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1. Introduction – Why These Notes? 
 
UgetStatz + is the natural extension of the note set UgetStatz. The purpose of UgetStatz + is 
to dig deeper into especially the topic of regression and time series analysis. In addition, the 
issue of sampling is discussed, and it is practically shown how to draw a sample. Finally, 
UgetStatz + shows some simple methods for analyzing questionnaires ie. non-parametric 
methods and logistic regression. Most of the analysis can be undertaken by use of tne 
Analysis Toolpack in Excel or the add-in Megastat. 
 
The material should be appropriate for a 5 ECTS course. 
 
 
Nils Karl Sørensen 
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1. Integrated Statistical Modeling and the use of Regression 
(BO Section 14.10 & 14.11) 
 
Let us use our knowledge from the previous course in statistics to perform an integrated 
model sequence. After having outlined for example a macroeconomic theory for example 
for the money demand, the consumption function or the investment function we now want 
to perform a statistical investigation. Let us assume that we have found some statistics from 
the national statistical bureau. Then such an analysis is split into two parts namely the 
descriptive statistical part and a regression part. These parts could contain: 
 
Descriptive statistical part 
 
Here the following should be considered: 
 

 Set up some nice time series or cross-section plots 
 Compute descriptive statistics and comment on the evolution of the data 
 If we use cross-section data: Draw Box-plot(s) and comment on data 
 If we use time series data: Look for special events (like the 2007 recession) and 

consider the issue of seasonality 
 
Regression part 
 

 Set up a matrix of correlation. Identify the variables with the highest correlation to y 
and comment. Discuss signs and relate to the prior from economic theory. Do we 
find what we expect? As an alternative we could calculate the variance inflation 

factor for variable j defined as 
21

1

j
j R

VIF


  where 2
jR  is coefficient of determination 

for the regression model that related xj to all other independent variables x. If 
multicollinarity is present the VIFj will be high ( 2

jR near one) and vice versa. This 

measure is provided by Megastat. 
 Could multicollinarity be present (correlation among x variables). 
 Based on an initial estimation of the full model a model selection is undertaken. 

During this process we should observe: 
 

o We attempt to obtain the simplest model with the highest R2 coefficient. 
o We attempt to minimize the “standard error of regression” shown in the 

Excel or Megastat output. 
o We attempt to eliminate multicollinarity. 
o All t-statistics should be significant (p-value < 0.05). 

 
 For the final model some selected highlights of the model control can be shown. 
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These things can all be undertaken by the use of Excel. Let us perform the regression part of 
this analysis on a small artificial data set. We want estimate an import (IMP) function for 
the artificial nation “Ruritania” for a 10 year period. We assume that the import depend on 
money supply (MS), gross domestic product (GDP) the exchange rate of US dollar versus 
the local Peso (USDvP), and finally the interest rate (RENT). Below we find the statistics: 
 

Data       
Year Imports 

(IMP) 
bill. pesos 

Money supply 
(MS) bill. 

pesos 

GDP bill. 
pesos 

Exchange 
rate USD 
per Pesos 

Interest rent 
(RENT) 

1 97.14 80 202.40 7.45 7.5 
2 103.63 90 203.00 7.12 6.7 
3 107.65 95 205.50 7.01 6.4 
4 113.81 100 212.10 6.85 6.1 
5 115.32 98 219.80 7.02 6.3 
6 116.96 97 226.80 7.56 6.4 
7 118.46 100 227.40 7.62 6.3 
8 120.47 102 235.20 7.44 6.2 
9 121.21 95 239.80 7.23 6.7 

10 121.40 95 242.40 7.02 6.7 

 
What should we expect from the theory of macroeconomics? When money supply 
increases, so do demand, so imports should increase. The same holds for GDP. If the 
interest rate decreases it will be cheaper to lent money. So a low interest rate should 
stimulate imports. Here we expect negative correlation. Correlation on exchange rate 
depends on the definition of the exchange rate. Here a low exchange rate should make 
imports cheaper. So here we expect a negative relation. 
 
 
Let's look at some plots       
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From the plots we can observe that imports and GDP and money supply should be 
positively correlated. Further imports and the exchange rate as well as the interest rate 
should be negatively correlated. Notice that the exchange rate and the interest rate have a 
very similar pattern. If they are correlated with imports as well as with them self we observe 
a problem of multicollinarity. We want to estimate a model of the form: 
 
  IMPt = β0 + β1MSt + β2GDPt + β3USDrPt  + β4RENTt + εt 

Expected signs:  (+)         (+)            (−)             (−) 
 
Let us first look at the matrix of correlation: 
 

  IMP MS GDP USDvP RENT 
y: Imports (IMP) 1.00     
x1: Money Supply (MS) 0.81 1.00    
x2: GDP 0.92 0.53 1.00   
x3: Exchange rate (USDvP) 0.06 −0.08 0.21 1.00  
x4: Interest rate (RENT) −0.62 −0.96 −0.27 0.20 1.00 

 
Notice, that many of our observations from the plots are confirmed. Besides from the 
exchange rate all variables are highly correlated with imports. Further, we were wrong with 
the correlation between the exchange rate and imports. We also observe a severe correlation 
between the money supply and the interest rate (−0.96). Also among GDP and money 
supply (0.53) multicollinarity is observed. Let us show the results from the estimation of the 
model: 
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Regression Statistics      

Multiple R 1.00      
R-squared 0.99  This is very high!   
Adjusted R-square 0.99      
Standard Error 1.00      
Observations 10      
       
ANOVA       

  df SS MS F-test P-value  
Regression 4 604.62 151.16 152.00 0.00  
Residual 5 4.97 0.99    
Sum 9 609.60        

       

  Coefficient 
Standard 
deviation t-stat P-value 

Lower 95 
% 

Upper 95 
% 

Constant 78.87 112.72 0.70 0.52 -210.89 368.62 
X1: MS -0.02 0.73 -0.03 0.98 -1.90 1.86 
X2: GDP 0.45 0.09 4.96 0.00 0.21 0.68 
X3: USDvP -1.12 1.50 -0.75 0.49 -4.98 2.73 
X4: RENT -8.26 10.26 -0.81 0.46 -34.63 18.11 

 
We have in order to save space omitted the residuals diagrams. The coefficient of 
determination is very high and from the ANOVA table it is observed that the F-test is 
significant. Consequently it is meaningful to estimate the model. 
 
However the model is very poor! The only variable that is significant is GDP. All other 
variables are not significant. The money supply even takes the wrong sign! 
 
In order to proceed we will try to eliminate the most severe problem of multicollinarity 
namely among the money supply and the interest rate. So we estimate the model without the 
interest rent. We exclude the interest rate because the money supply is higher correlated 
with the other variables than the interest rate. 
 
We obtain the following output from Excel, and let us in this case include the residual 
analysis in the output. 
 
Model without the Interest Rate     
       

Regression Statistics      
Multiple R 1.00      
R-squared 0.99      
Adjusted R-square 0.99      
Standard Error 0.97  This is smaller than above  
Observations 10      
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ANAVA       

  df SS MS F-test P-value  
Regression 3 603.98 201.33 215.04 0.00  
Residual 6 5.62 0.94    
Sum 9 609.60        

       

  Coefficient 
Standard 
deviation t-stat P-value 

Lower 95 
% 

Upper 95 
% 

Constant -11.52 10.33 -1.12 0.31 -36.80 13.75 
X1: MS 0.57 0.06 9.18 0.00 0.42 0.72 
X2: GDP 0.38 0.03 14.29 0.00 0.31 0.44 
X3: USDvP -1.72 1.27 -1.35 0.22 -4.82 1.38 
       
 
 
 

      
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

 
Compared to the initial estimation we now observe the correct sign for the money supply. 
Notice that the size of the coefficient of the GDP-variable has remained quite constant. Both 
variables are now significant. The sign on the exchange rate variable is as expected, but it is 
not significant. This means that the model should be reestimated without this variable. This 
will due to low correlation with MS and GDP as seen from the matrix of correlation not 
affect these variables. Finally the analysis of residuals as well as the plot for normality looks 
quite satisfactory. 
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2. The Partial F-test and Variable Selection 
 
In Section 1, we performed a selection of the included variables by inspection of the p-
values only. However, when comparing models several alternatives is optional depending 
on the nature of the data. 
 
First, the partial F-test is frequently used to test the significance of a set of independent 
variables in a regression model. We use this F-test to test the significance of a portion of a 
regression model. 
 
We will present the partial F-test, using a little model example. Suppose that we are 
considering the following models: 
 
Full model:    443322110 xxxxy  
 
Reduced model:   22110 xxy  

 
By comparing the two models, we are asking the question: Given that variables x1 and x2 are 
already in the regression model, would we be gaining anything by adding x3 and x4 to the 
model? Will the reduced model be improved in terms of its predictive power by the addition 
of the two variables x3 and x4. 
 
Let us consider this issue by setting a test of a hypothesis. The null hypothesis that the two 
variables x3 and x4 additional value once x1 and x2 are in the regression model. The 
alternative hypothesis that the two lope coefficients are not both zero. The hypothesis test is 
stated as: 
 
 H0: β3 = β4 = 0 (given that x1 and x2 are in the model) 
 H1: β3 and β4 are not both zero 
 
The test statistic for this hypothesis is the partial F-statistic given as: 
 

  
F

FR
knr MSE

rSSESSE
F

/)(
)1(;


  

 
Where SSER is the sum of squares for error of the reduced model; SSEF is the sum of squares 
for error of the full model; MSEF is the mean square error of the full model; MSEF = 
SSEF/[n−(k+1)]; k is the  number of independent variables in the full model (k=4 in the 
case above); and r is the number of variables dropped from the full model in creating the 
reduced model (in the present case r=2). 
 
The difference SSER − SSEF is called the extra sum of squares associated with the reduced 
model. Since this additional sum of squares for error is due to r variables, it has r degrees of 
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freedom. In our model selection case in the previous section we had that SSER = 5.62, SSEF 
= 4.97 and MSEF = 0.99. Initial k=4 so r=1. With n =10 then: 
 

    66.0
99.0

1/)97.462.5(
)14(10;1 


F  

 
Assuming α=0.05 we find F[1;5] = 6.61. So we cannot reject H0. This is also what we should 
expect. The interest rate is namely not significant in the initial model, and should 
consequently be excluded. 
 
The partial F-test is especially good in situations when working with cross-section models. 
In cases with times series data other problems occur as will be shown in the next Section. 
 
 
3. Analyzing Autocorrelation and the Durbin-Watson Test 

(BO Section 13.8) 

Autocorrelation occurs in non-stationary time series1 where the variables are dependent in 
time. Autocorrelation may be either positive or negative of nature. Examples are given 
below: 
 
 
 Error term   Error term 
 
 
 
                 time 
 
 
 
 
 Positive autocorrelation  Negative autocorrelation 
 
 
We test for autocorrelation be setting up the Durbin-Watson test. We calculate the tester: 
 

 





 
 n

t t

n

t ttDW
1

2

2

2
1)(




 

 
                                                 
1 Notice, that the test for autocorrelation only has a meaning, when we work with time series data, and NOT when we 
work with cross-section data. For example, in the latter case, data may be listed in alphabetic order. If we for example 
applied the test on regional statistics for Germany, performing the test would imply that Mainz and Munich would be 
directly related although the distance between the two cities is several hundred kilometers.  
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This expression is based on the estimation of the regression: εt = pεt−1 + vt where the last 
term is ”the error term of the errors”. We can state the hypothesis as: 
 
 H0: The error terms are not autocorrelated  (p = 0) 
 H1: The error terms are autocorrelated (p ≠ 0) 
 
The Durbin-Watson test is a two-sided test, where the alternative hypothesis (H1) is not 
defined consistently. This is so because under H0 the assumption to the error term is by itself 
not fulfilled. This is exactly what we want to test for! 
 
The distribution for the Durbin-Watson test is non-standard and found in Appendix I at the 
end of these notes or in Bowerman, Appendix A, tables A.11-A.13. k is the number of 
explanatory variables (the number of X’s). There are two critical values to be found named 
dL and dU. The range of the critical value is between 0 and 4. The interpretation can be 
summarized in the following figure: 
 

 
Example 
A ski resort wants to determine the effect that the weather have on the sales of lift tickets 
during the Christmas week. Weekly sales of ski lifts tickets (y) are assumed to depend on 
total snowfall in inches (x1) and the average temperature in Fahrenheit (x2). For a data set 
ranging over 20 years we obtain: 
 

Tickets 
(y) 

Snowfall 
(x1) 

Temperature 
(x2) 

 
     

6835 19 11      
7870 15 -19      
6173 7 36      
7979 11 22      
7639 19 14      
7167 2 -20      
8094 21 39      
9903 19 27      
9788 18 26      
9557 20 16      
9784 

12075 
19 
25 

-1 
-9 

 
     

9128 3 37      
9047 17 -15      

Positive Not No    Not       Negative 
autocorr. defined autocorr.    defined       autocorr.  

