Input range: Mark the total population
e Sampling method:
o If random: Denote the size of the sample. For example if the total is 500 the
sample could be equal to 50
o If period: If for example 7 is marked then every 7" observation is picked. This
is also called systematic sampling, see below

This procedure cannot be found in Megastat. Here use the table of random numbers given
above, and use the procedure of counting illustrated above.

An alternative to this is to use the function random number generation. This facility is
found in Data Analysis. This facility can be used to generate data of a given distribution.
Consider an example.

In Excel type data/data analysis/Random Number Generation and obtain the dialog bow to
the left on the next page. The menu box on the right panel is obtained by application of
Megastat. In this case type Megastat/Random Number Generation. The two functions give
similar (random) results.

Both functions allow drawing data set following specific distributions like for example data
that are uniform or normal distributed etc.



In both cases, we have drawn a sample of 50 observations from a total population assumed
to be normally distributed with mean equal to 5 and standard deviation (uncertainty) equal
to 3 for a single variable.

= - ~
Random Number Generation m Random Number Generation 2
Number of Variables:
Mumber of Random Numbers: 50 Cancel 50 Number of values to be
Distribution: MNormal Hjzl
E' IL/ Decimal Places: max 4 | b | Clear
Parameters —
M, = 5 - -
S @ Live functions " Fixed values Cancel
Standard deviation = 3
Help
Random Seed: gnrform Mean 5
Output options Normgl
Qutput Range: -7 —
- Std. Dev. 3|
@) New Worksheet Ply: EKDOﬂEﬂtm
New Workbhook

Theoretically our normal distribution of 50 items can be illustrated as:

Z(X)

Let us now use one of the two programs to conduct a little experiment. What will happen to
the distribution when the number of observations increases from 50 to 5007

Next page gives the results by use of Excel. In order to keep the data sets handy, | have
sorted the two data sets into 14 groups or categories ranging from —2 to 11. Next, | have
displayed two histograms, so | can compare my results.

| have also used the descriptive statistics function to calculate the mean and standard
deviation to see how good my samples fit my priors.



Normal Distribution with Mean =5 and Standard Deviation = 3

N=500 Frequency

i ‘7‘ Sample with n=500

0 16

1 19

2 30

3 49

4 50

5 62

6 68

7 55

8 52 2 4 0 1 2 3 4 5 B T & 8 10 1 More

9 36

10 28 Descriptive statistics Norm 1 Norm 2
11 14
More 10 Mean 5.13 5.42
Sum 500 Standard deviation 3.05 3.09
n=50 Frequency Observations 500 50

-2 0

-1 0

0 0

1 4

2 2 Sample with n=50

3 7

4 7

5 5|87

6 4

7 7 8

8 3| 44

9 2

10 5 | 27

11 2 0
More 2 2 <0 1 2 3 4 5 & T & 0§ A0 11 More
Sum 50

From the graphs, it is evident that a larger sample is closer to the theoretical illustration
shown on the previous page. This is also what to be expected. A larger and correctly drawn
sample is more representative. Consequently, the results will be better.



Stratified Random Sampling
A problem with the method of random sampling is that we easily run into bias if the order of

the lists of items that we sample from not is completely random itself. Instead a stratified
random sample can be set up.

In order to select a stratified random sample, we divide the population into non-overlapping
groups of similar elements. So within each group our data should be distributed as
homogenously as possible. These groups are called strata. Then a random or systematic
selected sample is selected from each stratum, and these samples are combined in order to
form the full sample.

We sample with regard to the variable of interest. Schematically, the set up can be
illustrated as:

Population Sample
Stratum1l Ny > ng
7
//, Stratum?2 N, R N,
/
\
[ Stratumk Ny o Mk

To determine the size of the strata, we can apply a methodology that frequently is used
when setting up a histogram. To determine the width of the intervals or groups used a
formula where:

=N

Here k is the number of groups. Notice that the strata do not need to be of equal size. Doing
it in this way is preferable, because no weighting of data is need when we calculate the
sample mean and variance. A rougher, but absolutely efficient method is to let Excel
determine the bin range of the histogram, and use that for the division into strata.

Inside each stratum, we can select elements by use of random numbers just as before.

Consider a situation with a total population equal to 500 observations where we want to take
a sample of 10 percent or 50 items by use of stratified sampling.

In practice a “cookbook” for sampling with stratified material could look as:



e Find the relevant variable to be used for the analysis

e Set up a histogram in order to find the distribution of the data set

e Find the number of strata for the sampling process. For example if our data set has
500 observations then 9 strata could be appropriate as 2° = 512 ~ 500

e Sort data for example in ascending order and organize the material

e There are 500 observations with 9 strata. However the intervals may not be of equal
size. It could look as:

Strata 1 2 3 4 5 6 7 8 9 Total

Frequency 20 40 55 100 80 70 60 40 35 500

Share 0.1*20 | 0.1*40 | 0.1*55 | 0.1*100 | 0.1*80 | 0.1*70 | 0.1*60 | 0.1*40 | 0.1*35 | 0.1*500

Numbers 2 4 6 10 8 7 6 4 3 50

Note: | have rounded up in strata 3, and down in strata 9. This is arbitrary!

e Use random sampling or systematic sampling to find the number of items to be
selected within each strata.

e Finally, provide a descriptive statistical analysis of the total and well as the sample
and compare

Systematic Sampling
This is an alternative to random sampling. For example, within a stratum 5 elements should
be selected out of 10 elements. We select every second element.

Sometimes we do not have a complete list of elements to sample from. For example, if we
want to do an interview in front of a supermarket. Systematic sampling will then be to select
for example every 100™ shopper that passes in or out of the supermarket depending on the
investigation to be undertaken.

A variation of systematic sampling is today’s television and radio stations use of voluntary
response samples. In such samples, participants self-select — that is, whoever wishes to
participate does so (usually expression some opinion). These samples over represent people
with strong opinions. Such samples are then biased, and should be used with care.




Cluster Sampling

Sometimes it is advantageous to sample in stages. In cluster sampling, we first select groups
or clusters and then sample. The method is also labeled Deming method. It has been
frequently used in the United States for example when having a pool of voters in a system
where these have to register. Such a procedure can be undertaken in four steps:

Stage 1: Randomly select a sample of county’s from all states in the United States

Stage 2: Randomly select a sample of townships from the sample under stage 1

Stage 3: Randomly select a samples of voting precincts from each township from stage 2

Stage 4. Randomly select a sample of voters from each voting precincts from stage 3

This method is also applied for selecting families to participate in for example consumer
surveys.

10



3. Cases

Case |: Drawing a Sample to use for Interviews of Heads of Housing
Associations in Denmark 2010

For the Danish Ministry of Interior a sample has been conducted for an internet based
questionnaire. In 2008, Danish housing associations could apply for grants if they wanted to
renew for example kitchens, bathrooms, pluming installations etc. The ministry wanted to
ask 18 different questions in order to see how the preferences were among the housing
associations.

For the purpose, the total population was drawn from Statistics Denmark. The total
population was delivered as an Excel file with addresses. Initially there was 7,646 Housing
Associations or sub sections.

An investigation of the list revealed that for 309 associations no full information was
available. For example, the year of establishment (building) could be missing. This is an
important parameter when asking for activities related to renewal, because older
associations are more inclined to renew than the new associations. This was the case for 195
associations. Further, 144 associations had other kinds of missing information. These
associations were sorted out. A total of 309 associations were sorted out.

This process resulted in a total population equal to 7,337 housing associations. In sum these
associations amounted for 547,005 residencies (houses, apartments, studios etc.). The 309
associations sorted out amounted for 12,478 residencies or 2.23 percent of the total
population. It was evaluated that this number of residencies did not have an impact on the
outcome of the investigation.

It was decided to sample 800 elements or 10.90 percent of the total population. The sample
was then divided into two sub samples each with 400 associations labeled 400A and 400B
respectively. The plan was then to use sample 400A for the survey, and use sample 400B as
a as backup.