   0 dL    dU   4−dU       4−dL                 4 
      acc. H1             acc. H0  acc. H1 
       p>0              p=0   p<0 
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10631 0 22      
12563 24 2      
11012 22 32      
10041 7 18      
9929 21 32      

11091 11 -15      
        
        

   
 
     

        
        
        
        
        

From the plots it is observed that the relation among the variables not is optimal. So we do 
not expect the most significant result. This is also confirmed by the matrix of correlation 
shown below. We obtain from Excel by use of the command: Tools/data 
analysis/correlation: 
 

  Tickets Snowfall Temperature
Y: Tickets 1.00   
X1: Snowfall 0.33 1.00  
X2: Temperature -0.11 -0.02 1.00

 
Let us now estimate a model of the form: 
 
 tttt xxy   22110   where t = 1,2,…,20 

 
From Excel we obtain: 
 

Regression Statistics      
Multiple R 0.35  This is a poor correlation   
R square 0.12      
Adjusted R square 0.02      
Standard Error 1711.68      
Observations 20      

 
ANOVA       

  df SS MS F-test P-value  
Regression 2 6793798.5 3396899.1 1.16 0.34  
Residual 17 49807214 2929836.1    
Sum 19 56601012.2        

       

  Coefficient 
Standard 
Deviation t-stat P-value 

Lower 
95% 

Upper 
95% 

Constant 8308.01 903.73 9.19 0.00 6401.31 10214.71 
X1: Snowfall 74.59 51.57 1.45 0.17 -34.22 183.41 
X2: Temperature -8.75 19.70 -0.44 0.66 -50.33 32.82 



11 
 

       
        
 
 
 

   
 

    
    
    
    
    
    

 
 
 
 
This is not a very good result, and much worse than our expectations from the plots! The F-
test is not significant (p = 0.34 > 0.10), so the overall model is not significant. Further, only 
the constant term is significant. It looks like that neither snowfall nor temperature has an 
influence on the sales of tickets. 
 
The plots of residuals are also not very nice! Both plots reveal some kind of systematic 
behavior. Let us perform the Durbin-Watson test first by calculation of the formula given 
above in Excel. We then obtain: 
 

εt          εt−1                  (εt − εt−1 )2                  (εt )
2 

-2793.99 7806391.51 
-1723.23 -2793.99 1146528.83 2969525.68 
-2342.03 -1723.23 382911.49 5485102.65 
-956.95 -2342.03 1918431.85 915762.73 

-1963.73 -956.95 1013597.71 3856238.75 
-1465.27 -1963.73 248460.53 2147024.00 
-1439.07 -1465.27 686.38 2070933.63 

414.07 -1439.07 3434133.96 171452.12 
364.91 414.07 2416.75 133157.32 

-102.82 364.91 218765.62 10571.25 
49.96 -102.82 23341.64 2496.31 

1823.37 49.96 3144985.16 3324691.68 
920.10 1823.37 815908.57 846578.74 

-660.40 920.10 2497979.80 436131.76 
2515.57 -660.40 10086807.91 6328096.53 
2482.26 2515.57 1109.74 6161605.15 
1343.06 2482.26 1297779.75 1803801.32 
1368.40 1343.06 642.44 1872527.09 

334.65 1368.40 1068645.60 111990.59 
1831.16 334.65 2239532.65 3353135.13 

Sum 29542666.38 49807213.95 

59.0
95.49807213

38.29542666
DW  
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It is assumed that n=20 and k=2. 
With a level of significance equal to 0.05, we have from the 
critical values in Appendix I that 
 
DL = 1.10 DU = 1.54 
 
Hypothesis: 
 
H0: No first order autocorrelation 

H1: Positive first order autocorrelation 

As DW < DL H1 is accepted. 
 
Alternatively, we can find the DW-value by use of Megastat. Here the test is much easier to 
perform. In the menu for regression, a label with the text Durbin-Watson can be found. Just 
mark the label, and the test will be performed. The menu looks as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We then find that positive autocorrelation is present. How do we solve the problem? A 
solution could be to include a positive linear trend. This is a variable taking the values T = 
1,2,..,20. It is a strongly positive variable. We must from the plots expect this variable to be 
strongly correlated with the sales of tickets as this has a positive trend. 
 
The result with inclusion of a positive linear trend from Excel is: 

Mark here 
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Regression Statistics      

Multiple R 0.86  This is has increased a lot!   
R square 0.74      
Adjusted R square 0.69      
Standard Error 957.24  This has decreased a lot!   
Observations 20      
       
ANOVA       

  df SS MS F-test P-value  
Regression 3 41940217.4 13980072.5 15.26 0.00 Significant! 
Residual 16 14660794.8 916299.676    
Sum 19 56601012.2        
 
       

  Coefficient 
Standard 
deviation t-stat P-value Lower 95 % Upper 95 % 

Constant 5965.59 631.25 9.45 0.00 4627.39 7303.78
X1: Snowfall 70.18 28.85 2.43 0.03 9.02 131.35
X2: Temperature -9.23 11.02 -0.84 0.41 -32.59 14.13
X3: Trend 229.97 37.13 6.19 0.00 151.25 308.69

 
Compared to the first regression an improvement can be observed. Snowfall is now 
significant, but temperature has no effect on the model, and should be excluded. Further the 
coefficient of determination has increased and the standard error has decreased. 
Consequently this is the model to be preferred. 
 
For this model the Durbin-Watson test can also be undertaken. This will result in a DW-
value equal to 1.88. Now k=3 because the trend is included. The critical values can again be 
found be use for the appendix. In this case dL=0.998 and dU=1.676. As 1.676<1.88 no 
autocorrelation is observed. The inclusion of the trend variable eliminates the presence of 
autocorrelation. 
 
 
4. More General Tests for Model Selection 
 
The Durbin-Watson test for autocorrelation can be criticized in several ways. First, it is only 
possible to examine for first order autocorrelation. For example, it is not possible to 
consider for example in influence of εt−4. That is the residual error 4 periods ago. Second, 
the Durbin-Watson statistic is not defined for some outcomes of the value of the DW-tester. 
Third, the alternative hypothesis is not properly tested (this is actually due to the second 
critic). 
 
In Section 2, we considered the F-test being a little bit similar to the Durbin-Watson test for 
autocorrelation. Here we compared two models, and used the F-statistic to determine the 
significance of an improvement of the initial model. The test presented in Section 2 is 
intuitive more appealing that the Durbin-Watson test, because the F-statistic has a well 
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defined statistical distribution. However, there is still the problem with the definition of the 
alternative hypothesis. 
 
The multiplier tests is a class of tests that seeks to solve the problems above by use of the 
methods outlined in Section 2; i.e. the F-test and the Durbin-Watson test outlined in Section 
3. 
 
There are three different multiplier tests namely the Wald test, Likelihood Ratio (LR) test 
and the Lagrange Multiplier (LM) test. In principle, the tests investigate the same 
hypotheses, but the theoretical point of departure is different for each test. 
 
The tests are most easily explored by an example taken from macroeconomics. Consider an 
import function estimated on time series data. Let M denote imports and let Y be GDP. 
Further t is time. The time period considered runs from 1 to T. The model can be written as: 
 
 Mt = β0 + β1Yt−1 + εt  where t = 1,2,…,T 
 
The model states that imports in the present period depend on the level of income in the last 
period. We now want to examine if the level of investment I in the last period also should 
have been included in the model. The following hypotheses can be stated: 
 
 
H0: Mt = β0 + β1Yt−1 + ε1t  where t = 1,2,…,T (Model 0) 
H1: Mt = β0 + β1Yt−1 + β2It−1 + ε2t where t = 1,2,…,T (Model 1) 
 
Further m is the number of additional variables included in the model under the alternative 
hypothesis. The three tests can be stated as: 
 
 
Wald Test 
 

Tester 2

1

10
mW SSE

SSESSE
T  







 


 
 
LR Test 
 

Tester 2

1

0log mLR SSE

SSE
T  










 
 
LM Test 
 

Tester 2

0

10
mLM SSE

SSESSE
T  







 

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A nice thing with these tests is fact that they follow the chi-squared distribution. So the tests 
are in the same class of tests as the distribution free goodness of fit tests outlined in 
Bowerman Chapter 12. 
 
The tests look very similar. What is the difference? Remember that the coefficient of 
determination is equal to 
 
 

 
SST

SSE
R 1:2  

 
For each of the models the R2 can be calculated. Then the distribution of the R2 for the 
different models can be displayed in a diagram. At some point the model will be over fitted 
and R2 will start to decrease. The distribution of R2 can then be displayed as a quadratic 
function 
 

 

 

 

 

 

 

 

 

 

 
The only difference between the Wald and the LM test is the reference. For the Wald test it 
is the alternative whereas it for the LM test is the null hypothesis. The LR test is a little 
different taking its point of departure in the model size analysis. 
 
For all tests it is true that they are small sample tests. Further, it is generally true that 

LRLMW   . 
 
 
The LM-test as a Diagnostic Test 
The LM-test can be used to reveal autocorrelation in a more general way. This test is much 
more flexible than the Durbin-Watson test, and the chi-square distribution is better defined 
than the Durbin-Watson statistic. 
 
Assume from the example above that we have accepted that the lagged value of the 
investments should be included in the functional form of the import function. Let this model 
be valid under H0. 

LM test 

Wald test 

LR test

R2

Model size 
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H0: Mt = β0 + β1Yt−1 + β2It−1 + εt where t = 1,2,…,T (Model 0) 
 
When we estimate this model the residuals may not be white noise. For example, it could be 
that the residuals follow a process looking as: 
 

AR(4): εt = ρ1εt-1 + ρ2εt-2 + ρ3εt-3 + ρ4εt-4 + νt 

 
This process is an extension of the process considered in Section 3. Instead of a single lag 
there are now four lags. The term νt is the “error of the error” term. This process is called an 
autoregressive process of order 4. The model states that the errors are related 4 periods back 
in the past. This process can be generalized as: 
 
AR(P): εt = ρ1εt-1 + ρ2εt-2 + ρ3εt-3 + ... + ρpεt-p + νt 
 
We can incorporate the AR(4) process in our model and test if it is being improved. The 
import function now looks as: 
 
H1: Mt = β0 + β1Yt−1 + β2It−1 + ρ1εt-1 + ρ2εt-2 + ρ3εt-3 + ρ4εt-4 + νt (Model 1) 
 
The test is now undertaken the following way: 
 

 Estimate the model under the null (H0) and save the residuals → SSE0 
 Use the residuals and estimate the model under the alternative → SSE1 
 In the present case the model is extended with four lags so m=4 

 
Perform now: 
 
 

Tester 2

0

10
mLM SSE

SSESSE
T  







 


 
 
 
Example  
In Appendix II statistics are given for an annual data set on US national accounts ranging 
over the period from 1929 to 1972. Using these statistics an imports function of the form 
given above can be estimated. The Excel output for the model estimated under H0 is given 
as:  
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Model H0 

Regression Statistics 

Multiple R 0.949 

R-squared 0.901 

Adjusted R-square 0.899 

Standard Error 4.409 

Observations 43 

ANOVA 

  df SS MS F-test P-value 

Regression 1 7282.54 7282.54 374.59 0.00

Residual 41 797.10 19.44 SSE0=797.1 

Sum 42 8079.64       

  Coef St error t-stat P-value low 95% high 95% 

Constant -8.77 1.63 -5.38 0.00 -12.06 -5.47 

Y-lag 0.07 0.00 19.35 0.00 0.07 0.08 

 
Regression statistics are in order, and the coefficients are significant. The extended model 
under H1 is estimated with the following result: 
 
Model H1 

Regression Statistics 

Multiple R 0.950 

R-squared 0.902 

Adjusted R-square 0.897 

Standard Error 4.449 

Observations 43 

ANOVA 

  df SS MS F-test P-value 

Regression 2 7287.78 3643.89 184.07 0.00

Residual 40 791.86 19.80 SSE1=791.9 

Sum 42 8079.64       

  Coef St error t-stat P-value low 95% high 95% 

Constant -9.07 1.75 -5.19 0.00 -12.61 -5.54 

Y-lag 0.08 0.01 7.59 0.00 0.06 0.10 

I-lag -0.03 0.06 -0.51 0.61 -0.14 0.09 
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Although the overall regression statistics has improved, the performance of the lagged 
investment coefficient is not satisfactory. First, the coefficient is not significant, and second, 
the coefficient takes the wrong sign. We expect that an increase in investment will cause 
imports to rise. 
 
How are the 3 tests performing? First, note that the model is expended by a single 
parameter, so m=1. In addition, the number of observation is equal to T=43. Next, the three 
testers are being set up. 
 

Wald Test 

 

Tester 2
1

1

10 2823.0
9.791

9.7911.797
43  






 








 


SSE

SSESSE
TW

 
 
LR Test 
 

Tester 2
1

1

0 1222.0
9.791

1.797
log43log  

















SSE

SSE
TLR

 
 
LM Test 
 

Tester 2
1

0

10 2805.0
1.797

9.7911.797
43  






 








 


SSE

SSESSE
TLM

 
 
 
Comparison of the size of the testers reveals that 1222.02805.02823.0  LRLMW   
as expected. 
 
At the 95 % (α=0.05) level we find that 84.32

1  . As 3.84 (>) is larger than all the testers H0 

is accepted. 
 
The conclusion is that the outcome of all the tests is consistent with the finding above. The 
lagged investments should not be included in the model. 
 
Let us finally consider the case where the LM test is used as a diagnostic test. We have 
already estimated the model under the null. Now we estimate the model with 4 additional 
lags of the errors. The model is shown on page 16 mid. The residuals under the null look as: 
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So autocorrelation of some degree could be present! 
 

The model is a little bit special to set up. The residuals are estimated under H0 and then the 
residuals are lagged as shown below. If the residuals not are lagged an additional period the 
estimation will break down. 

 

Year M Yt-1 It-1 εt-1 εt-2 εt-3 εt-4 

1934 7.1 141.5 5.3 4.97 2.85 3.35 3.25 

1935 8.7 154.3 9.4 5.20 4.97 2.85 3.35 

1936 9.3 169.3 18.0 5.92 5.20 4.97 2.85 

1937 10.5 193.0 24.0 5.59 5.92 5.20 4.97 

1938 … … … … … … … 

1939 … … … … … … … 

 
The following result is obtained under H1: 
 
Model H1 

Regression Statistics 

Multiple R 0.99 

R-squared 0.99 

Adjusted R-square 0.98 

Standard Error 1.45 

Observations 39 

ANOVA 

  df SS MS F-test P-value 

Regression 6 4872.48 812.08 384.89 0.00

Residual 32 67.52 2.11 SSE1 = 67.5 

Sum 38 4940.00       
 
 

‐10.00

0.00

10.00

20.00

1930 1940 1950 1960 1970

Residuals over time
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  Coef St error t-stat P-value Low 95% high 95% 

Constant 1928.02 0.70 2747.32 0.00 1926.59 1929.45 

Y-lag 0.05 0.00 11.95 0.00 0.04 0.05 

I-lag 0.10 0.02 4.05 0.00 0.05 0.15 

E-l1 -0.29 0.16 -1.87 0.07 -0.61 0.03 

E-l2 0.04 0.20 0.19 0.85 -0.36 0.44 

E-l3 0.17 0.20 0.83 0.41 -0.25 0.58 

E-l4 -0.27 0.16 -1.72 0.10 -0.59 0.05 

 
 
The LM-tester is now: 
 
 

Tester 2
4

0

10 68.35
7.791

5.677.791
39  






 








 


SSE

SSESSE
TLM

 
 

At the 95 % (α=0.05) level we find that 49.92
4 . As 9.49 is smaller than 35.68 H1 is 

accepted. So the model above is the best, and autocorrelation of order four is present in the 
initial model. 

The interpretation of the outcome of the test should be taken carefully! Inspection of the 
Excel output reveals that lag 1 is weak significant only, and lag 4 is on the margin to be 
weak significant. This suggests that the model is reestimated with these two lags only. This 
is seen already at the initial estimation from the P-values. 
 
This underlines that these test in general has weak performance compared to the initial 
modeling sequence with inspection of the P-values. 
 
 
Reference 
Engle, R. F., 1982, Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics. 
In: Griliches and Intrilligatior (editors) Handbook of Econometrics, North-Holland. 
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Appendix I: Critical Points for the Durbin-Watson Test Statistic 
95 % level (α = 0.05) 

 

 
Source: 
Durbin, J. and G. S. Watson, 1951, Testing for Serial Correlation in Least Squares 
Regression, Biometrika 30, pp. 158−178. 
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Appendix II: US National Accounts 1929 to 1972 
 

 
 
 
Source: 
Michael Lovell, M, 1975, Macroeconomics, Measurement, Theory, and Policy, Wiley. 
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1. Non-linear Models 

 
In some situations it is not possible to model a linear relationship among the dependent 
variables y and one or more of the independent x variables. The plot of residuals will 
continue to exhibit some kind of curvature. In such a case we can set up either a polynomial 
model or some kind nonlinear or transformed model. 
 
 
1.1. Polynomial Models 
 
The one-variable polynomial regression or quadratic model is given by: 
 
 y = β0 + β1x + β2x

2 + β3x
3+ … + βmxm + ε  

 
where m is the degree of the polynomial - the highest power of X appearing in the equation.  
The degree of the polynomial is the order of the model. The model is easily estimated by 
Excel by transformation of x. Some forms of this model are given in the illustration below: 
 
Illustrations of Models of Polynomial Order Two and Three 

 
 
 
1.2. Simple Types of Non-Linear Models Estimated by Excel 

 
The “add trend line function” in Excel lists several possible transformations for the simple 
regression model. Let us consider an example. 
 
The table on the next page shows a relation between the average hourly wages obtained by 
Masters of Economics by seniority, i.e. the number of years since graduation. As visible a 
non linear relation is present. A decreasing behavior in time is observed. What kind of 
relation should be used in order to estimate this model properly? 
          

X1

Y 

X1

Y 

Xbby 10ˆ 

)0(          

ˆ

2

2
210




b

XbXbby

Xbby 10ˆ 

3
3

2
210ˆ XbXbXbby 
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Senority 
Wage 
DKK Ln(senority) Ln(Wage)       

1 189 0,000 5,242       
2 194 0,693 5,268       
3 210 1,099 5,347       
4 225 1,386 5,416       
5 248 1,609 5,513       
6 255 1,792 5,541       
7 281 1,946 5,638       
8 299 2,079 5,700       
9 320 2,197 5,768       

10 327 2,303 5,790       
11 391 2,398 5,969       
12 371 2,485 5,916       
13 341 2,565 5,832       
14 394 2,639 5,976       
15 357 2,708 5,878       
16 414 2,773 6,026       

           

Use the “add trendline” and “power function” to obtain: 

 
We then obtain the following: 
 
 
 

   
 

     

      
      
      
      
      
      
      
      
      
      

Use “options” to mark 
for “show equation” 
and “show R2”. 

 
 
Place the mouse on an 
observation and right 
click. Then the menu 
above appears. 



4 
 

For comparison purpose the linear trend line is also considered. Although the coefficient of 
determination is the highest for the linear model this will be insufficient for forecasting 
purposes. So the power functional form is selected in order to provide the most efficient 
model to explain the evolution of the hourly wage rate. 
 
 
1.3. Other Transformations 
 
Let us consider some cases where a non-linear model may be changed to a linear model by 
use of an appropriate transformation. Most models that can be transformed to linear models 
are called intrinsically linear models. 
 
Consider first the multiplicative model: 
 
   321

3210 xxxy   
 
This is a multiplicative model of three variables x1, x2 and x3 with multiplicative errors. 
Assuming this behavior for the errors the model we are examining the Cobb-Douglas 
production function for three variables for example labor, capital and human capital. We can 
transform this model to a linear regression model by use of a logarithmic transformation. 
Taking natural logs (sometimes denoted by ln) of both sides of the equation gives the 
following linear model 
 
  logloglogloglog 3322110  xxxy  
 
Notice that the usual assumptions with regard to the errors are valid, so initially the errors 
are not additive. If this was the case the model would not be an intrinsically linear model. In 
Excel we can take the natural logarithm by insert/function/ln. This results in a statement 
“=ln(cell)”, and then copy.  
 
Next consider the exponential model. For example, an exponential model in two 
independent variables can be stated as 
 
  22110 xxey   
 
Taking the natural logs of both sides gives us the following regression model: 
 
  loglogloglog 22110  xxy  
 
Let us now move to a more straight forward non-linear model. Consider the logarithmic 
model: 
 
   xy log10  
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We can linearized by substituting the variable xx log  into the equation. This gives us the 
linear model in x : 
 
   xy 10  
 
Another nonlinear model that may be linearized by an appropriate transformation is the 
reciprocal model. A reciprocal model in several variables can be stated as: 
 

 
 


3322110

1

xxx
y  

 
This model becomes a linear model upon taking the reciprocals of both sides of the 
equation. In practical terms, we run a regression of 1/y versus the xi variables unchanged. 
 
 
1.4. Variance Stabilizing Transformations 
 
Remember that one of the assumptions of the regression model is that the regression errors ε 
has equal variance. If the variance of the errors increases or decreases as one or more of the 
independent variables changes, we have the problem of heteroscedasticity. In this case our 
regression coefficient estimators are not efficient. This violation of the regression 
assumptions may sometimes be corrected by use of a transformation. We will consider three 
major transformations of the dependent variable y to correct for heteroscedasticity. 
 

1. The square root transformation: yy   
This is the last “severe” transformation. It is useful when the variance of the 
regression errors is approximately proportional to the mean of y, conditional on the 
values on the independent variables xi. 
 

2. The logarithmic transformation: yy log (by any base) 
This is a transformation of a stronger nature and is useful when the variance of the 
errors is approximately proportional to the square of the conditional mean of y. 
 

3. The reciprocal transformation: yy /1  
This is the most severe of the three transformations and is required when the 
violation of equal variance is serious. This transformation of the errors is useful when 
the variance of the errors is approximately proportional to the conditional mean of y 
to the fourth power. 
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2. Modeling the US Electricity Supply 

The article Returns to Scale in Electricity Supply by Marc Nerlove uses the model outlined 
in Section 1.3, and investigates for economics of scale in the US electricity sector vintage 
1955. This is a classic article in econometrics. Nerlove uses a cross-section data set covering 
145 privately owned electricity plants. 

This issue of returns to scale has important bearing on the institutional arrangements 
necessary to secure an optimal allocation of resources. About 80 % of the electricity supply 
is supplied by private owned firms. A special problem with the production of electricity is 
that power cannot be stored. 

The model considered for the production that determines supply has the form: 

 c = total production costs 
 y = output (measured in kwh) 
 x1 = labor input  p1 = wage rate 
 x2 = capital input  p2 = “price” of capital 
 x3 = fuel input  p3 = price of fuel 

 ε = a residual explaining neutral variations in efficiency of the firms 

The generalized Cobb-Douglas production function can be stated as: 

 
   321

3210 xxxy      (1) 
 
Minimization of costs implies: 
 
 332211 xpxpxpc      (2) 
 
Solution to the system of (2) minimized subject to (1) implies the marginal productivity 
conditions1: 
 

 
3

33

2

22

1

11


xpxpxp

     (3) 

 
However, if the efficiency of firms varies neutrally, as indicated by the error term in (1), and 
input prices varies from firm to firm, then the levels of input are not determined 
independently but are determined jointly by use of the firm’s efficiency, level of output, and 
the factor prices it must pay to labor, capital and fuel. 
                                                 
1 The solution to this problem can be found in a standard textbook on Microeconomics. For the mathematical 
description of this function see for example Ian Jacques Mathematics, sixth edition, FT Prentice Hall, pages 169 and 
394. This is the textbook used in Tools for Quantitative Analyses I. 
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This problem of identification is known as the confluent relation problem. However, it is 
possible to fit the reduced form of the system of equations such as (1) and (3) and derive 
estimates of the structural parameters from estimated of the reduced form parameters. An 
important reduced form turns out to be the cost function: 
 

  
  rrrr pppkyc /

3
/

2
/

1
/1 321     (4) 

where 

 
rrk /1

3210 )( 321        (5) 

 
r/1       (6) 

and 

 321  r     (7) 

In our case k is a parameter measuring the level of technology imboided in the components 
of the cost function. Further, ν is the monotonic transformation of the residuals ε. 

The most important parameter is r measuring the degree of returns to scale. If r > 1 there 
are increasing returns to scale (IRS); if r = 1 there are constant returns to scale (CRS), and if 
r < 1 there are decreasing returns to scale (DRS). 

A production function that is appropriate for estimation can now be stated as: 

 EP
r

P
r

P
r

Y
r

KC  3
3

2
2

1
11 

  (8) 

where capital letters denote logarithms (ln) of the corresponding lower case letters. Note 
that under the special case with constant returns to scale r=1 and the estimates of the β’s 
give the correct estimates of the model. 

The model (8) is called the unrestricted model. Here it will be called MODEL 1. How do 
we incorporate the restriction that the coefficients of the prices of the inputs add up to one? 
This can be done for example by dividing costs and two of the prices by the remaining 
price2. When fuel price is used as the divisor, the result is: 

 EPP
r

PP
r

Y
r

KPC  )()(
1

32
2

31
1

3


  (9) 

This is called MODEL II. 
                                                 
2 It does not matter either economically or statistically which price is chosen. 
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The two first models assumes that the relevant “price” of capital is available and that this 
price varies significantly from firm to firm. In reality most firms will finance its production 
plant by loans at the market interest rate. In such case the price of capital is the same for all 
firms. Incorporation of this assumption leave us with MODEL III: 

EP
r

P
r

Y
r

KC  3
3

1
11

*


   (10) 

where 2
2* P

r
KK


 . 

The Excel file in Blackboard called US Electricity Supply Nerlove.xlsx brings the data. 
Estimate by yourself and confirm my findings. 

For MODEL I we obtain: 

MODEL I 

Regression Statistics 

Multiple R 0.96 

R-squared 0.93 

Adjusted R-square 0.92 

Standard Error 0.39 

Observations 145 

ANOVA 

  df SS MS F-test P-value 

Regression 4 269.42 67.35 437.79 0.00

Residual 140 21.54 0.15

Sum 144 290.95       

  Coef St error t-stat P-value low 95% high 95% 

Constant -3.51 1.77 -1.98 0.05 -7.01 0.00 

lnY (output) 0.72 0.02 41.25 0.00 0.69 0.75 

lnW (wages) 0.43 0.29 1.49 0.14 -0.14 1.01 

lnQ (fuel) 0.43 0.10 4.25 0.00 0.23 0.62 

lnR (capital) -0.22 0.34 -0.66 0.51 -0.89 0.45 

 

This is pretty good. The estimated coefficients of wages and especially capital are not 
significant. Looking at the coefficients then the sum of the three coefficients is equal to 0.64 
(0.43 + 0.43 – 0.22). This could indicate decreasing returns to scale, but not all variables are 
significant, so we are not able to judge. 

The plots of residuals are fairly good, and can be found on the next page: 
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The most critical of the plots of residuals is the plot of the logarithm of the output. This 
issue is also considered in the illustration on page 179 and page 182 in the article. It is clear 
that the model is not true. It looks as there are great diversity among the suppliers with low 
output. An explanation on this issue could be that the small firms experience decreasing 
returns to scale, whereas the large firms experience increasing returns to scale. 

Next turn to the result for MODEL II. Our data needs here some additional calculations 
because the logarithm of the price of fuel has to be subtracted from the other variables. The 
following output is obtained: 

MODEL II 

Regression Statistics 

Multiple R 0.97 

R-squared 0.93 

Adjusted R-square 0.93 

Standard Error 0.39 

Observations 145 

ANOVA 

  df SS MS F-test P-value 

Regression 3 294.58 98.19 640.10 0.00

Residual 141 21.63 0.15

Sum 144 316.21       
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  Coef St error t-stat P-value low 95% high 95% 

Constant -4.69 0.88 -5.30 0.00 -6.44 -2.94 

lnY* (output) 0.72 0.02 41.34 0.00 0.69 0.76 

lnW* (wages) 0.59 0.20 2.90 0.00 0.19 1.00 

lnR* (capital) -0.01 0.19 -0.04 0.97 -0.38 0.37 

 

Although appealing from a theoretical point of view this model is not performing 
satisfactory. First, the coefficients do not sum to unity, and second there is still the problem 
with the coefficient of the capital stock. 