Initially a histogram was set up for the total population. The distribution of residents by the
size of the associations is shown on the next page. A very skewed to the right population is
observed. The majority of associations are very small, but a few are very large like for
example Toveshgj or Gellerup in Aarhus or Albertslund in Copenhagen West. Further, it
was known that these large associations frequently have a low rate of respond.
Consequently, the Ministry wanted these associations to be a little over represented in the
sample. The Ministry was not interested in associations below 5 residents. Therefore, these
were not selected for the sample.

11



On this basis a system with 85 strata was selected by size of the association. This large
number was needed in order to capture the large housing associations. In each stratum 11
percent of the associations were selected by use of a systematic selection procedure. Finally,
the sample of 800 items was divided into two equal large samples of 400 items.

Fregency

Distribution of residents by associations

3000 —+
2500 -+
2000 -
1500 -
1000 -
500 +

0 -

Residents

151
301
451
601
751
902
1202
1352
1502
1652
1800

1051

The division of data into strata is shown in the Appendix. We can now perform a descriptive
statistical analysis of our relevant parameter namely the number of residents by association:

Descriptive Statistics

Total 800 400 A 400 B
Mean 74.55 113,91 115.05 112.77
Median 36 42 42 42
Mode 12 12 12 12
Standard deviation 117.76 218,31 222.31 214.50
Variance 13,867.96 47,658,61 49,422.08 46,012.00
Kurtosis 43.68 22,88 23,04 22.93
Skewness 5.18 4,36 4,38 4.35
Range 1,823 1,818 1,818 1,795
Minimum 1 6 6 6
Maximum 1,824 1,824 1,824 1,801
Sum 547,005 91,126 46,018 45,108
Observations 7337 800 400 400

Notice, that the mean is large in the samples. This is expected, because the large
associations are given higher priority. The variances for the samples are also larger. This is
expected because the number of observations is smaller. Observe that the median and the
mode are equal for all samples. Very nice!
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If we conduct a test for equal mean assuming unequal variance then Hy is accepted. So the
samples are correct. Finally, consider the very nice box-plots below (sorry in Danish
headlines):

BoxPlot for totalpopulationen
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BoxPlot for stikprgve 400 A
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BoxPlot for stkprgve 400 B
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Notice, that the distributions look very similar.
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Analysis on Background Parameters

We can consider the year of establishment of the associations in the total population and in
the samples. A descriptive analysis can be found below. Here similarity is also observed. In
the original project a distribution by municipality was also considered. Also in this case,
consistence was observed. Due to space limitations it has been left out.

Statistics by year of

establishment

Total 800

Mean 1979 1978
Median 1983 1982
Mode 1990 1991
Standard

deviation 19.42 19.20
Variance 377.25 368.68
Kurtosis -0.69 -0.74
Skewness -0.52 -0.39
Range 98 94
Minimum 1911 1915
Maximum 2009 2009
Observations 7,337 800

Case Il: Sampling from the Data set “Euroregions”
At the regional level the members of the European Union can be divided into a total of 356

regions for 2004. This is undertaken in the Excel file Euroregions.xls. This file can be found
in Blanckboard. For all regions statistics of the income per capita is available from
EUROSTAT. The result of the mean and the standard deviation is shown in the bottom line

in the table below.

Alternatively the mean and the standard deviation could be calculated from the national data
not divided by regions. The result of this calculation is shown in the upper line in the table
below. In the Excel file Euroregions.xls the folder Euronations gives the data used for the

calculations.

Mean SD Obs
Data set Euronations (based on national average) 19,984.90 € 13,624.02 € 26
Data set Euroregions (based on regions) 20,609.28 € 10,439.27 € 356
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We can consider the data set calculated on the national data as a sample of the regionalized
data set. How good is the mean income calculated at the national level as an indicator for
the mean income calculated at the regional level? In other words: Is the national mean
income a representative indicator the mean income calculated by use of the regional
statistics?

We can examine the validity of the national calculated income by setting up confidence
intervals or by examination for equal mean. If overlap of the confidence intervals is
observed the sample is a good predictor for the total population.

Set up a 95 % confidence interval for mean for each data set. In general we apply the
formula:

X+t S

/2(n-1
2D o

with degrees of freedom df =n-1. For the Euronations data set we obtain:

X+t 0y o =10,084.90 + 2,060 202402
Jn \/26

19,984.90 + 2.060(2,724.81) =19,984.90 + 5,613.11 =
[14,371.79:25,598.01]

With df =n-1 = 26 — 1 = 25. Assuming (a/2=0.025) we find by use of the Statistics Tables
that t = 2.060. For the Euroregions data set we obtain:

X £tz Sﬁ — 20,609.28 + 1.961(143%27
/N .

20,609.28 =+1.96(553.28) = 20,609.28 £1,084.43 =
[19,524.85; 21,693.71]

with degrees of freedom df =n—-1 = 356 — 7 = 355 = o0. Assuming (a/2=0.025) we find by
use of the Statistics Tables that t = 1.96 (Notice that the t-distribution is approximate to the
normal distribution).

Can the data set Euronations be said to be a good description for the data set Euroregions?

e This must be the case. The mean of Euronations falls inside the confidence interval
of Euroregions.
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e The confidence interval of Euronations is much larger than for Euroregions. This is
so because the former is a sample and much smaller than the total population 25/356
=7%

e However, the mean of Euronations is lower than for Euroregions. This is so because
there are many small Eastern European nations with a low income level per capita.

e This gives a negative bias. For example has Estonia the same weight in the sample as
Germany

Appendix:

Strata for the sample in the case on residents by associations in Case |

Interval Frequency  Share 11 % In the sample

1 23 2.53 0
22 2453 269.83 240
43 1728 190.08 185
65 894 98.34 100
86 495 54.45 55
108 419 46.09 45
129 234 25.74 25
151 188 20.68 20
172 149 16.39 20
194 115 12.65 15
215 91 10.01 10
236 72 7.92 8
258 60 6.6 7
279 57 6.27 6
301 58 6.38 6
322 29 3.19 3
344 29 3.19 3
365 28 3.08 3
387 29 3.19 3
408 29 3.19 3
429 14 1.54 2
451 16 1.76 2
472 17 1.87 2
494 14 1.54 2
515 9 0.99 1
537 6 0.66 1
558 8 0.88 1
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1566 0 0 0
1588 0 0 0
1609 0 0 0
1631 0 0 0
1652 1 0.11 1
1673 0 0 0
1695 0 0 0
1716 0 0 0
1738 0 0 0
1759 1 0.11 1
1781 0 0 0
1800 1 0.11 0
Over 1800 1 0.11 1
Sum 7337 800 800
807.07
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1. Questionnaires and Nonparametric Methods

Questionnaire Design

Many questionnaires claims that the respondent answers by ranking his/hers preferences on
a given issue. There may for example be five options ranging from “1” equal to “extremely
not satisfied” over “3” “neutral” to “5” equal to “very satisfied”. Such an ordinal scale is
called a Lickert scale. An example could be:

Question example:
How did you like the party in the student bar last Friday?

Answer example:

] ] [ ] L] [ ]

Hated the party  Did not like the Neutral Liked the party  Liked the party
party very much

All questions should “turn” the same way each time (worse/best or reverse). In the
questionnaire, the question above may be accompanied with several other questions needed
in order to obtain the relevant information. Here the following things are of importance:

e What kind of information do we need relative to the statement of the problem?
e Don’t ask unless it has a purpose
e Think — before asking!

An overlong and unclear questionnaire is NOT wanted. Respondents do not like to use too
much time on answering the questionnaire. As a rule of thumb it should not take more than
15 minutes to answer the questionnaire.

Notice, that once the questionnaire is launched it cannot be changed! The design of the
questions is therefore extremely important. The content of the questionnaire should reflect
the statement of problems for the investigation very strictly.

What kind of information should be achieved from the questionnaire? There are four kinds
of information:

e Knowledge - what people know (true or factual)

o Attitudes - preferences (past/future/present)
e Behavior - what people do

e Attributes - what people are



The question will frequently be a mix. First, there will be background information such as
gender, age etc. Notice that for example a question on income level of the respondent may
be difficult to answer due to the many types of income i.e. household income, pretax
income, disposal income etc. Try to be as precise as possible.

Appendix I give an example of a questionnaire. The example attempts to reveal the
preferences for Online Clothing Shopping among university students.

Coding and handling of Data

The answers can be coded for example in an Excel spreadsheet, a SPSS data file or a
specific program designed for questionnaires like Survey Exact or similar. For a given
question like the one in the example above we may code with the following numbers:

A Lickert scale will normally have an unequal number of outcomes. Why? This is due to the
theory of distribution. If the answers are assumed to be normally distributed the mean
outcome will be “neutral”. (code = 3). The Lickert scale may have 3, 5, 7 or 9 categories of
answers. My experience is that 5 is a sufficient number in nearly all cases.

If the survey is large it may be a good idea to build up a code book with instruction on “how
to do”. Appendix II gives an example of how a system for coding can be build up in an
Excel or SPSS spreadsheet.

If the respondent not is answering the question it should simply be associated with an
“empty space”. The number zero is not appropriate. Why? If zero is included it will be
counted as a number, and impose a positive or negative bias on the final result. Blank
answers should be taken out of the analysis and treated separately.

We can use our data with answers and calculate descriptive statistics and present the
material in histograms or similar. We can sort the main questions with regard to the
background variables gender, age, income etc. and obtain more detailed information. We
can also perform various tests, investigations for independence, regression etc.

BUT wait a minute! The purpose of performing this ranking is to reveal the preferences of
the respondent. In a microeconomic sense we are trying to find the utility maximizing
allocation of the respondent or consumer. Originally, marketing took its point of departure
from the consumer theory in microeconomics. So the statistics that we obtain from the
answer of the question on the party last Friday put forward in example above is a ranking of
the satisfaction rate. As remembered (hopefully) from consumer theory, statistics of utility
are rankings of preferences. The distance from one level of utility to another does depend on



an individual interpretation of the distance from utility level 3 (neutral) to 2 (satisfied). This
feature of our data has implications for the conducted statistical analysis. Therefore, a new
class of tests have to be developed taking into account that data are rankings of preferences.

Nonparametric Methods

The ranking of the preferences introduces namely a measurement problem. For example if a
consumer gives the product rank “2”, and another consumer gives the same product rank
“4” we cannot say that the last consumer prefer the product twice as much as the first one.
The ranking is an ordinal variable. Frequently ranked or ordinal statistics may be very
skewed and non-normal in behavior.

As shown in the notes to Chapter 2 and 3 in Bowerman on descriptive statistics, the median
may in such cases be a more stable measure than the mean. In the example, it was found that
in the case of outliers, the mean and the variance increased very much in the presence of an
outlier, whereas the median remained constant. For example, wage distributions may be
very non-symmetric with a few persons with very high incomes and many on a lower level.
When undertaking wage negotiations, the median wage is normally the wage to be
negotiated. This i1s so, because this is the wage that is important to most of the employees.
Official wage statistics also uses the median wage. Another example could be student’s
evaluations of the lecturers’ ability to teach. Suppose that the lecturer receives a good
evaluation from a very large number of the students. A little minority has the opinion that
the lecturer is very inefficient and gives the lecturer a very bad evaluation. In this case, the
distribution of the evaluations will also be very non-symmetric and a test is required taking
this into consideration.

Nonparametric tests are a class of methods used when the underlying assumption of Normal
distribution (or t-distribution if the sample is small) not is fulfilled. Here we consider 3 tests
namely:

e Sign test For a single data set - equivalent to the t-test
e Mann-Whitney U test For two data sets - inferences on two samples
o Kiruskal-Wallis test R data sets - equivalent to ANOVA

The nonparametric tests are also referred to as distribution free tests. Together with the chi-
squared test presented in Bowerman Chapter 12, these tests are very frequently used when
working with questionnaires.



Nonparametric Methods with Megastat

Nonparametric tests can most easily be undertaken in Megastat. Open Excel with Megastat
loaded and click on add-ins. Here select nonparametric tests. A menu with a range of tests
will occur. The maximum number of observations allowed in Megastat is restriction to 180.
Alternatively, SPSS can be used'. This issue will be covered in another set of notes.
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2. Testing for Normality in Data

Very frequently we assume that the underlying data generating process can be described by
the Normal distribution for example in the notes on ANOVA to Chapter 11 in Bowerman.
Remember from the notes to Chapters 2 and 3 in Bowerman that we defined skewness and
kurtosis. These two measures provide information with regard to the asymmetry and
concentration of a given data set. Then the question arises: How skewed or concentrated can
a distribution be before it not is considered as Normal distributed?

Bowman and Shenton (1975) have provided a test for this issue using the measures of
skewness and kurtosis. Mathematically the measures may be defined as:

" In SPSS use the data view mode, select Analyze and then nonparametric methods.



Z(xi—)_cf /n
Skewness: SK=+=24 i=12..n

3
S

Z(Xi -x)/n
Kurtosis: KU = =

4
S

Where x; is observation i, n is the number of observations, x is the mean (the first moment),
and s is the standard deviation (the second moment). In Excel the number 3 is subtracted
from kurtosis. Skewness is also called the third moment and kurtosis is the fourth moment.

Remember from the notes to Chapters 2 and 3 in Bowerman that

e Skewness: An expression for how much the distribution is away from the “normal”. If
SK>(0 data are skewed to the right, if SK=0 data are symmetric, and if SK<0 data are
skewed to the left.

e Kurtosis: A measure of the ”concentration” of the distribution”. If KU is large then we
have a concentrated data set, and if KU is small we have a “flat” distribution.

Let us now define the hypotheses:

Hy: The data set can be described by a Normal distribution.
H;: The data set can not be described by a Normal distribution.

Bowman and Shenton now set up a tester that we will label by B. This is:

M CINE
6 24

For n— o the tester’ is chi-squared distributed with degrees of freedom equal to 2 ( X))

However, if n >100 there is a bias towards rejecting the null hypothesis although it may be
true. To correct for this Bera and Jarque (1981) has simulated the critical values shown in
the table next page.

* The numbers ”6” and 24" comes from the deviation of the tester. The method involves a statistical way of thinking
beyond the scope of this course. However, the deviation is given in D’ Agostino, R. and E.S. Pearson (1973).



Critical Values for Bowman-Shenton Test

Observations, n | 10 % significance | 5 % significance | Observations, n | 10 % significance | 5 % significance
20 2.13 3.26 200 3.48 4.43
30 2.49 3.71 250 3.54 4.51
40 2.70 3.99 300 3.68 4.60
50 2.90 4.26 400 3.76 4.74
75 3.09 4.27 500 391 4.82
100 3.14 4.29 800 4.32 5.46
150 343 4.39 00 4.61 5.99
Example

Consider the data set analyzed in the notes to Chapters 2 and 3 in Bowerman. By use of the
descriptive statistics function in Excel we can calculate skewness and kurtosis. We find that
SK = —0.35 and KU = 0.12. The data set considered has 20 observations. The tester equals

. ’{(SK)z ) (KU)Z} _ 20{(—0.35)2 N (0.12)2} o4

6 24 6 24

With 20 observations the critical value at 5 % level of significance is equal to 3.26 as
observed from the table above. Because 0.42 < 3.26 we accept Hy. So the data set can be
said to be Normal distributed.

We also considered an example where an extreme observation was added to the dataset. For
example if the value of the maximum was increased from 24 to 34 then SK =/.7/9 and KU =
3.88. The now tester equals

B ’{(SKY .\ (KU)Z} _ 20[(1.19)2 .\ (3.88)2}:17'27
6 24 6 24

As 17.27 > 3.26 we accept H;. So the distribution easily becomes non-normal!
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2. Sign Test
(BO Section 15.1)

If a population is highly skewed, then the median might be a better measure of the central
tendency than the mean. Further, if the sample size is very small, then the #-fest outlined in
Bowerman Chapter 9 may not be valid. In such a case, it may be better to set up a
hypothesis with regard to the median than with regard to the mean.