A solution could be to leave out the capital stock, but then with only two input variables the 
restriction does not give a meaning. 

This suggests that we estimate MODEL III leaving out the capital variable. The result is: 

MODEL III 

Regression Statistics 

Multiple R 0.96 

R-squared 0.93 

Adjusted R-square 0.92 

Standard Error 0.39 

Observations 145 

ANOVA 

  df SS MS F-test P-value 

Regression 3 269.35 89.78 585.93 0.00

Residual 141 21.61 0.15

Sum 144 290.95       

  Coef St error t-stat P-value low 95% high 95% 

Constant -4.65 0.34 -13.57 0.00 -5.33 -3.97 

lnY (output) 0.72 0.02 41.43 0.00 0.69 0.76 

lnW (wages) 0.48 0.28 1.70 0.09 -0.08 1.04 

lnQ (fuel) 0.41 0.10 4.21 0.00 0.22 0.61 

 

This model is performing better! The only concern is that the coefficient of the wage 
variable is only weak significant. Taking into consideration the confidence intervals of the 
coefficients it is not possible to determine the degree of returns to scale, but overall it seems 
to be close to unity. 
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Finally, let us take size into consideration. In the data set the firms are sorted according to 
output size and divided into five groups. 

 

First the overall performance by group is considered. 

Comparison Overall Regression 

  Group A Group B Group C Group D Group E 

Multiple R 0.69 0.82 0.80 0.94 0.97
R-squared 0.47 0.67 0.65 0.88 0.93
Adjusted R-square 0.41 0.63 0.61 0.87 0.93
Standard Error 0.59 0.22 0.18 0.12 0.15
Observations 29 29 29 29 29

 

The table confirms the view that the model fits better for the larger plants. Turning to the 
coefficients the following results are obtained: 

Comparison of coefficients 

  Group A Group B Group C   Group D   Group E   

  Coef Sig Coef Sig Coef Sig Coef Sig Coef Sig 

Constant -3.14 ** -4.12 *** -6.03 *** -6.14 *** -8.07 *** 

lnY (output) 0.39 *** 0.66 *** 0.99 *** 0.93 *** 1.04 *** 

lnW (wages) -0.02   -0.40   -0.02   0.33   0.70 ** 

lnQ (fuel) 0.42   0.49 *** 0.33 ** 0.43 ** 0.64 *** 

Note: *** significant at the 1 % level; ** significant at the 5 % level; * significant at the 10 % level
 

The model for the small plants only performs good with regard to output. Especially the 
wage rate is only significant for the larger plants. Notice, also that the sum of the 
coefficients of the input variables increases as the size of the plants increases. This indicates 
clearly economics of scale as the plant size increases. See also figure 2 in Nerlove page 180 
displayed on the next page. 
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Reference 
Marc Nerlove, 1963, Returns to Scale in Electricity Supply. Chapter 7 in C. Christ et.al. 
(ed),  Measurement in Economics. Pages 167-198. Stanford University Press. 
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1. Introduction 

The present set of notes deals with time series modeling related to tourism. There is a wide 
literature on tourism and statistical estimation of issues related to tourism. The literature can 
divided into 3 themes: First, modeling of seasonal fluctuations, and secondly modeling 
tourism demand. In both cases, the estimates very frequently are used to forecast the future 
demand. Finally, various kinds of marketing analyses are used in order to identify the 
segments the market. 
 

2. Working with Seasonality and Dummy Variables 
 
An important issue in tourism economics is seasonality. The reason is obvious. The season 
peaks in different periods over the year, and consequently labour demand and the incomes 
varies accordingly. For example in Denmark, tourism demand is peaking during the 
summer, whereas the winter is the off season. In Norway, the seasonal pattern is different 
with a peak in February as well as in July. This is due to the winter ski season. 
 
Considered over a year monthly tourist arrivals in Denmark looks very much like the curve 
of the normal distribution. See the examples below. 
 
 
Bays-Ballot plots of hotel nights for the county of Bornholm, all nationalities 

 

Source: Sørensen (1999) 

 
A Bays-Ballot is a diagram is showing the fluctuations per year at the seasonal frequencies 
i.e. quarterly, monthly or weekly observations. The plot to the left displays the seasonal 
pattern of the island of Bornholm located in the Baltic Sea, whereas the panel to the right 
shows the seasonal pattern for all nationalities of hotel nights for the total of Denmark. 
Observe the very stable pattern. Nothing is happening outside the season. Also here the 
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seasonal pattern is very stable. Of course, the tourism authorities do all what they can to 
change this seasonal pattern and enlarge the season by developing new activities etc. 
 
How can we model the seasonal pattern of tourism, and how can we use statistics to test for 
the effect of the tourism policy? Let us first turn to the nature of seasonality. 
 
In statistics we deal with two types of seasonality, namely deterministic and stochastic 
seasonality. 
 

 Deterministic seasonality is predetermined and constant from year to year. The 
seasonal pattern is constant and will not move. 

 Stochastic seasonality is changing, but based on an underlying trend. If stochastic 
seasonality is present then we say that a unit root is present in the data series.  

 
In both cases we can set up a regression and perform a test for an investigation of the type 
of seasonality. We consider quarterly data in the following examples1. The calculations can 
be found in the Excel file Example Dummy Seasonal.xls. Try to go though the steps by 
yourself. 
 
  
2.1. Deterministic Seasonality 
 
Dummy variables are used to model deterministic seasonality. Let us for a given variable y 
consider a situation with deterministic seasonality. A dummy variable can take either the 
value zero or one. 
 
 In time series analysis we use not adjusted seasonal statistics at the quarterly frequency for 
example. If seasonality is of deterministic nature we can set up the following model: 
 
 tt DDDy   3322110  
 
where D1 = 1 in quarter 1 and 0 otherwise 
 D2 = 1 in quarter 2 and 0 otherwise 
 D3 = 1 in quarter 3 and 0 otherwise  
 
Notice that in this case only three dummy variables are required to represent four seasons. 
In this formulation β1 shows the extent to which the expected value of y in the first quarter 
differs from the expected value in the fourth quarter, the omitted condition. β3 and β4 can be 
interpreted similarly. Alternatively we can use 4 dummies and exclude the constant term. 
 
We can then observe the p-values (t-tests) in the Excel output and examine the effect of 
seasonality. This approach was applied by Barsky and Miron (1989). 

                                                 
1 The set up can be expanded to monthly or bimonthly data as well, but complexity increases. 
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Example 
We consider a quarterly data set of turnovers from renting Danish holiday cottages ranging 
from 1994.4 to 2000.1. So we only have 22 observations. Consequently, the data set can 
only serve as an illustration. 
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Data are shown below with the seasonal dummies. The graph to the left shows the raw data, 
whereas the graph to the right shows the fourth difference change in percent i.e. 
((yt−yt−4)/yt)×100. It is observed that a seasonal behavior is surely present in the data set 
with a summer peak in the third quarter followed by a winter slump. The seasonal behavior 
is preserved when calculation the percentage change, but the series becomes stationary 
around zero. 
 
Data set 

Year Y: Mill DKK Q1 Q2 Q3 Q4 D4 

1994:4 1,837.8 0 0 0 1  
1995:1 1,184.4 1 0 0 0  
1995:2 4,831.6 0 1 0 0  
1995:3 8,992.9 0 0 1 0  
1995:4 1,879.7 0 0 0 1 2.3 
1996:1 1,354.7 1 0 0 0 14.4 
1996:2 4,284.5 0 1 0 0 -1.3 
1996:3 9,207.6 0 0 1 0 2.4 
1996:4 2,174.7 0 0 0 1 1.,7 
1997:1 1,345.2 1 0 0 0 -0.7 
1997:2 3,849.7 0 1 0 0 -10.1 
1997:3 8,987.9 0 0 1 0 -2.4 
1997:4 2,267.8 0 0 0 1 4.3 
1998:1 1,196.0 1 0 0 0 -11.1 
1998:2 3,972.4 0 1 0 0 3.2 
1998:3 9,040.1 0 0 1 0 0.6 
1998:4 2,384.6 0 0 0 1 5.2 
1999:1 1,180.0 1 0 0 0 -1.3 
1999:2 4,197.8 0 1 0 0 5.7 
1999:3 7,642.2 0 0 1 0 -15.5 
1999:4 2,270.2 0 0 0 1 -4.8 
2000:1 1,029.7 1 0 0 0 -12.7 
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Let us now perform the regression: 
 
 tt QQQy   3322110  
 
(Notice we have omitted Q4 because the constant term is included). We obtain: 
 

Regression Statistics      
Multiple R 0.99      
R Square 0.99      
Adjusted R Square 0.98      
Standard Error 375.42      
Observations 22      
       
ANOVA       

  df SS MS F-test Signif. F  
Regression 3 181,229,715.82 60,409,905.27 428.62 0.00  
Residual 18 2,536,955.83 140,941.99    
Total 21 183,766,671.65        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 2,135.80 153.27 13.94 0.00 1,813.80 2,457.80 
Q1 -920.80 216.75 -4.25 0.00 -1,376.18 -465.42 
Q2 2,091.40 227.33 9.20 0.00 1,613.80 2,569.00 
Q3 6,638.34 227.33 29.20 0.00 6,160.74 7,115.94 

 
We observe a peak in the third quarter as expected a negative coefficient in the first quarter 
as expected. In general, this model performs very well, and here seasonality is deterministic 
of nature. A graph of the coefficients of the regression shows the seasonal behaviour: 
 

 
 
The problem with this model is that data may be non-stationary, and have autocorrelation. If 
this is the case (I did not check it) then we should use the differenced series instead. The 
model is then: 
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 tQQQD   33221104  
 
By running this regression we obtain: 
 

Regression Statistics      
Multiple R 0.40      
R Square 0.16      
Adjusted R Square -0.02      
Standard Error 8.92      
Observations 18      
       
ANOVA       

  df SS MS F Signif. F  
Regression 3 208.85 69.62 0.87 0.48  
Residual 14 1,114.31 79.59    
Total 17 1323.16        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 4.52 3.99 1.13 0.28 -4.04 13.08 
Q1 -6.82 5.64 -1.21 0.25 -18.92 5.28 
Q2 -7.67 5.98 -1.28 0.22 -20.51 5.16 
Q3 -8.24 5.98 -1.38 0.19 -21.08 4.59 

 
This result is not satisfactory because we do not find significant parameters. If this model is 
the true one then the nature of the seasonality is not deterministic. Instead it could be 
stochastic. We examine for this in the next Section. 
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2.2. Stochastic Seasonality 
 
During the 1980’ties a new trend emerged in time series analysis or econometrics 
introduced by Clive Granger and Robert F. Engle. They argued that in a statistical sense 
data series may be attracted by each other. If this is the case then the series will 
cointegrated2. 
 
Consider for example Keynesian consumption theory arguing that consumption is a function 
of disposal income. If this is true then the fluctuations in consumption and disposal income 
should be highly correlated. 
 
Normally, we remove the trend from a data series by taking the first order difference. This is 
the percentage change. If a data series has this property it is said to be integrated of order 
one. If consumption and income at the annual level both are integrated of order one then 
they will be attracted by each other and the difference among the two series will result in 
only white noise. If this is true cointegration will prevail. This information can be used to 
model their long run relation. A model along these lines will be considered in Section 3. 
 
 
This theory can be extended to seasonal data. This case is more complex because we have 
an increased number of observations, and because seasonal statistics usual has as specific 
seasonal pattern. As a consequence, we only consider the issue of integration, and we only 
consider quarterly statistics and leave away the monthly case. 
 
Hylleberg et.al. (1990) hereafter HEGY developed a test for the examination of seasonal 
integration. They wanted to examine for stochastic seasonality. 
 
Stochastic seasonality will be present if we observe that over time there will be stochastic 
fluctuations around a given pattern. If this is the case then we say that a seasonal unit root is 
observed. 
 
When a seasonal unit root is observed this information should be taken into account when a 
statistical model for forecasting purposes is set up. This model should then be better than the 
model with deterministic seasonal dummies presented in the previous section. 
 
We can test for stochastic seasonality by running the following regression also called the 
“HEGY-regression”: 
 
 tttttt yyyyy    1.342.331.221.110.4  

 
The auxiliary variables are defined as: 

                                                 
2 In 2003 they received the Nobel Prize in economics for their work on cointegration. Clive Granger passed away in 
2009. Both Clive Granger and Robert F. Engle has/had close relations to an econometric group in Denmark at the 
University of Aarhus.  
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 3211   tttt yyyyy    annual frequency 

 )( 3212   tttt yyyyy   biannual frequency 

 )( 23  tt yyy    1 and 3rd frequency  
 44  tt yyy  
 
These transformations works like filters and remove all other variation then the one being 
tested. As the transformations are linked to the β’s the investigation for stochastic 
seasonality is linked to the t-test of the significance of the coefficients. 
 