Exact, we want to test the hypotheses:

Ho: Mg =M, (The median and the stated median are equal)
H: My # M, (The median and the stated median are not equal)

How can a test for the median be developed? Bowerman considers a case of a DVD or
compact disc player. The developer of the product wishes to show that the lifetime of the
player exceeds 6,000 hours of continuous play’. To examine the issue the developer
randomly selects 20 new players.

Consider initially a descriptive statistical analysis of the data set:

LifeTime Life Time Data
5 count 20
947 mean 5,964.75
2142 Variance 5,160,816.20
4867 Standard deviation 2,271.74
5840 minimum 5
6085 maximum 7846
6238 range 7841
6411 skewness -1.81
6507 kurtosis 2.32
6687 Ist quartile 6,023.75
6827 median 6,757.00
6985 3rd quartile 7,316.25
7082 interquartile range 1,292.50
7176 low extremes 3
7285 low outliers 0
7410 high outliers 0
7563 high extremes 0
7668
7724
7846

? 6,000 hours is a lot of time — actually 250 days. In real life, the process will be speeded up, and a simulation process
will be used in order to generate the sample data. This process is normally used in many industries for example drilling
equipment to off-shore operation (it is not that easy to replace an item for a drill on deep waters).
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It is observed that the distribution is highly skewed to the left with 3 low extremes.
Especially, the range is very high. A t-test may then be misleading. The Bowman-Shenton
test give:

2 2 _ 2 2
B=n{(SK) +(KU) } = 20{( 1.81) +(2'32) }:9.12>3.26 at the 5 % level
6 24 6 24

This is very significant, so the distribution is not normal.

What can be done? By inspection of data it is evident that 5 observations only are below
6,000 hours. This is indicated by the solid line in the table above.

Remember that the median divides data into two parts of equal size. We can describe the
distribution as a Binominal distribution with p = 0.5 and n = 20. By inspection of data we
can observe that 15 observations are above 6,000.

The p-value for testing Hy: p = 0.5 versus H;: p > 0.5 is the probability computed assuming
H, is true of observing a sample result that is as least as contradictory to H, as the sample
result we have actually observed. Since any number of lifetimes out of 20 lifetimes that is
greater or equal to 15 is at least that contradictory we have:

2 20!
-value: P(X 215 =) ———(0,5)"(0,5)**
i ( ) ;x!(ZO—x)!( ) (05)

and calculate forx = 15,16, ...., 20
By use of the Appendix in Bowerman or Statistics Tables we find that P(X >15)=0.0207
If Hy 1s true there is only 2.07 percent probability that the distribution will be as the sample

above. This implies that it is reasonable to conclude that the median lifetime of the player
exceeds the advertised median life time equal to minimum 6,000 hours playing time.



This is only good in small samples. If our sample is larger than 20 observations the table of
the Binominal distribution is inefficient, and it is not handy to use a calculator. What can
then be done?

Remember from Chapter 6 in Bowerman that the Binominal distribution can be
approximated to the Normal distribution. Define S as the number of observations over the
hypothetical median . As the median divides the distribution into two parts of equal size p =
0.5. For the Binominal distribution mean and standard deviation is given as u = np = 0.5n

and o = \[np(1- p) =0.5vn

X—pu
O

Then the Z test can by use of the transformation Z = ( j be written as:

,_(§-0.5-051 _(15-0.5)-0.520) _145-10_,

0.5vn 0.54/20 2.236

As 2.01 > 1.96 we reject the Hy hypothesis. What is the implication? The median in the
present dataset is equal to 6,757. This value is significantly higher than 6,000. As this was
the claim put forward by the producer, the statement of minimum 6,000 hours life time is
valid.

We can perform the sign test by use of Megastat. Use add-in / Megastat / Nonparametric
Tests / Sign test and obtain

-

Sign Test

| J Input range

Alternative:

Cancel

ddds !

Help

We have to mark the hypothesized value (here 6,000) and specify the alternative hypothesis.
Loading in the 20 observations will result in the out given below:

Sign Test
6,000 hypothesized value
6,757 median LifeTime
5 below
0 equal
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15 above
20 n

binomial
.0207 p-value (one-tailed, upper)

normal approximation
2.01 z
.0221 p-value (one-tailed, upper)

The output confirms the results found above.

3. Mann-Whitney Test
(BO Section 15.2)

This test is also called the Wilcoxon Rank Sum Test or the U—test. We consider two data
sets, so the procedure is very similar to the procedure developed in Bowerman Chapter 10.
In that test we examined, if the central tendency or locations were equal among samples.
The nonparametric test for comparing the locations of the two samples is not necessarily a
test about the difference between the population means. It is a more general test to detect
whether the probability distribution of population / has shifted to the right or to the left of
population 2.

We assume independence as earlier. As the case with the sign test, the Mann-Whitney test is
valid for any shapes that might describe the sampled populations. For each data set, a
distribution is given as D, and D, respectively. The samples have observations »; and n,.

First we combine the data of the two samples. For this we use ranked data. This is done in
order to bring the data into similar levels. The ranking is done as follows: Rank the n; + n,
observations from the smallest (rank 1) to the largest (rank n; + n;). If two or more
observations are equal, we assign to each “tied” observation a rank equal to the average of
the consecutive ranks that would otherwise be assigned to the tied observations.
Next, we for each data set calculate the sum of the rank, and denote them by 7; and 7,. The
outcome of the test can then be examined by the test statistic T to be 7 if n;<n, and to be
T 2 ifn 17N
The null hypothesis can be stated as:

Hy: Dy and D, are identical probability distributions

The alternative hypothesis is a little bit more complicated:

11



Reject Hy if

Hi: D, is shifted to the right of D, T>Ty ifn; <n,
T < TL l'fl/l1>l’l2
Hi: D, is shifted to the left of D, T<T, ifn; <n,
r>Ty ifn;>n,
Hi: D is shifted to the right or left of D, T<T; orT>Ty

The critical values of 7; and Ty can for small samples be found in Bowerman Table 15.2
page 741.

In Bowerman an example is given of processing times for two different courts on similar
cases. The hypothesis to be examined is if the processing time is equal among the two
courts for a very little data set with n; = 10 and n, = 7, see also the descriptive statistics
below.

In the example 7; = 72.5 and T, = 80.5. Using Table 15.2 we for our sample sizes find that
TL =46 and TU= 80.

Asn; > nyand T, = 80.5 > Ty = 80 we reject the Hy and accept the alternative. So D, has
shifted to the /eft of D,. Stated differently, the processing time of Coos is lower than the
processing time of Lane. This is confirmed by the Box-plots of the two data sets below.

Coos Lane Coos (D)) Lane (D)
48 109 count 10 7
97 145 mean 161.10 276.29
103 196 Variance 5,914.54 20,658.24
117 273 Standard deviation 76.91 143.73
145 289 minimum 48 109
151 417 maximum 294 505
179 505 range 246 396
220
257
294
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BoxPlot BoxPlot

0 200 400 600 T ' ' o
0 200 400 600
Coos
Lane

For a larger data set, the use of the critical values is not handy. Instead, as the case with the
sign test, we approximate our data by use of the Normal distribution. The calculation of the
mean and the variance of the two pooled data set is given by the following formulas, see
also Bowerman page 744:

_ny(n +n,+1) 10(10+7+1)

=90
r 2 2
_\/nlnz(n1+nl+l)_\/10x7(10+7+1)_1024
4 12 12 '
The Z tester is: 7 = (7= p) = (72.5-90) =-1.71
o, 10.24

Where T is the relevant sum of ranks to be tested here 7. If we had used 7, the outcome
would have been reverse. What is the outcome? If we consider a one-sided test and assume
that o = 0.05 then Z = —1.645. As —1.71 > —1.645 we reject the null and accept H;.

This is consistent with the finding above. Notice that the two values of Z are very close, so
the p-value is just below 0.05 (actually it is 0.0436), see below. If we had undertaken a two-
sided test the p-value would have been so high that the null hypothesis was accepted. If we
inspect our findings above the result is not surprising. The value of 7y = 80 is very close to
the sum of the ranks for the second sample 7, = 80.5.