The “t-test” is then performed on the β’s. Here: 
 
 β1 is the annual frequency (annual) 
 β2 is the biannual frequency (second quarter) 
 β3 is the first seasonal frequency (first quarter) 
 β4 is the third seasonal frequency (third quarter) 
 
The hypotheses are: 
 
 H0: If βi = 0 stochastic seasonality is present (seasonal unit root) 
 H1: If βi ≠ 0 stochastic seasonality is not present (no seasonal unit root) 
 
Then the tests are as t-tests. The critical values for the test are unfortunately not standard. 
We cannot apply a normal distribution or a t-distribution. We can set up the following table 
for some of the critical values assuming a level of significance equal 5 %: 
 

Sample size β1 β2 β3 β4 
Observations: 

48 
100 
136 
200 

Years: 
12 
25 
34 
50 

 
−2.96 
−2.88 
−2.89 
−2.87 

 
−1.95 
−1.95 
−1.91 
−1.92 

 
−1.90 
−1.90 
−1.88 
−1.90 

 
−1.72 
−1.68 
−1.68 
−1.66 

 
The interpretation of the critical values is as follows: If we for example have a sample with 

100 observations (or around) and we estimate the t-statistic of β1 to equal −1.80 i.e 
)( 1

1




s
. 

Then −1.80 > −2.88 and we accept H0 so stochastic seasonality is present. 
 
The critical values are taken from Hylleberg et.al. (1990). The test can be extended to the 
monthly case. For an analysis of tourism data with HEGY tests for Australia on quarterly 
data see Kim (1999). For an analysis on monthly tourism data by use of the HEGY test see 
Sørensen (1999). Critical values for tests at the quarterly, bimonthly and monthly frequency 
can be found in Fransens and Hobijn (1997). References are found at the end of this section. 
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Example 
Let us look at the data set from the example above. The result on the differenced data was 
not convincing. Alternatively, the seasonal movements could be of stochastic nature. Again 
we use the data series Y: Mill DKK. We apply the formulas above on this series, and 
calculate the auxiliary variables. These are shown below at the left panel. As seen from the 
regression formula some additional lagging of the variables are needed. This task is 
undertaken in the data set shown to the right side.  
 
Data set 

Year Y4 Y1 Y2 Y3 Y4 Y1.t-1 Y2.t-1 Y3.t-2 Y3.t-1 
1994:4            
1995:1            
1995:2            
1995:3            
1995:4 41.9 16,888.6 3,466.0 2,951.9 41.9      
1996:1 170.3 17,058.9 -3,636.3 7,638.2 170.3 16,888.6 3,466.0  2,951.9
1996:2 -547.1 16,511.8 4,183.4 -2,404.8 -547.1 17,058.9 -3,636.3 2,951.9 7,638.2
1996:3 214.7 16,726.5 -4,398.1 -7,852.9 214.7 16,511.8 4,183.4 7,638.2 -2,404.8
1996:4 295.0 17,021.5 4,103.1 2,109.8 295.0 16,726.5 -4,398.1 -2,404.8 -7,852.9
1997:1 -9.5 17,012.0 -4,093.6 7,862.4 -9.5 17,021.5 4,103.1 -7,852.9 2,109.8
1997:2 -434.8 16,577.2 4,528.4 -1,675.0 -434.8 17,012.0 -4,093.6 2,109.8 7,862.4
1997:3 -219.7 16,357.5 -4,308.7 -7,642.7 -219.7 16,577.2 4,528.4 7,862.4 -1,675.0
1997:4 93.1 16,450.6 4,215.6 1,581.9 93.1 16,357.5 -4,308.7 -1,675.0 -7,642.7
1998:1 -149.2 16,301.4 -4,066.4 7,791.9 -149.2 16,450.6 4,215.6 -7,642.7 1,581.9
1998:2 122.7 16,424.1 3,943.7 -1,704.6 122.7 16,301.4 -4,066.4 1,581.9 7,791.9
1998:3 52.2 16,476.3 -3,995.9 -7,844.1 52.2 16,424.1 3,943.7 7,791.9 -1,704.6
1998:4 116.8 16,593.1 3,879.1 1,587.8 116.8 16,476.3 -3,995.9 -1,704.6 -7,844.1
1999:1 -16.0 16,577.1 -3,863.1 7,860.1 -16.0 16,593.1 3,879.1 -7,844.1 1,587.8
1999:2 225.4 16,802.5 3,637.7 -1,813.2 225.4 16,577.1 -3,863.1 1,587.8 7,860.1
1999:3 -1,397.9 15,404.6 -2,239.8 -6,462.2 -1,397.9 16,802.5 3,637.7 7,860.1 -1,813.2
1999:4 -114.4 15,290.2 2,354.2 1,927.6 -114.4 15,404.6 -2,239.8 -1,813.2 -6,462.2
2000:1 -150.3 15,139.9 -2,203.9 6,612.5 -150.3 15,290.2 2,354.2 -6,462.2 1,927.6

 
First we graph the variables Y1 to Y2 on the left side data set 
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Y3: 1st and 3rd Quarter
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These plots are instructive (actually, I think that these transformations are the most 
informative and valuable part of the analysis). The upper left panel on page 9 reveals that 
the underlying annual trend actually is negative. The upper right panel on page 9 shows the 
biannual fluctuations. It shows really decreasing amplitude since 1997. The lower left panel 
above giving us the first and third quarter fluctuations shows also slightly decreasing 
amplitude. We should then expect varying amplitude at the biannual frequency, but 
probably not at the other seasonal frequencies. Finally, the transformation Y4 should show 
no systematic behaviour. This is surely the case here. 
 
Next step is to perform the regression in Excel on the right side data set. The result is: 
 
Result HEGY test 

Regression Statistics     
Multiple R 0.43     
R Square 0.18     
Adjusted R Square 0.11     
Standard Error 434.45     
Observations 16     
      
ANOVA      

  df SS MS F Signif. F 
Regression 4 466,687.00 116,671.75 0.62 0.66 
Residual 11 2,076,215.45 188,746.86   
Total 15 2,542,902.46       

      

  Coefficients 
Standard 

Error t Stat 
Critical 
HEGY  

Intercept 1480.51 3984.27 0.37   
Y1 (t-1) -0.10 0.24 -0.40 −2.96 H0 accepted 
Y2 (t-1) -0.02 0.03 -0.81 −1.95 H0 accepted 
Y3 (t-2) -0.02 0.02 -0.96 −1.90 H0 accepted 
Y3 (t-1) -0.01 0.02 -0.52 −1.72 H0 accepted 

 
We use the critical values for 48 observations. This is not optimal, and the critical HEGY-
values will properly be lower. 
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Notice that we have changed output a little. We have left out the lower and upper 95 % 
values and the p-value. Instead the critical values from table above are inserted. In general, 
we accept H0 so a varying and changing seasonal component is found. However, our result 
should be written with care because of the very little sample we use. 
 
This explains why the deterministic model above based on differenced data performs so 
poor. If we use the dummy variable approach we should use the non-transformed data only. 
 
If we use differenced data a more complex model is required. We cannot use the regression 
for the test. As evident from the regression output the overall performance of the “HEGY-
test regression” is poor, so something else should be applied. 
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3. Introduction to Tourism Demand Analysis 
 
For tourist organisations it is relevant to establish models for demand related to tourism. 
Apart from attractions the tourist demand for a certain destination can depend on for 
example the price level on the destination and the income in the home country of the tourist. 
If the currency exchange rate is low then demand is high. If income in the home land is high 
then the demand for holiday travels is high. Finally, extreme variations in prices of for 
example oil can influence transport costs and tourism.  
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The most commonly used functional form in tourism demand analysis is the power model. 
This can be expressed as: 
 
 ijijjjSiij uATYPPQ 54321

0
  

 
Where 
 

o Qij is the quantity of the tourism product demanded in destination i by tourists from 
country j 

o Pi is the price of tourism for destination i 
o PS is the price of tourism for substitute destinations 
o Yj is the income in origin country j 
o Tj is consumer tastes in origin country j 
o Aij is advertising expenditure on tourism by destination i in origin country j 
o uij is the error term 

 
The power model has much in common with the Cobb-Douglas production function already 
considered. For example it may be transformed into a linear relationship using logarithms. 
 
 ijijjjSiij ATYPPQ   lnlnlnlnlnln 543210  

 
In order to estimate a demand relation, notice that it frequently not will be possible to find 
statistics for all the variables included. Further, subscript t has to be added for time series 
data. 
 
Example: UK visitors to South Korea 
To illustrate the model in this section and the two next sections consider a data set on 
inbound tourism demand for South Korea by UK visitors. The full analysis can be found on 
the file Example ECM-model.xls. Try to go though the steps by yourself. 
 
The total number of tourist arrivals UKTA is used as the dependent variable, and the data are 
obtained from the Korea National Tourism Corporation (KNTC). Data cover the period 
ranging from 1962 to 1994 (33 observations). Since the tourist arrivals variable includes 
both business and leisure travelers, the gross domestic product of UK (UKGDP) is used as 
the income variable, rather than personal disposal income. 
 
In addition, to the model outlined above two variables are added. First, in order to reflect the 
influence of business activities on tourism demand, a trade volume variable measured by the 
sum of total imports and exports between South Korea and the UK is included. This variable 
is labeled UKTV. Second, we include a tourism price variable RCPI defined as: 
 

 
t

tt
t UKCPI

UKWEXKCPI
RCPI

/
  
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Where KCPI is the South Korean consumer price index; UKWEX is the UK pound versus 
Korean won exchange rate, and finally, UKCPI is the UK consumer price index. All at time 
t. Defined in this way we should expect a positive relation between RCPI and UKTA. 
 
Restated in the terms of the power model above the variables are defined as: 
 
 ttttt RCPIUKTVUKGDPUKTA   lnlnlnln 3210  
 
Or by an alternative notation with capital letters: 
 
 ttttt LRCPILUKTVLUKGDPLUKTA   3210  
 
This model also describes the long run behavior of the tourism demand. We shall estimate 
the model in the next section. 
 
In order to inspect how the variables are related consider the matrix of correlation: 
 

Matrix of correlation 

  LUKTA LUKGDP LUKTV LRCPI 
LUKTA 1.00
LUKGDP 0.98 1.00
LUKTV 0.99 0.95 1.00
LRCPI 0.95 0.92 0.94 1.00 

 
 
The table confirms all our expectations. But all the explanatory variables are also related to 
each other so multicollinarity is present. This suggests that the model should be reduced. 
This issue will be considered in the next Section 
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4. The Error Correction Model 
 
The Neoclassical growth theory developed among other by Robert Solow is (hopefully) 
remembered from Macroeconomics3. This model claims that a “long run steady state” rule 
of growth will exist. 
 
Using the example considered above it is claimed that over time the relation among for 
example hotel nights of UK visitors to for example South Korea will be positively related to 
the income level in UK. As wealth (income) increases, an increase in the number of visitors 
to South Korea is expected. This can be illustrated as follows: 
 
 
Long Run Growth Path 
 

 
So as time goes by, a positive relation should be observed. The ratio among UKTA (UK 
Tourist Arrivals in South Korea) and UKGDP (UK income level) should then be a constant 
if this long run model is valid, so: 
 

 tt
t

t LUKGDPLUKTA
UKGDP

UKTA
k 10    

 
where t is time. If we take the logarithm (L), then our model becomes linear, and can be 
estimated by OLS, and we can find k. 
 
Engle and Granger (1987) extended this model by pointing out the influence of the short run 
fluctuations on the long run evolution, and thereby giving name to the notion of the Error 
Correction Model (ECM). 
 
The Solow model has two problems. First, it does not explain how we come from one 
equilibrium to another. Therefore, it is static in time and not dynamic. Second, it does not 

                                                 
3 See for example the textbook for the course in Macroeconomics by Blanchard, Amighini and Giavazzi chapters 11 to 
13. 

UK Income (UKGDP) 

Long run trend, k

Short run variation, ECM 

Time

UK Visitors to Korea (UKTA) 
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explain how short run fluctuations will influence on the long run growth. The ECM-
approach captures this. 
 
Engle and Granger say that the two considered variables (UKTA and UKGDP) attract each 
other. In the short run, we will observe short run fluctuations around the long run trend 
given by k. If the model is stable, then the short fluctuations will approach towards the 
steady state long run growth rate. 
 
Assume that the short run fluctuations happens immediately one period ahead of the long 
run fluctuations. The short run variation is the change in the long run, ie. ΔLUKTA, where Δ 
is the first difference operator ie. the change from year to year. The model is then for our 
two variables: 
 
 ΔLUKTAt = β0 + β1ΔLUKGDPt + δ(LUKTAt–1 – λ0 –λ1LUKGDPt–1) + εt 
 
  “Short run”  “Long run” 
 
The coefficient δ is called the error correction term. This form follows after a series of 
mathematical manipulations undertaken by Engle and Granger (1987). Finally, εt is the 
residuals. 
 
This form is not so easy to estimate. Engle and Granger suggest a two-step procedure as 
follows: 
 

1. Estimate the long run relation (notice, that this is a reduced version of the model 
considered in the last Section): 

 
LUKTAt = λ0 + λ1LUKGDPt + ut 

 
2. Save the residuals from this regression. Now use them and estimate: 

 
ΔLUKTAt = β0 + β1ΔLUKGDPt + δut–1 + εt 

 
Notice, the lag corresponding to one period on the residuals from the first step regression is 
included4. The first relation to be estimated is also called the cointegrating relation. 
 
 
Example: UK Visitors to South Korea 
Again we use the data set on inbound tourism demand for South Korea by UK visitors to 
illustrate this model. 
 