We can perform the test by use of Megastat. Use add-in / Megastat / Nonparametric Tests /
Wilcoxon — Mann-Whitney and obtain

13




Wilcoxon - Mann/Whitney Test

-

. Group 1
| Sheet1!$AS2:5A$12 -] 5
| Sheet1!$B52:$B59 ] Group2 ﬂl
Cancel | i
[ Output ranked data Aemative: e
f LB
[v Corrrect for ties
§ - — —
Loading in the data the following output will appear
Wilcoxon - Mann/Whitney Test
n sum of ranks
10 72.5 Coos
7 80.5 Lane
17 153 total
90.00 expected value
10.24 standard deviation

-1.66
.0485

z, corrected for ties
p-value (one-tailed, upper)

The p-value is a little different from mine properly due rounding off.

5. The Kruskal Wallis-Test

(BO Section 15.4)

The Kruskal-Wallis H test is a nonparametric technique for the location of the median for 3
or more data sets. Contrary to the ANOVA procedure it does not require any assumptions
about the distribution of data.

Intuitively, the test is identical the ANOVA single factor test with data replaced by their

ranks. Hypotheses are also as under the ANOVA procedure.

We have our data divided into p groups. We first rank all of the observations in the p
samples from smallest to largest. If n; denotes the number observations in the ith sample, we
are ranking a total of n = n; + n, +...+ n,. What if several observations have similar rank?
Then we assign the tied observations the average of the consecutive ranks that would

14



otherwise be assigned to the tied observations. Megastat has a procedure to undertake this
task. Next, we calculate the sum of the ranks of the observations in each sample called 7
From this the ranked average R, by group can be calculated.

The Kruskal-Wallis tester i1s now found as:

2 2
n(n+1)<—=! 2 n(n+1)<—~='n

i

This tester is y*distributed with degrees of freedom equal to (p—1) similar to Bartlett’s test
that was considered in the notes to Chapter 11 in Bowerman.

The Kruskal-Wallis Test in Megastat
The Kruskal-Wallis test can be performed in Megastat by selecting Add-in / Megastat /
Nonparametric Tests / Kruskal-Wallis Test. The following screenshot will appear:

Kruskal-Wallis Test ﬁ

“ ;l Input range

Clear

[ Output ranked data
Cancel

[v' Corrrect for ties

i

Example

In the notes to Chapter 11 in Bowerman, we investigated a case for seasonality in the
distribution of advertisements over a year. We used weekly observations of the weight of
advertises. Using a one-way ANOVA analysis, we found evidence that the amount of
advertisements was higher during the fourth quarter of a year. We also found evidence that
the data not was normally distributed. This motivated the use of the Kruskal-Wallis test.

The result from Megastat is given below:

Kruskal-Wallis Test

Median n Avg. Rank

854.00 13 16.23 1Q
1,075.00 13 3181 2Q
923.00 13 1762 3Q
1,436.00 13 40.35 40Q
1,028.50 52 Total
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22.885 H (corrected for ties)
3 df.
0.00 p-value

multiple comparison values for avg. ranks
15.68 (.05) 18.69 (.01)

The tester is calculated as:

- n(n+1)
-3(52+1)
=0.004525(3,424.37 +13,154.39 + 4,036.04 + 21,134.13) — 204 =181.88 — 159 = 22.88

2 2 2 2 2
12 5 T 34 1) 12 [(16.23><13) , (B181x13)°  (17.62x13) +(40.35><13)}

oy T 5(52+1) 13 13 13 13

1

The tester is y*distributed with degrees of freedom equal to (p—1) = (4—1) = 3. Assuming
a level of significance equal to 5 percent we find that y; =7.81. As 7.81 < 22.88 the Hj is

rejected and the H, is accepted. The result is then that the median amount of advertises is
different from quarter to quarter.

In the bottom of the output from Megastat a multiple comparison of the ranks is provided by
use of the Mann-Whitney test. It is found that quarter 4 is different from quarter 1 (at the 1
percent level) and from quarter 3 (at the 5 percent level), but not different from quarter 2.

References

Kruskal, W.H., and Wallis, W.A., 1952. Use of Ranks in One-Criterion Variance Analysis.
Journal of American Statistical Association 47, p. 583-621 (December 1952)

Siegel, S., and Castellan, Jr., N.J., 1988. Nomnparametric Statistics for the Behavioral
Sciences. 2™ edition. New York: McGraw-Hill.
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Appendix I: Example of a Questionnaire

The example below shows how a questionnaire on online shopping can be undertaken
mostly by use of answers based on a Lickert scale.

Online Clothing Shopping Survey

This is a survey being conducted for a marketing research class at a university to determine
shopping behavior. Please answer the following questions honestly and thoroughly to help us
with our research and final project. Thank you in advance for your assistance in our research
project.

1. Areyou.. ___Female ___ Male

2. What is your status at this university? Bachelor Master

3. Within the past month, how many times have you visited a web site for online shopping
purposes?
0 12 34 __50r More

4. Within the past month, how many times have you visited a web site in which clothing is
offered for sale?
0 1-2 3-4 __Bor More

**For questions 5 through 7, please circle the number that reflects your opinion**

5. Shopping online for clothing will become increasingly popular.

Strongly Agree Agree Neutral Disagree Strongly Disagree

I I | | |
5 4 3 2 1

6. Shopping online for clothing is a wise action for today's consumers.

Strongly Agree Agree Neutral Disagree Strongly Disagree

I I I
5 4 3 2 1

7. Within the next 30 days, how likely are you to purchase clothing online?

Very likely Somewhat likely Not sure  Somewhat unlikely  Very unlikely

| | | I
5 4 3 2 1

8. What do you believe to be the main reason why people shop online for clothes?

17




Convenience Low Prices More Selection ___Others
(Please Specify):

9. What do you believe to be the main reason why people AVOID shopping online for
clothes?

___Credit Card Security __ Ttems May Not Fit __ Difficult to Return
___Others (Please Specify):
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Appendix Il: Example of a Questionnaire with a Codebook

In this questionnaire the goal is to find consumers preferences for pizzas in a pizzeria. The
numbers behind the answers gives to options for the coding.

Variables  Questions

1 1 Have you purchased a Pizzazza pizza in the last month?
X_ Yes(1) __No(2)___ Unsure (3)
2 2 The last time you bought a Pizzazza pizza did you (cross only one):
___ Have it delivered to your house? (W)
___ Have it delivered to your place of work?  (2)
—_ Pick it up yourself? (3)
_X_ Eat it at the Pizzazza pizza restaurant (4)
___ Purchase it some other way? (5)
3 3 Inyour opinion, the taste of a Pizzazza pizza is (tick only one):
___ Poor ()}
— Fair )
_X Good 3)
___ Excellent @
4 Which of the following toppings do you typically have on your pizza? (Cross
all that apply.)
3 ___ Green pepper 0;1)
5 ___ Onion (0;1)
6 _¥X_ Mushreom (0;1)
7 ___ Sausage (0:1)
B8 _X_ Pepperoni (0;1)
9 ___ Hot peppers (0;1)
10 _X_ Black olives (0;1)
" ___ Anchovies (0;1)
12 ___ Pineapple ;1)
13 ___ Shrimps (0;1)
14 5 How do you rate the speediness of Pizzazzas restaurant servi ce once you

have ordered? (Circle the appropriate number if a2 1 means very slow and a
7 means very fast.)
Verysow 1 2 3 4 5 (§) 7 veryfast

15 6 Please indicate your age:
___ 0-15years (1
__ 15-25 years 2)
_X_ 26-40 years (3)
___ 41-60 years (4)
___ Over 60 years (5)

16 7 Please indicate your gender:
X Male Q)]
___ Female @)

17 8 Please indicate which country you are from (cross only one):
. Us (1
___ Canada 2
X UK (3)
—. Germany (4)
___ France (5)
_ ltaly (8)
__ Russia (7
__ China (8)
. Other country (9)

Note: the 0;1 indicates the coding system that will be used. Each response category must be
defined as a separate question = variable, 0=No, 1=Yes ’

The accompanying code sheet could look as:
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1. Introduction

Back in Bowerman Chapter 11, Sections 11.1 and 11.2, we worked with the Analysis of
Variance (ANOVA). This method was a generalization of the test for comparing two
independent samples for mean to p groups. We examined a hypothesis stating that the mean
between the groups were equal. We considered the mean of the variable in the columns
only. In some cases also the mean of the rows may be of importance.

In such cases, we label the measurement variable of the column factor I and the
measurement variable of the row factor 2 respectively. The factor of the row may be a
single row or a group of rows. The first case is called a Randomized Block Design, whereas
the latter is called Two-way ANOVA.

Related to questionnaires, the more advanced approach to the ANOVA analysis will be of
interest if we consider cases where several questions are related to each other.

2. Randomized Block Design
(BO Section 11.3)

A randomized block design compares p treatments (columns) with b blocks (rows). Each
block is used exactly one time to measure the effect of each and every treatment. The
assumptions are similar to the ones used for the one-way ANOVA. Note, that for each
treatment, the number of blocks has to be similar.

Hypotheses
Can be stated as:

Hy: The means of p and b are equal
H,;: Minimum one is different

This can be elaborated further, but now things become more complicated:

Hy: The means are equal 1) For the p treatments
11) For the b blocks

H,: Minimum one is different 1) For the p treatments
i1) For the b blocks

Method
Compared to the one-way ANOVA, the variation has to be decomposed into treatments as
well as blocks.

Total variation = Treatment + Block + Errors
Sum Square Total = Sum Square Treatment + Block Sum Square + Sum Square Error



Or:

SSTO = SST + SSB + SSE

The calculations can by summarized into the extended ANOVA-table:

Variation Squared sum (SS) Degrees of  Mean square (MS)  F-value
freedom (df)
Treatment SST=b>" (%.-%) p—1 MST = SST/(p—1) F MST
- = MSE
b _ —
Blocks SSB=p), (%.,-%) b-1  MSB=SSB/(b-1) F MSB
= MSE
Error SSE =SSTO - SST-SSB (p—1)(b—1) MSE — SSE
(p=b=1
Total SSTO = Z; ZLI( X, — x)? p(b—-1)

There are now two F-tests to be considered. One for the p treatments and one for the b
blocks.

Degrees of freedom for the testers are:
Treatments: df; = (p—1) df; = (p—1)(b—1)
Blocks: df; = (b—1) df; = (p—1(b—1)
Example in Excel and Megastat
Let us consider a little case, where the price of a basket of daily commodities is purchased

in four different cities. In each city, the basket is purchased in five different supermarkets.
The dataset measured in DKK look as:

Senderborg Aabenraa Kolding Ribe
Netto 750 800 810 680
Fakta 780 790 790 740
Fotex 820 830 840 750
Lidl 790 770 730 730
Aldi 740 770 770 750




In order to substantiate our analysis, let us first perform an ANOVA-analysis. The
hypotheses to be inspected are:

Hy: The means of the cities are equal i€. sonderbore = Maabenraa = MKolding = MRibe
H;: Minimum one is different

We perform along the lines described in the notes from the statistics course. In Excel
perform data/data analysis/One-way ANOVA. The following output will appear:

ANOVA: Single Factor

Summary
Groups Obs Sum Average Variance
Sgnderborg 5 3,880 776 1030
Aabenraa 5 3,960 792 620
Kolding 5 3,940 788 1720
Ribe 5 3,650 730 850
ANOVA
Source ) Df MS F-value P-value F-crit
Between Groups 12,175 3 4,058.33 3.85 0.03 3.24
Within Groups 16,880 16 1,055.00
Total 29,055 19

The test is significant at the 5 percent level. A supplementary analysis will reveal that Ribe
is cheaper than the other three cities.

Now expand the problem, and consider the supermarket chain as well. In this case the
hypotheses are:

Hy: The mean of cities as well as supermarket chains are equal
H,;: The means are different

In Excel select data / data analyses / ANOVA: Two-Factor without Replication

-

: (o)

Data Analysis &ﬁ
Analysis Tools
| Anova: Singlé Factor ||
Anova: Two-Factor With Replication | cancel }
Anova: Two-Factor Without Replication = b g
Correlation 2 —I}
Covariance Hjzlp |

Descriptive Statistics

Exponential Smoothing

F-Test Two-Sample for Variances

Fourier Analysis

Histogram Bl




A box is obtained looking as:

@

~

Anova: Two-Factor Without Replication

Input
Input Range: |

Labels W
Alpha:  0.05

Output options
QOutput Range:
@) New Worksheet Ply:
New Workbook

Performing this sequence will result is the following output:

ANOVA: Two-factor without Replication

Summary Obs Sum Average Variance
Netto 4 3,040 760 3533
Fakta 4 3,100 775 567
Fatex 4 3,240 810 1667
Lidl 4 3,020 755 900
Aldi 4 3,030 758 225
Senderborg 5 3,880 776 1030
Aabenraa 5 3,960 792 620
Kolding 5 3,940 788 1720
Ribe 5 3,650 730 850
ANOVA

Source Ss Df MS F-value P-value F-crit

Rows (supermrk.) 8,380 4 2,095.00 2.96 0.06 3.26
Columns (cities) 12,175 3 4,058.33 5.73 0.01 3.49
Error 8,500 12 708.33
Total 29,055 19

It is observed that the p-value for the cities has decreased from 0.03 to 0.01. This is for
cities. It is also lower, than for rows (supermarkets). The p-value for the supermarkets is not
significant at the 5 percent level, but at the 10 percent level only. Although, Fetex is the
most expensive, it is not significantly more expensive than the cheapest supermarket namely
Lidl. So the price span among the supermarkets remains constant, but level differs among

cities.



In Megastat, a similar analysis can be conducted. Her post-hoc or supplementary analysis is
performed as well. In Megastat use add-ins / Megastat / Analysis of Variance /Randomized
Block Design. The dialog box looks as under one-way ANOVA. However, in Megastat
some interesting plots can be produced see below.

Comparison of Groups
900.0
850.0 + .
. *
*
800.0 -+ 2 ,:_ ~
750.0 + s $
* L]
700.0 +
*
650.0 -+
600.0
Sgnderborg  Aabenraa Kolding Ribe
and
Comparison of Groups
900.0 +
850.0 +
800.0 @
750.0 + —
700.0 +
650.0 +
600.0
Sgnderborg  Aabenraa Kolding Ribe




3. Two—Way ANOVA
(Appendix D or BO Section 11.4, 4™ edition)

The two-way ANOVA 1is a further extension of the randomized block design. The
treatments and blocks are now assumed to interact with each other. In our example this
implies that the price setting of the Supermarkets not only follow an overall company
policy, but also varies from city to city.

Two factors are said to interact if the difference between levels (treatments) of one factor
depends on the level of the other factor. Factors that do not interact are called additive.

The three questions answerable by two-way ANOVA are:

e s there any factor A main effect (treatments)?
e s there any factor B main effect (blocks)?
e Are there any interaction effects of factors A and B?

Moving back to the example of the Supermarkets we add also information with regard to the
supermarket chain “Coop”. The table looks now as:

Senderborg Aabenraa Kolding Ribe

Seg 1 Netto 750 800 810 680
Fakta 780 790 790 740

Seg 2 Fgtex 820 830 840 750
Coop 840 850 860 820

Seg 3 Lidl 790 770 730 730
Aldi 740 770 770 750

There are now a levels of factor A (a = 3), i.e. the segments, and there are b levels of factor
B (b = 4) 1.e. the cities. Thus, there are a xb (3x4 = 12) combinations of segments and cities.
Finally, there are n = 2 elements/supermarkets in each segment.

In the table, the elements of factor B rows have been further decomposed into 3 segments.
So the grouping of factor B is curial for the outcome of the investigation. The 3 segments
represents: 1) Danish owned discount supermarkets; 2) Normal Danish supermarkets, and 3)
German owned discount supermarkets. Besides from an investigation of the price setting
across the cities (factor A), we can analyze the price setting across supermarket chains
(factor B), and finally the price setting of each segment across the cities (interaction among
factor A and factor B).