 

                                                 
4 If we used quarterly data, we should lag the residuals by 4 periods and use ut–4. If data were monthly we lag the 
residuals by ut–12 etc. 
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The long run model is: 
 

LUKTAt = λ0 + λ1LUKGDPt + λ2LUKTVt + λ3LRCPIt + ut 
 
From this regression we save the residuals and estimate the ECM-model: 
 

ΔLUKTAt = β0 + β1ΔLUKGDPt + β2ΔLUKTVt + β3ΔLRCPIt + δut–1 + εt 
 
Let us look at some results from Excel. First the long run relation: 
 

Regression Statistics      
Multiple R 0.99      
R Square 0.99      
Adjusted R Square 0.99      
Standard Error 0.11      
Observations 33      
       
ANOVA       

  df SS MS F Signif. F  
Regression 3 58.77 19.59 1,735.02 0.00  
Residual 29 0.33 0.01    
Total 32 59.10        
 
 
 
 
       

  Coefficients Std. Error t Stat P-value Lower 95% Upper 95% 

Intercept -3.32 1.10 -3.01 0.01 -5.57 -1.06
LUKGDP 2.28 0.28 8.09 0.00 1.70 2.86
LUKTV 0.43 0.04 9.99 0.00 0.34 0.52
LRCPI 0.29 0.12 2.51 0.02 0.05 0.53

 
All signs are positive as expected. The R2 is very high because we are working with 
logarithmic transformed variables. 
 
From this regression we save the residuals, and use them in the next step. Here we obtain 
the ECM-model as: 
 
 
 

Regression Statistics      
Multiple R 0.72      
R Square 0.52      
Adjusted R Square 0.45      
Standard Error 0.08      
Observations 32      
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ANOVA       
  df SS MS F Signif. F  

Regression 4 0.198 0,049 7,42 0.00  
Residual 27 0.180 0,007    
Total 31 0.377        

       
  Coefficients Std. Error t Stat P-value Lower 95% Upper 95% 

Intercept 0.056 0.022 2.60 0.02 0.012 0.100
ΔLUKGDP 0.921 0.415 2.22 0.04 0.069 1.772
ΔLUKTV 0.272 0.058 4.72 0.00 0.154 0.390
ΔLRCPI 0.258 0.160 1.61 0.12 -0.071 0.586
Resid(t-1) (ECM-term) -0.508 0.161 -3.16 0.00 -0.839 -0.178

 
All variables are again significant. Importantly, the RESIDt–1 (that is the ECM-term) is 
significant. Therefore, the adjustment process is actually operating. 
 
The plots of residuals are actually also very good. 
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5. Time Series Forecasting and Evaluation 
 
This Section addresses the question of time series forecasting. Many different types of time 
series modeling can be stated as for example moving average models (ARIMA), 
exponential smoothing methods, decomposing models, and models dealing specially with 
issues of seasonality. We will leave these models to a course in forecasting or business 
econometrics. 
 
Let us for the present purpose just assume that we have estimated a regression model based 
on time series statistics (at the annual, quarterly or monthly frequency), and now we want to 
use this model for forecasting outside the time period used for the estimation. In such a 
situation it is good to have saved some additional observations for post predictive testing. 
This is illustrated in the figure below: 
 
 

 
 
 
We consider two models: I and II. We have to find the model that performs most efficient. 
As earlier we can define the forecasting error in the post predictive period for a give point in 
time denoted by t as ttt yy ˆ . Here ty is the observed value and tŷ is the forecasted value 
by one of the two different models considered above. For the m observations in the post 
predictive period we can calculate the mean absolute deviation or mean absolute error 
(MAE) defined as: 
 

   


m

t tm
MAE

1

1   

 
This gives some kind of an average in absolute terms. For comparison purposes define the 
mean absolute percentage error (MAPE) as: 

Forecasting period Estimation period 

0               t+n           t+n+m

Model II

Model I

time 

Post predictive 
period 

y 

True evolution 
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This is just MAE written in relative terms. Obviously, the model with minimum MAPE 
should be chosen.  From the figure above this looks to be present for model II. A more 
handy measure than the MAPE, is the root mean squared percentage error, RMSPE. It can 
be defined as: 
 

    









m

t
t
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ym
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The evaluation of this measure is as with the previously measures. Use the model with the 
minimum RMSPE. 
 
 
Example: Forecasting UK Visitors to South Korea 
As an illustration consider the data set on UK visitors to South Korea used earlier to set up 
the ECM-model. The data period is ranging from 1962 to 1994. How can a model for 
forecasting the number of tourist arrivals UKTA best be set up? 
 
First data is divided into sub periods. For example consider the period 1962 to 1990 as the 
period of estimation. The period from 1991 to 1994 i.e. 4 years is the post predictive period. 
Assume that we want to forecast the non-transformed number of tourist arrivals’. In order to 
develop the forecast model we initially present several alternatives. Next the model is 
estimated for the estimation period. Then the forecasts of the post predictive period are 
calculated. Finally, the measures of evaluation is calculated and compared. The example can 
also be found in the file Example Forecasting.xls. 
 
Consider the following 5 models5: 
 
Model I: Theory based model 
Here a demand model is considered of the form: 
 

ttttt RCPIUKTVUKGDPUKTA   3210  
 
Here t is time, UKTA is tourist arrivals from UK to South Korea, UKGDP is UK Gross 
Domestic Product and UKTV is the trade variable defined as the sum of imports and exports 

                                                 
5 This number is arbitrary. The models listed are just what I could come up with! There may be better models or ideas 
than mine. 
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between UK and South Korea. Finally, RCPI is a price variable defined on page 12 in these 
notes. 
 
 
Model II: The Trend Model: 
This model is stated as: 
 
  ttt YEARUKTA   10  
 
Here YEAR is a linear trend defined as: YEARt = 1962, 1963, 1964, ... , 1994. The model is 
completely without any theoretically foundations, and states that the number of tourists 
from UK to South Korea wills evolutes linearly over time. 
 
Model III: A Polynomial Approach 
The model states that the number of tourist arrivals depends on UKGDP in a non-linear way 
taking UKGDP squared into consideration. The model looks as: 
 
  tttt UKGDPUKGDPUKTA   2

210  

 
Model IV: Dynamic Model 
This model also considers the UKGDP, but instead of the squared GDP, the lagged GDP is 
included. This model states that past income for the last two years has an impact on the 
current flow of tourists. This is a consequence of fact that the decision of taking a holiday 
trip may take long time. Theoretically this model has its foundations from the theory of 
consumption. The model can be written as:  
 
   ttttt UKGDPUKGDPUKGDPUKTA    231210  
 
Model V: Moving Average model: 
This model takes into consideration the lagged values in the tourist flows from UK to South 
Korea for the past two periods. Such a process is also called an MA (Moving Average) 
process of order 2. The model claims that the tourist flow can be described by an inertia 
process without any theoretical foundations. The model can be written as: 
 
  tttt UKTAUKTAUKTA    22110  
 
Common for models IV and V are that the period of estimation is two periods shorter than 
for the first 3 models. This is due to the presence of lagged values. 
 
The next step is to estimate the five models from the start until 1990. The results are 
summarized in the table next page. The table is build specifically to reduce space and 
provide an easy comparison of a large Excel output. Notice, that the overall regression 
statistics are located in the bottom of the table. 
 



 21

 
Model Performance and Comparisons 

Variable MODEL I MODEL II MODEL III MODEL IV MODEL V 

  Coef Sig Coef Sig Coef Sig Coef Sig Coef Sig
Constant -10,604 ** -2381754 *** 12,861   -45,550 *** 501.11   
UKGDP 198.76 ** -761.37 ** 493.79 ** 
UKTV 8.49 *** 
RCPI -1,849.22   
Year / Trend 1,211.19 ***

UKGDP2 9.78 ***
UKGDP (t-1) 277.85   
UKGDP (t-2) 8.91   
UKTA (t-1) 0.74 ***
UKTA (t-2)                 0.37 *

Multiple R 0.99 0.94 0.98 0.97 0.99 
R-squared 0.98 0.89 0.95 0.94 0.98 
Adjusted R-square 0.98 0.89 0.95 0.93 0.98 
Standard Error 1,659.56 3,639.18 2,428.14 2,836.78 1,524.84 
Observations 29   29   29   27   27   

Note: *** significant at the 1 % level; ** significant at the 5 % level; * significant at the 10 % level 

 
The overall statistics gives the smallest values of the standard errors for the models I and 
IV. In model I significant values is observed of the income and trade variable. The price 
variable RCPI should be excluded. In models II and III all explanatory variables are 
significant. This suggests that the tourists arrivals can be describes by a polynomial 
functional form as well as by a simple trend. According to the standard error model III 
outperforms model II. Overall model II is the worst of the models. Out of the dynamic 
models model V performs best, and this completely non-theoretical model has the lowest 
standard error! The model claims that the present tourism flow is a function of past flows. 
As the size of the coefficient decreases in time last year tourist flows has the largest impact 
on the present flow. In model IV only the present income has an impact on the flow of 
tourists. So there is no time decision element involved in the process. 
 
The next step is to calculate the predicted values of the variable UKTA for the period 1991 
to 1994. This is done by substitution of the values of the explanatory variables into the 
estimated models. This task is either done manually in Excel or by use of Megastat. In 
Megastat under regression there is a special option for this, see the illustration on the next 
page. 
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Undertaking this task for our five models results in the predictions by model presented in 
the upper part of the table below. 
 

Predictions and Models 

Year Obs Model I Model II Model III Model IV Model V 

1991 35848 36002 29734 32246 31534  40095  
1992 36284 34508 30945 31647 30736  40545  
1993 35923 33290 32156 34217 31660  40794  
1994 40999 36852 33367 38930 34163  40686  

 
Compared to the observed values the picture looks diversified. In order to obtain a more 
precise picture of the forecast performance the evaluation indicators presented first in the 
present section have to be calculated. First the residuals are computed defined as ttt yy ˆ  
 
The result is given on the next page where the computed overall indicators also can be 
found. Looking first at the residuals it can be observed that for most cases the forecasts 
“under estimates” the observed number of tourist arrivals. In other words; the models are 
performing too “conservative” relative to reality. This is also the truth in most forecasts in 
real life. Out of the 20 predictions made the model only “overshoots” in 4 cases. Only 
model I and V has this kind of behavior. In general, model V is too optimistic. 

Mark the X-variables 
(yellow signature) in 

order to predict Y 
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The lower part of the table reports the calculation of the forecast indicators. All gives a 
similar ranking of the models. Model I is the overall best model. As observed from the 
residuals this model is especially good for the first two years. In forecast year 3 it is the 
second best, and in forecast year 4 it is ranked as number 3. 
 
Model I is followed by model III. – the polynomial model. Model V is ranked as number 3 
due to the remarkable performance of the model in forecast year 4. 
 
The forecast performance is a victory for the theory founded model I. This should also be 
the case, but it may easily be different in real life!  
 
  

Residuals 

Year   Model I Model II Model III Model IV Model V 

1991 -154 6114 3602 4314  -4247  
1992 1776 5339 4637 5548  -4261  
1993 2633 3767 1706 4263  -4871  
1994   4147 7632 2069 6836  313  

    Model I Model II Model III Model IV Model V 

MAE 2101 5713 3003 5240 3267 
MAPE 0.057 0.152 0.082 0.140 0.095 
RMSPE   0.067 0.155 0.088 0.141 0.108 
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1. Issues on Sampling 

If you are working with for example marketing, one of the central topics is to find out the 

preferences of the consumer. How do we sell our product? Who are in our primary 

consumer segment? Do we supply what the consumer need etc.? Such issues can only be 

investigated by a market survey. For such a purpose, we need to sample. This is the 

motivation for this note. We need a list of the relevant consumers to contact. Sometimes we 

have a list of all the relevant consumers to talk with. In this case it is easy. We just have to 

sample. In most of the cases, the task is not so easy. What do we do in such a situation? 

 

Interviews based on sampled data are only one out of several other methods to gather 

information concerning the market behavior of the consumer. Other methods are focus 

groups and consumer test panels. The present notes are restricted to sampling only. 

 

In Bowerman in the basic statistics course (“Tools for Quantitative analyses, part II”), we 

dealt a little with random numbers. We used Excel or Megastat to draw random numbers, 

and we showed that a large sample was better than a small sample. 

 

We also dealt with sampling when we proved the central limit theorem. In particular, we 

listed a number of conditions for a sample estimator to be representative for the total 

population. The conditions to be met are: 

 

 The sample estimator should be unbiased 

 The sample estimator should be efficient 

 The sample estimator should be consistent 

 The sample estimator should be sufficient 

 

The sample is unbiased, if the population mean and the sample mean are equal, and the 

shape of the distributions are similar. The sample is efficient, if the population variance is 

properly transformed into the sample variance. The sample is consistent, if it relative to its 

size contains all the information in the total population. Finally, the estimator is sufficient, if 

the calculations based on the sample is close to the results based on the total population. We 

shall especially deal with the two first issues. 

 

When conducting statistical research there are two ways of obtaining data. 

 

1. Second data sources such as UN, EUROSTAT or National Statistical Offices 

2. Primary data sources. In such a case we collect our sample personally 

 

When we have second hand sources we know the total population. This also means that we 

are in a position to calculate the mean and the standard deviation of the total. We can also 

draw a histogram or similar of the total population. This is important, when we want to 

compare the total population with the sample. 
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Why do we not use the total population as the point of departure for our research? In many 

cases, this is not handy. Consider for example, a situation, where we have a dataset of 

50,000 individuals, and we are interested in their preferences for buying a specific product. 

If we want to conduct a telephone interview or an internet based survey; an investigation of 

a sample of this size is intractable and also too costly. 

 

Instead, it is possible to do interviews with say 500 persons. In such a case, we are 

interested in drawing a sample equal to 500/50,000 = 0.01 or 1 percent of the total 

population. How do we draw this list of candidates for the interview? 

 

How large should a sample be? Many times it is the budget of the investigation that 

determines this question! A better alternative is to use the formulas given in Bowerman in 

the chapter on hypotheses testing. Here we gave tolerances of the mean and standard 

deviation, and with a given level of significance, we were able to estimate the size of the 

sample required in order to meet the conditions
1
. 

 

Another reason for working with the sampled data is that we only want a list of persons, 

firms or other units of items that we can use for the questionnaire. Then in the questionnaire 

we shall ask the units about issues of relevance for our problem in consideration. This could 

for example be a market survey for the preferences of a given product. 

 

When doing research that involves sampling a procedure must include the following steps: 

 

1. Choice of total population and characteristics (variables) 

2. Setting up units of measurement and sampling frame 

3. Taking the sample 

4. Examining the validity of the sample 

5. Use supplementary analysis in order to obtain a sample of the desired size 

6. Conduct an investigation of the non-respondents, response rate etc. 

7. Using the sample for the purpose  

 

For the present, we focus on the process of sampling. A completely other issue, is the design 

of the questionnaire. We will not use much space on this issue, but the interested reader 

should consult the literature on marketing research. A few remarks will be made in the note 

on Nonparametric Methods. 

 

Finally, the response rate is important. If it is too low, it is important to have additional 

elements to use in or to supplement. A response rate should exceed minimum 60 percent. 

However, by use of special techniques it is possible to obtain valid materials with a response 

rate as low as 10 percent. In such a case the so-called Heckman procedure is used. This is 

beyond the outline in the present course. 

 

                                                 
1
 See Bowerman Section 8.3 and 8.4. 
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2. How to Sample 

 

Methods for sampling are called sampling designs, and the sample we take is called a 

sample survey. The most common used methods in sampling are: 

 

 Random sampling 

 Stratified random sampling 

 Systematic sampling 

 Cluster sampling 

 

In order to do random sampling, we need a list of random numbers. A list could look as: 

 

 

Random Numbers 
         

              3 4 2 3 9 4 1 2 7 4 5 1 5 7 

1 8 0 8 2 3 3 0 7 5 7 7 6 5 

5 1 3 4 9 7 4 8 1 6 7 7 4 1 

8 2 3 4 0 3 5 1 1 5 2 9 1 8 

8 0 5 3 6 7 3 2 7 2 2 8 0 3 

9 0 3 9 7 1 9 7 6 9 8 8 7 2 

0 1 3 7 9 2 0 6 2 6 1 5 6 2 

 

This is just a list of any numbers ranging between 0 and 9, drawn by Excel. 

 

 

Random Sampling 
This is straight forward. We apply for example the table above. A sample plan is needed for 

the task. For example we could take all items on the vertical list. 

 

The first item to be selected is item 3, then item 4 (3+1), then item 9 (3+1+5), etc. We 

proceed until the size of the sample to be used is reached. If the end of the list is reached we 

just start from the top again. 

 

We can test the validity of the sample by conducting a descriptive statistical analysis of the 

total population as well as the sample and compare. In this way, we compare the total 

population with N elements with the sample with n elements. If the sample is taken correctly 

the total mean and the sample mean should not be significantly different from each other, 

and the standard deviation of the sample should be larger because the number of 

observations in the sample is smaller. As a result the divisor in the standard deviation is 

smaller, and the numeric value of the standard deviation will be larger. 
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Random Sampling in Excel and Megastat 
How can the table of random numbers above be generated by use of Excel or Megastat? In 

Excel there are two different options. Select data/data analysis/sampling as shown in the 

left panel and obtain the box to the right. 

 

 

 
 

 
 

Here the following can be identified: 

 

 Input range: Mark the total population 

 Sampling method: 

o If random: Denote the size of the sample. For example if the total is 500 the 

sample could be equal to 50 

o If period: If for example 7 is marked then every 7
th

 observation is picked. This 

is also called systematic sampling, see below 

 

This procedure cannot be found in Megastat. Here use the table of random numbers given 

above, and use the procedure of counting illustrated above. 

 

An alternative to this is to use the function random number generation. This facility is 

found in Data Analysis. This facility can be used to generate data of a given distribution.  

Consider an example. 

 

In Excel type data/data analysis/Random Number Generation and obtain the dialog bow to 

the left on the next page. The menu box on the right panel is obtained by application of 

Megastat. In this case type Megastat/Random Number Generation. The two functions give 

similar (random) results. 

 

Both functions allow drawing data set following specific distributions like for example data 

that are uniform or normal distributed etc. 
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In both cases, we have drawn a sample of 50 observations from a total population assumed 

to be normally distributed with mean equal to 5 and standard deviation (uncertainty) equal 

to 3 for a single variable. 

 

  
 

 Excel    Megastat 

 

 

Theoretically our normal distribution of 50 items can be illustrated as: 

 

 

 

 

 

 

 

 

 

 

Let us now use one of the two programs to conduct a little experiment. What will happen to 

the distribution when the number of observations increases from 50 to 500? 

 

Next page gives the results by use of Excel. In order to keep the data sets handy, I have 

sorted the two data sets into 14 groups or categories ranging from –2 to 11. Next, I have 

displayed two histograms, so I can compare my results. 

 

I have also used the descriptive statistics function to calculate the mean and standard 

deviation to see how good my samples fit my priors. 

  

       3  
X 

Z(X) 
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Normal Distribution with Mean = 5 and Standard Deviation = 3  

  
 N=500 Frequency 

-2 4 

-1 7 

0 16 

1 19 

2 30 

3 49 

4 50 

5 62 

6 68 

7 55 

8 52 

9 36 

10 28  Descriptive statistics Norm 1 Norm 2      

11 14          

More 10  Mean 5.13 5.42      

Sum 500  Standard deviation 3.05 3.09      

n=50 Frequency  Observations 500 50      

-2 0          

-1 0          

0 0 
 

1 4 

2 2 

3 7 

4 7 

5 5 

6 4 

7 7 

8 3 

9 2 

10 5 

11 2 

More 2 

Sum 50 

 
From the graphs, it is evident that a larger sample is closer to the theoretical illustration 

shown on the previous page. This is also what to be expected. A larger and correctly drawn 

sample is more representative. Consequently, the results will be better. 
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Stratified Random Sampling 

A problem with the method of random sampling is that we easily run into bias if the order of 

the lists of items that we sample from not is completely random itself. Instead a stratified 

random sample can be set up. 

In order to select a stratified random sample, we divide the population into non-overlapping 

groups of similar elements. So within each group our data should be distributed as 

homogenously as possible. These groups are called strata. Then a random or systematic 

selected sample is selected from each stratum, and these samples are combined in order to 

form the full sample. 

We sample with regard to the variable of interest. Schematically, the set up can be 

illustrated as: 

 

Population    Sample 

 

 

 Stratum 1     N1  n1 

 Stratum 2     N2  n2 

 ...  ... 

 Stratum k     Nk  nk 

 

To determine the size of the strata, we can apply a methodology that frequently is used 

when setting up a histogram. To determine the width of the intervals or groups used a 

formula where: 

   2
k
 = N  

Here k is the number of groups. Notice that the strata do not need to be of equal size. Doing 

it in this way is preferable, because no weighting of data is need when we calculate the 

sample mean and variance. A rougher, but absolutely efficient method is to let Excel 

determine the bin range of the histogram, and use that for the division into strata. 

Inside each stratum, we can select elements by use of random numbers just as before. 

Consider a situation with a total population equal to 500 observations where we want to take 

a sample of 10 percent or 50 items by use of stratified sampling. 

In practice a “cookbook” for sampling with stratified material could look as: 
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 Find the relevant variable to be used for the analysis 

 Set up a histogram in order to find the distribution of the data set 

 Find the number of strata for the sampling process. For example if our data set has 

500 observations then 9 strata could be appropriate as 2
9
 = 512 ~ 500 

 Sort data for example in ascending order and organize the material 

 There are 500 observations with 9 strata. However the intervals may not be of equal 

size. It could look as: 

 

Strata 1 2 3 4 5 6 7 8 9 Total 

Frequency 20 40 55 100 80 70 60 40 35 500 

Share 0.1*20 0.1*40 0.1*55 0.1*100 0.1*80 0.1*70 0.1*60 0.1*40 0.1*35 0.1*500 

Numbers 2 4 6 10 8 7 6 4 3 50 

Note: I have rounded up in strata 3, and down in strata 9. This is arbitrary! 

 

 Use random sampling or systematic sampling to find the number of items to be 

selected within each strata. 

 Finally, provide a descriptive statistical analysis of the total and well as the sample 

and compare 

 

 

Systematic Sampling 
This is an alternative to random sampling. For example, within a stratum 5 elements should 

be selected out of 10 elements. We select every second element. 

 

Sometimes we do not have a complete list of elements to sample from. For example, if we 

want to do an interview in front of a supermarket. Systematic sampling will then be to select 

for example every 100
th

 shopper that passes in or out of the supermarket depending on the 

investigation to be undertaken. 

 

A variation of systematic sampling is today’s television and radio stations use of voluntary 

response samples. In such samples, participants self-select – that is, whoever wishes to 

participate does so (usually expression some opinion). These samples over represent people 

with strong opinions. Such samples are then biased, and should be used with care. 
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Cluster Sampling 
Sometimes it is advantageous to sample in stages. In cluster sampling, we first select groups 

or clusters and then sample. The method is also labeled Deming method. It has been 

frequently used in the United States for example when having a pool of voters in a system 

where these have to register. Such a procedure can be undertaken in four steps: 

 

Stage 1: Randomly select a sample of county’s from all states in the United States 

 

Stage 2: Randomly select a sample of townships from the sample under stage 1 

 

Stage 3: Randomly select a samples of voting precincts from each township from stage 2 

 

Stage 4:  Randomly select a sample of voters from each voting precincts from stage 3 

 

This method is also applied for selecting families to participate in for example consumer 

surveys. 
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3. Cases 

 

Case I: Drawing a Sample to use for Interviews of Heads of Housing 

Associations in Denmark 2010 

 
For the Danish Ministry of Interior a sample has been conducted for an internet based 

questionnaire. In 2008, Danish housing associations could apply for grants if they wanted to 

renew for example kitchens, bathrooms, pluming installations etc. The ministry wanted to 

ask 18 different questions in order to see how the preferences were among the housing 

associations. 

 

For the purpose, the total population was drawn from Statistics Denmark. The total 

population was delivered as an Excel file with addresses. Initially there was 7,646 Housing 

Associations or sub sections. 

 

An investigation of the list revealed that for 309 associations no full information was 

available. For example, the year of establishment (building) could be missing. This is an 

important parameter when asking for activities related to renewal, because older 

associations are more inclined to renew than the new associations. This was the case for 195 

associations. Further, 144 associations had other kinds of missing information. These 

associations were sorted out. A total of 309 associations were sorted out. 

 

This process resulted in a total population equal to 7,337 housing associations. In sum these 

associations amounted for 547,005 residencies (houses, apartments, studios etc.). The 309 

associations sorted out amounted for 12,478 residencies or 2.23 percent of the total 

population. It was evaluated that this number of residencies did not have an impact on the 

outcome of the investigation. 

 

It was decided to sample 800 elements or 10.90 percent of the total population. The sample 

was then divided into two sub samples each with 400 associations labeled 400A and 400B 

respectively. The plan was then to use sample 400A for the survey, and use sample 400B as 

a as backup. 

 

Initially a histogram was set up for the total population. The distribution of residents by the 

size of the associations is shown on the next page. A very skewed to the right population is 

observed. The majority of associations are very small, but a few are very large like for 

example Toveshøj or Gellerup in Aarhus or Albertslund in Copenhagen West. Further, it 

was known that these large associations frequently have a low rate of respond. 

Consequently, the Ministry wanted these associations to be a little over represented in the 

sample. The Ministry was not interested in associations below 5 residents. Therefore, these 

were not selected for the sample. 
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On this basis a system with 85 strata was selected by size of the association. This large 

number was needed in order to capture the large housing associations. In each stratum 11 

percent of the associations were selected by use of a systematic selection procedure. Finally, 

the sample of 800 items was divided into two equal large samples of 400 items. 

 

 

 
 

The division of data into strata is shown in the Appendix. We can now perform a descriptive 

statistical analysis of our relevant parameter namely the number of residents by association: 

 

 
Descriptive Statistics  

     

  Total 800 400 A 400 B 

     

Mean 74.55 113,91 115.05 112.77 

Median 36 42 42 42 

Mode 12 12 12 12 

Standard deviation 117.76 218,31 222.31 214.50 

Variance 13,867.96 47,658,61 49,422.08 46,012.00 

Kurtosis 43.68 22,88 23,04 22.93 

Skewness 5.18 4,36 4,38 4.35 

Range 1,823 1,818 1,818 1,795 

Minimum 1 6 6 6 

Maximum 1,824 1,824 1,824 1,801 

Sum 547,005 91,126 46,018 45,108 

Observations 7337 800 400 400 

 

Notice, that the mean is large in the samples. This is expected, because the large 

associations are given higher priority. The variances for the samples are also larger. This is 

expected because the number of observations is smaller. Observe that the median and the 

mode are equal for all samples. Very nice! 
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If we conduct a test for equal mean assuming unequal variance then H0 is accepted. So the 

samples are correct. Finally, consider the very nice box-plots below (sorry in Danish 

headlines): 

 

 

 

 

 

 
 

Notice, that the distributions look very similar. 
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Analysis on Background Parameters 
We can consider the year of establishment of the associations in the total population and in 

the samples. A descriptive analysis can be found below. Here similarity is also observed. In 

the original project a distribution by municipality was also considered. Also in this case, 

consistence was observed. Due to space limitations it has been left out. 