In the previous Section it was assumed that the numbers of the blocks are of equal size
among all treatments. In addition, it is in the present case assumed that the sizes of the
segments are equal. Therefore, we had to add “Coop” otherwise segment 2 would only
consist of “Fetex”.



Hypotheses
Can be stated as:

Factor A: Hy: All a factors are equal
(treatments) H;: Minimum one is different
Factor B: Hy: All b factors are equal
(blocks) H;: Minimum one is different
Factor AB: Hy: All ab factors are equal
(interaction) H;: Minimum one is different

Method

The decomposition of the total variation is further extended relative to the randomized block

design. The mathematical formulas are not handy, so for the present purpose we only state:
Total variation = Variation A + Variation B + Variation AB  +Variation Error

SST = SSA +SSB + SS(AB) + SSE

The calculations can by summarized into the extended Two-way ANOVA-table:

Variation Squared Sum  Degrees of  Mean square (MS) F-value
freedom (df)
Factor A SSA a—1 MSA = SSA4 F = MSA
a-1 MSE
Factor B SSB b-1 MSB - SSB F, = MSB
b—-1 MSE
Interaction SS(AB) (a-1)(b—1) MSAB — SS(AB) F, - MSAB
(p—-1)(b-1) MSE
Error SSE ab(n—1) MSE - SSE
ab(n—1)
Total SST abn — 1

There are now three F-tests to be considered. One for each factor and the F-test for the
interaction among the two factors A and B. Degrees of freedom for the testers are:

Factor A:  df; = (a—1) df; =abn—1)
Factor B: df; = (b—1) df; =abmn—1)
Interaction df; = (a—1)(b—1) df; =abm—1)



Example in Excel and Megastat
First the hypotheses have to be stated. This is a little more complicated than earlier.

Factor A: Hy: The price basket among the segments is similar
(treatments) H;: Minimum one is different

Factor B: Hy: The price basket among the cities is similar

(blocks) H,: Minimum one is different

Factor AB: Ho: The segments of the Supermarkets and the cities are similar
(interaction) H;: Minimum one is different

In Excel select data / data analyses / ANOVA: Two-Factor with Replication

-

Data Analysis

Analysis Tools

Anova: Single Factor -
Anova: Two-Factor Without Replication
Correlation -
Covariance Hjelp
Descriptive Statistics

Exponential Smoothing

F-Test Two-Sample for Variances

Fourier Analysis

Histogram ad

\ v

A box is obtained looking as: ( Data input
) (including labels)
Anova: Two-Factor With Replication o

Input V
Input Range: |

Rows per sample:

Alpha: 0.05

Output options

~) Qutput Range: Denote the
@) New Worksheet Ply: size of the
New Workbook Se‘gments =2
in the case
~ /

Performing this sequence will result is the following output:



ANOVA: Two-way with Replication

Summary Sgnderborg Aabenraa Kolding Ribe Total
Netto/Fakta
Obs 2 2 2 2 8
Sum 1,530 1,590 1,600 1,420 6,140.00
Average 765 795 800 710 767.50
Variance 450 50 200 1800 1821.43
Fotex/Coop
Obs 2 2 2 2 8
Sum 1,660 1,680 1,700 1,570 6,610
Average 830 840 850 785 826.25
Variance 200 200 200 2450 1141.071
Lidl/Aldi
Obs 2 2 2 2 8
Sum 1,530 1,540 1,500 1,480 6,050
Average 765 770 750 740 756.25
Variance 1,250 0 800 200  483.93
Total
Obs 6 6 6 6
Sum 4,720 4,810 4,800 4,470
Average 786.67 801.67 800 745
Variance 1,506.67 1,056.67 2,240 2,030
Two-way ANOVA
Source Ss df MS F F-value F crit
Factor A (seg./rows) 22,608.33 2 11,304.17 17.39 0.00 3.89
Factor B (cities/col.) 12,566.67 3 4,188.89 6.44 0.01 3.49
Interaction 3,758.33 6 626.39 0.96 0.49 3.00
Error 7,800.00 12 650
| alt 46,733.33 23

Initially, a descriptive analysis of each segment by city is provided. This is some kind of
“averaging” of the analysis found under the analysis of randomized block design. The
outcome from the ANOVA-table has the following interpretation: Factor A is strongly
significant, so the segments are observed. Further, there are in general price differences
among the cities. However, this is not due to the presence of the segments. The segments
prevail among the cities and do not lead to a change in competition. Or stated alternatively:

If for example “Coop” and “Fetex’

b

consumer goods, then this is the case in all cities.

10

i1s the most expensive place to buy the basket of



Moving to Megastat, the post-hoc or supplementary analysis is performed as well. This is a
Tukey comparison as described under the simple ANOVA-analysis; see Chapter 11 in
Bowerman Section 11.2. In Megastat use add-ins / Megastat / Analysis of Variance /Two-
way ANOVA. The dialog box looks as under one-way ANOVA. However, in Megastat
some interesting plots can be produced see below.

Two factor ANOVA

Factor 2
Means:
Sgnderborg  Aabenraa Kolding Ribe
Netto/Fakta 765.0 795.0 800.0 710.0| 767.5
Factor 1 Fatex/Coop 830.0 840.0 850.0 785.0 | 826.3
Lidl/Aldi 765.0 770.0 750.0 740.0 | 756.3
786.7 801.7 800.0 745.0 783.3
ANOVA table
Source SS df MS F p-value
Factor 1 22,608.33 2 11,304.167 17.39 .0003
Factor 2 12,566.67 3 4,188.889 6.44 .0076
Interaction 3,758.33 6 626.389 0.96 4884
Error 7,800.00 12 650.000
Total 46,733.33 23
Post hoc analysis for Factor 1
Tukey simultaneous comparison t-values (d.f. = 12)
Lidl Netto Fatex
756.3 767.5 826.3
Lidl 756.3
Netto 767.5 0.88
Fatex 826.3 5.49 4.61
critical values for experiment wise error rate:
0.05 2.67
0.01 3.56
p-values for pair wise t-tests
Lidl Netto Fatex
756.3 767.5 826.3
Lidl 756.3
Netto 767.5 .3948
Fatex 826.3 .0001 .0006
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Post hoc analysis for Factor 2
Tukey simultaneous comparison t-values (d.f. = 12)
Ribe Sgnderborg Kolding  Aabenraa

745.0 786.7 800.0 801.7
Ribe 745.0
Sgnderborg 786.7 2.83
Kolding 800.0 3.74 0.91
Aabenraa 801.7 3.85 1.02 0.11

critical values for experiment wise error rate:
0.05 2.97
0.01 3.89

p-values for pair wise t-tests
Ribe Sgnderborg Kolding  Aabenraa

745.0 786.7 800.0 801.7
Ribe 745.0
Sgnderborg 786.7 .0152
Kolding 800.0 .0028 .3829
Aabenraa 801.7 .0023 .3283 9117
Interaction Plot by Factor 2
900.0
850.0 +
800.0
c
]
[}
= 750.0 +
©
O
700.0 +
650.0 +
600.0
Sgnderborg Aabenraa Kolding Ribe
—o—Netto/Fakta —x—Fgtex/Coop —B— Lidl/Aldi

What is the interpretation of the graphic illustration? In Appendix D in Bowerman, a guide
1s provided in order to read the graphs. This guide is shown on the top of the next page.
Four cases are considered. In the present case the lower left panel seems to be the most
appropriate. In the cases in the upper part of the illustration the use of two-way ANOVA has
no effect because the variables not are related. In the lower panel the case to the left shows a
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situation where both factors have influence, but there is no significant interaction. This is
the case in the final illustration shown in the bottom panel to the right. Here the interesting
issue is that the lines are crossing, but still displays a systematic pattern. Observe that in the
illustration above in Ribe, the segments of Lidl/Aldi and Netto/Fakta crosses. This implies
that the price basket of the two Danish discount markets is cheaper than the similar basket
of goods supplied by Lidl/Aldi. In this case an interaction among the two segments with the
feature that discount is still the cheapest way to buy consumer goods. In interaction is only
observed for Ribe and is therefore not overall significant. That would properly have been
the case, if this feature also had been observed in one of the three other cities.

Different Possible Treatment Effects in Two-Way ANOVA

Mean Mean
response response \evalil
of factor 2
Level 1
of factor 2
Level 2
of factor 2
| | | | | |
1 2 3 1 2 3
Levels of factor 1 Levels of factor 1
(a) Only factor 1 significantly (b) Only factor 2 significantly
affects the mean response affects the mean response
Mean Mean
response response
Level 1 Level 1
of factor 2 of factor 2
/\Of ol2 Level 2
1 1 1 1 1 1
1 2 3 1 2 3

Levels of factor 1
(c) Both factors 1 and 2 significantly

affect the mean response:
no interaction
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(d) Both factors 1 and 2 significantly
affect the mean response:
interaction
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1. Working with SPSS

SPSS is a widely used software package. It covers all types of statistical analyses. It is
specially designed for analyses of questionnaires. Time series analysis is not optimal
covered by the package. SPSS has a long tradition, and it has been a part of statistical
analysis since the days of the mainframe systems from the 1960ties and later.

Nearly all books on marketing research uses and advocates SPSS. Interestingly, no books on
statistics use SPSS for applications, examples etc. This makes teaching on SPSS a little bit
special. SPSS has a very good distribution system, but the license is expensive for business
users just as the case with SAS. SDU supports SPSS. Over the past two decades SPSS has
faced increased competition and several alternatives has occurred. SPSS has met this
challenge by introduction a new version nearly every year.

In recent versions a system of add-ins has been adopted. This has caused the price to
decrease for the basic version, but here SPSS is not much better than the AnalysisToolPack
by Excel/Microsoft. However, SDU has most of the add-ins, and they are being installed
automatically when downloading the program from Backboard. SPSS run on Windows as
well an on MAC. The license runs for a year, and has to be renewed every year at the end of
June. Having the add-ins installed SPSS has many features. This is an advantage as well as a
weakness of the package, because there are so many options, that the user easily gets
confused.

A freeware alternative to SPSS is PSPP. Just provide a search on “PSPP” and follow the
instructions! PSPP also supports Linux etc. A second alternative is Winstat. This is an add-
in to Excel. This program is very competitive price set relative to SPSS, and with the
analysis tool package loaded it is nearly as good.



The following is a very brief introduction to the package. SPSS has a very efficient help
function that can answer nearly all questions. First get SPSS installed from the SDU system.
Select if you are Windows or Mac user.

Having SPSS successfully installed click on the SPSS icon and obtain the start screen:
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SPSS offers two possibilities for opening data namely in the SPSS data format *.sav or
other formats like for example Excel *.xIsx.

On the screen shot observe also:

e The data view / variable view. This is a very handy feature. It allows you to type in
data with very long names. For example a full question in a questionnaire. This is a
good feature if you have for example 100 questions, and want to look on correlations
or goodness-of-fit tests (notice, that the way data is organized is a little bit different
and more efficient than the method applied by Excel).

e The toolbar has all relevant main menus. Three of them are worth mentioning
namely: data for data handling; analyze with all relevant menus for statistical
analyses, and finally the help function to the right.

e The button bar covers main function on opening of data, zoom and pivot functions
etc.

The best way to learn the package is to load in a data set, and then flip around in the menus!
So good luck!



2. Logistic Regression
(BO Section 14.12 or Appendix E in Bowerman 4e or older)

This term logistic regression often is confusing, and in fact also in SPSS, where several
menus claim that they can perform the same thing. In the present context we refer to what is
known as the logistic regression model. A binary logistic regression model implies that that
the dependent variable has only two categories for example 0 = success and 1 = failure just
as the case with a dummy variable.

Such a general linear probability model with k “regressors” labeled X can be written as
Yy=E(Y)+e=0,+BX + X, +..+ BX +¢&
But now compared to the “traditional” multiple regression model y is defined as:

1if initial option is choosen (buy a car, vote yes, drink "Carlsberg")

y= 0 if alternative option is choosen (not buy a car, vote no, drink "Tuborg")

This model is complex to estimate by OLS. Only if y is divided into two equal large parts
will the estimates be consistent. Otherwise the coefficients will be either upward or
downward biased. The problem is that we have a non—linear model, and therefore we also
need a non—linear estimator. This is a complex expression that is maximized (a little like the
optimum method known from the course in mathematics). This method is called a log
likelihood estimator.

The interpretation of this expression is similar to the well known regression output. We
illustrate with the example taken from Bowerman. A personal director of a firm has
developed two tests to help determine whether potential employees would perform
successfully in a particular position. To help estimate the usefulness of the tests, the director
gives both tests to 43 employees that currently hold the position. If the employee is
performing successfully we associate the value 1 for the y-variable and 0 if the employee is
performing unsuccessfully. We label this variable Group. The data set has now the
following set up:

Observations Group Test 1 Test 2
1 1 96 85
2 1 96 88
3 1 91 81
42 0 83 77
43 0 81 71




We want to estimate the following model by use of SPSS:

Group, = E(Group) + &; = B, + B/ Testl, + B,Test2; +¢;

We open SPSS and load in the data from the Excel file labeled Perftest.xls from the data
directory accompanying Bowerman. In SPSS select on the tool bar “Analyze” then
“Regression” and then “Binary Logistic...”.
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In order to import your data from an Excel file into the data format written by SPSS, you
have to manipulate a little with the data loaded in from Excel. Delete lines 1 and 2, and
move into variable view (bottom left). Here give the variable the names in the equation

above.

Under “Binary logistic...” the following menu appears:

FH Logistic Regression ﬂ
e e |
& Test2 Block 1 of 1 =

Covariates:
Test1

Test2

Method: |Enter T

Selection Variable:

()] |

(oK ][ Paste |[ Reset |[cancel || Help |




As the dependent variable use Group, and as covariates (regressors) use the variables Testl
and Test2 respectively. Click then on “OK”. A lot of things happen, but the final output
looks very similar to Figure E.2 in Bowerman:

Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step 1% Testl ,481 ,158 9,319 1 ,002 1,618
Test2 ,165 ,102 2,622 1 ,105 1,179
Constant -55,981 17,434 10,311 1 ,001 ,000

a. Variable(s) entered on step 1: Testl, Test2.

What is interpretation? The “B”’s are the coefficients. They are both positive. So a good test
score means that you belong to the best group (1). What a surprise! The coefficient of
“Test1” is the highest, so this is the most important test. The level of significance or the p-
value is shown under the column “Sig”. For “Testl” it is equal to 0.002. This is highly
significant. For “Test2” it 1s equal to 0.105. This is higher than 0.05, so this variable is not
significant. The conclusion is that only the first test is relevant for the overall performance
of the employee.

How good is the model? In the SPSS output we find:

Model Summary

Step Cox & SnellR Nagelkerke R

-2 Log likelihood Square Square

1 27,886% ,519 ,694

a. Estimation terminated at iteration number 7 because parameter estimates

changed by less than .001.

Depending on the measure used the model explains between 0.519 and 0.694 of the
variation in data. In logistic regression these values are frequently low, so this is pretty
good.

What is the difference relative to the ordinary regression performed by use of Excel? In
order to examine this issue consult the output by Excel below:



Regression Statistics

Multiple R 0.73
R-squared 0.54
Adjusted R-square 0.51
Standard error 0.35
Observations 43
ANOVA
df SS MS F-value  Signif
Regression 2 5.75 2.87 23.22 0.00
Residual 40 4.95 0.12
Sum 42 10.70
Coeffi- Standard Lower Upper
cient error t-stat P-value 95% 95%
Intercept -5.9291 0.9633 -6.1547 0.00 -7.8760 -3.9821
Test 1 0.0586 0.0112  5.2330 0.00 0.0360 0.0812
Test 2 0.0153 0.0100  1.5393 0.13 -0.0048 0.0354

Comparison reveals that the significance and signs of the coefficients is quite similar, but
the size of the coefficients is very different. The model performed by the traditional OLS
method is therefore biased and insufficient.
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