 

Statistics by year of 

establishment 

  Total 800 

   

Mean  1979 1978 

Median 1983 1982 

Mode 1990 1991 
Standard 

deviation 19.42 19.20 

Variance 377.25 368.68 

Kurtosis -0.69 -0.74 

Skewness -0.52 -0.39 

Range 98 94 

Minimum 1911 1915 

Maximum 2009 2009 

Observations 7,337 800 

 

 

 

 

Case II: Sampling from the Data set “Euroregions” 
At the regional level the members of the European Union can be divided into a total of 356 

regions for 2004. This is undertaken in the Excel file Euroregions.xls. This file can be found 

in Blanckboard. For all regions statistics of the income per capita is available from 

EUROSTAT. The result of the mean and the standard deviation is shown in the bottom line 

in the table below. 

 

Alternatively the mean and the standard deviation could be calculated from the national data 

not divided by regions. The result of this calculation is shown in the upper line in the table 

below. In the Excel file Euroregions.xls the folder Euronations gives the data used for the 

calculations. 

 

 Mean SD Obs 

Data set Euronations (based on national average) 19,984.90 € 13,624.02 € 26 

Data set Euroregions (based on regions) 20,609.28 € 10,439.27 € 356 
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We can consider the data set calculated on the national data as a sample of the regionalized 

data set. How good is the mean income calculated at the national level as an indicator for 

the mean income calculated at the regional level? In other words: Is the national mean 

income a representative indicator the mean income calculated by use of the regional 

statistics? 

 

We can examine the validity of the national calculated income by setting up confidence 

intervals or by examination for equal mean. If overlap of the confidence intervals is 

observed the sample is a good predictor for the total population. 

 

Set up a 95 % confidence interval for mean for each data set. In general we apply the 

formula: 

   
n

s
tX n )1(2/   . 

 

with degrees of freedom df =n–1. For the Euronations data set we obtain: 

 

  

]01.598,25;79.371,14[

11.613,590.984,19)81.724,2(060.290.984,19

26

02.624,13
060.290.984,19)1(2/



 
n

s
tX n

 

 

With df =n–1 = 26 – 1 = 25. Assuming (α/2=0.025) we find by use of the Statistics Tables 

that t = 2.060. For the Euroregions data set we obtain: 

 

  

]71.693,21;85.524,19[

43.084,128.609,20)28.553(96.128.609,20

356

27.439,10
96.128.609,20)1(2/



 
n

s
tX n

 

 

with degrees of freedom df =n–1 = 356 – 1 = 355 ≈ ∞. Assuming (α/2=0.025) we find by 

use of the Statistics Tables that t = 1.96 (Notice that the t-distribution is approximate to the 

normal distribution). 

  

Can the data set Euronations be said to be a good description for the data set Euroregions? 

 

 This must be the case. The mean of Euronations falls inside the confidence interval 

of Euroregions. 
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 The confidence interval of Euronations is much larger than for Euroregions. This is 

so because the former is a sample and much smaller than the total population 25/356 

= 7 % 

 However, the mean of Euronations is lower than for Euroregions. This is so because 

there are many small Eastern European nations with a low income level per capita. 

 This gives a negative bias. For example has Estonia the same weight in the sample as 

Germany  

 

 

Appendix: 

Strata for the sample in the case on residents by associations in Case I 

    Interval Frequency Share 11 % In the sample 

1 23 2.53 0 

22 2453 269.83 240 

43 1728 190.08 185 

65 894 98.34 100 

86 495 54.45 55 

108 419 46.09 45 

129 234 25.74 25 

151 188 20.68 20 

172 149 16.39 20 

194 115 12.65 15 

215 91 10.01 10 

236 72 7.92 8 

258 60 6.6 7 

279 57 6.27 6 

301 58 6.38 6 

322 29 3.19 3 

344 29 3.19 3 

365 28 3.08 3 

387 29 3.19 3 

408 29 3.19 3 

429 14 1.54 2 

451 16 1.76 2 

472 17 1.87 2 

494 14 1.54 2 

515 9 0.99 1 

537 6 0.66 1 

558 8 0.88 1 
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580 10 1.1 1 

601 3 0.33 1 

622 2 0.22 1 

644 5 0.55 1 

665 3 0.33 1 

687 3 0.33 1 

708 4 0.44 1 

730 2 0.22 1 

751 3 0.33 1 

773 3 0.33 1 

794 4 0.44 1 

815 2 0.22 1 

837 2 0.22 1 

859 1 0.11 1 

880 2 0.22 1 

902 2 0.22 1 

923 2 0.22 1 

944 1 0.11 1 

966 0 0 0 

988 3 0.33 1 

1009 0 0 0 

1030 2 0.22 1 

1051 1 0.11 1 

1073 1 0.11 1 

1094 1 0.11 1 

1116 0 0 0 

1138 2 0.22 1 

1159 0 0 0 

1180 1 0.11 1 

1202 0 0 0 

1223 0 0 0 

1244 1 0.11 1 

1266 0 0 0 

1288 0 0 0 

1309 0 0 0 

1331 1 0.11 1 

1352 1 0.11 1 

1373 1 0.11 1 

1395 0 0 0 

1416 0 0 0 

1437 0 0 0 

1459 0 0 0 

1481 0 0 0 

1502 0 0 0 

1523 0 0 0 

1545 0 0 0 
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1566 0 0 0 

1588 0 0 0 

1609 0 0 0 

1631 0 0 0 

1652 1 0.11 1 

1673 0 0 0 

1695 0 0 0 

1716 0 0 0 

1738 0 0 0 

1759 1 0.11 1 

1781 0 0 0 

1800 1 0.11 0 

Over 1800 1 0.11 1 

Sum 7337 800 800 

  

807.07 
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1. Questionnaires and Nonparametric Methods 
 
Questionnaire Design 
Many questionnaires claims that the respondent answers by ranking his/hers preferences on 
a given issue. There may for example be five options ranging from “1” equal to “extremely 
not satisfied” over “3” “neutral” to “5” equal to “very satisfied”. Such an ordinal scale is 
called a Lickert scale. An example could be: 
 
 
Question example: 
How did you like the party in the student bar last Friday? 
 
 
Answer example: 
 
               
 Hated the party Did not like the 

party 
Neutral Liked the party Liked the party 

very much 
 
 
All questions should “turn” the same way each time (worse/best or reverse). In the 
questionnaire, the question above may be accompanied with several other questions needed 
in order to obtain the relevant information. Here the following things are of importance: 
 

 What kind of information do we need relative to the statement of the problem? 
 Don’t ask unless it has a purpose 
 Think – before asking! 

 
An overlong and unclear questionnaire is NOT wanted. Respondents do not like to use too 
much time on answering the questionnaire. As a rule of thumb it should not take more than 
15 minutes to answer the questionnaire. 
 
Notice, that once the questionnaire is launched it cannot be changed! The design of the 
questions is therefore extremely important. The content of the questionnaire should reflect 
the statement of problems for the investigation very strictly. 
 
What kind of information should be achieved from the questionnaire? There are four kinds 
of information: 
 

 Knowledge - what people know (true or factual) 
 Attitudes - preferences (past/future/present) 
 Behavior - what people do 
 Attributes - what people are 
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The question will frequently be a mix. First, there will be background information such as 
gender, age etc. Notice that for example a question on income level of the respondent may 
be difficult to answer due to the many types of income i.e. household income, pretax 
income, disposal income etc. Try to be as precise as possible. 
 
Appendix I give an example of a questionnaire. The example attempts to reveal the 
preferences for Online Clothing Shopping among university students. 
 
 
Coding and handling of Data 
The answers can be coded for example in an Excel spreadsheet, a SPSS data file or a 
specific program designed for questionnaires like Survey Exact or similar. For a given 
question like the one in the example above we may code with the following numbers: 
 
 
 1   2   3   4   5  
 
 
A Lickert scale will normally have an unequal number of outcomes. Why? This is due to the 
theory of distribution. If the answers are assumed to be normally distributed the mean 
outcome will be “neutral”. (code = 3). The Lickert scale may have 3, 5, 7 or 9 categories of 
answers. My experience is that 5 is a sufficient number in nearly all cases. 
 
If the survey is large it may be a good idea to build up a code book with instruction on “how 
to do”. Appendix II gives an example of how a system for coding can be build up in an 
Excel or SPSS spreadsheet. 
 
If the respondent not is answering the question it should simply be associated with an 
“empty space”. The number zero is not appropriate. Why? If zero is included it will be 
counted as a number, and impose a positive or negative bias on the final result. Blank 
answers should be taken out of the analysis and treated separately. 
 
We can use our data with answers and calculate descriptive statistics and present the 
material in histograms or similar. We can sort the main questions with regard to the 
background variables gender, age, income etc. and obtain more detailed information. We 
can also perform various tests, investigations for independence, regression etc. 
 
BUT wait a minute! The purpose of performing this ranking is to reveal the preferences of 
the respondent. In a microeconomic sense we are trying to find the utility maximizing 
allocation of the respondent or consumer. Originally, marketing took its point of departure 
from the consumer theory in microeconomics. So the statistics that we obtain from the 
answer of the question on the party last Friday put forward in example above is a ranking of 
the satisfaction rate. As remembered (hopefully) from consumer theory, statistics of utility 
are rankings of preferences. The distance from one level of utility to another does depend on 
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an individual interpretation of the distance from utility level 3 (neutral) to 2 (satisfied). This 
feature of our data has implications for the conducted statistical analysis. Therefore, a new 
class of tests have to be developed taking into account that data are rankings of preferences. 
 
 
Nonparametric Methods 
The ranking of the preferences introduces namely a measurement problem. For example if a 
consumer gives the product rank “2”, and another consumer gives the same product rank 
“4” we cannot say that the last consumer prefer the product twice as much as the first one. 
The ranking is an ordinal variable. Frequently ranked or ordinal statistics may be very 
skewed and non-normal in behavior.  
 
As shown in the notes to Chapter 2 and 3 in Bowerman on descriptive statistics, the median 
may in such cases be a more stable measure than the mean. In the example, it was found that 
in the case of outliers, the mean and the variance increased very much in the presence of an 
outlier, whereas the median remained constant. For example, wage distributions may be 
very non-symmetric with a few persons with very high incomes and many on a lower level. 
When undertaking wage negotiations, the median wage is normally the wage to be 
negotiated. This is so, because this is the wage that is important to most of the employees. 
Official wage statistics also uses the median wage. Another example could be student’s 
evaluations of the lecturers’ ability to teach. Suppose that the lecturer receives a good 
evaluation from a very large number of the students. A little minority has the opinion that 
the lecturer is very inefficient and gives the lecturer a very bad evaluation. In this case, the 
distribution of the evaluations will also be very non-symmetric and a test is required taking 
this into consideration. 
 
Nonparametric tests are a class of methods used when the underlying assumption of Normal 
distribution (or t-distribution if the sample is small) not is fulfilled. Here we consider 3 tests 
namely: 
 

 Sign test  For a single data set - equivalent to the t-test 
 Mann-Whitney U test For two data sets - inferences on two samples 
 Kruskal-Wallis test R data sets  - equivalent to ANOVA 

 
The nonparametric tests are also referred to as distribution free tests. Together with the chi-
squared test presented in Bowerman Chapter 12, these tests are very frequently used when 
working with questionnaires. 
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Nonparametric Methods with Megastat 
Nonparametric tests can most easily be undertaken in Megastat. Open Excel with Megastat 
loaded and click on add-ins. Here select nonparametric tests. A menu with a range of tests 
will occur. The maximum number of observations allowed in Megastat is restriction to 180. 
Alternatively, SPSS can be used1. This issue will be covered in another set of notes. 
 
 
 

 
 
 
 
2. Testing for Normality in Data 
 
Very frequently we assume that the underlying data generating process can be described by 
the Normal distribution for example in the notes on ANOVA to Chapter 11 in Bowerman. 
Remember from the notes to Chapters 2 and 3 in Bowerman that we defined skewness and 
kurtosis. These two measures provide information with regard to the asymmetry and 
concentration of a given data set. Then the question arises: How skewed or concentrated can 
a distribution be before it not is considered as Normal distributed? 
 
Bowman and Shenton (1975) have provided a test for this issue using the measures of 
skewness and kurtosis. Mathematically the measures may be defined as: 
 

                                                 
1 In SPSS use the data view mode, select Analyze and then nonparametric methods.  
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Skewness:  SK = 
3

1

3 /)(

s

nxx
n

i

i



  i = 1,2,…,n 

 

Kurtosis:  KU = 
4

1

4 /)(

s

nxx
n

i

i



  i = 1,2,…,n 

 
 
Where xi is observation i, n is the number of observations, x is the mean (the first moment), 
and s is the standard deviation (the second moment). In Excel the number 3 is subtracted 
from kurtosis. Skewness is also called the third moment and kurtosis is the fourth moment. 
 
Remember from the notes to Chapters 2 and 3 in Bowerman that 
 
 Skewness: An expression for how much the distribution is away from the ”normal”. If 

SK>0 data are skewed to the right, if SK=0 data are symmetric, and if SK<0 data are 
skewed to the left. 

 
 Kurtosis: A measure of the ”concentration” of the distribution”. If KU is large then we 

have a concentrated data set, and if KU is small we have a “flat” distribution. 
 
Let us now define the hypotheses: 
 
 H0: The data set can be described by a Normal distribution. 
 H1: The data set can not be described by a Normal distribution. 
 
 Bowman and Shenton now set up a tester that we will label by B. This is: 
 











24

)(

6

)( 22 KUSK
nB  

 
For n  the tester2 is chi-squared distributed with degrees of freedom equal to 2 ( 2

)2( ). 

However, if n >100 there is a bias towards rejecting the null hypothesis although it may be 
true. To correct for this Bera and Jarque (1981) has simulated the critical values shown in 
the table next page. 
 
  

                                                 
2 The numbers ”6” and ”24” comes from the deviation of the tester. The method involves a statistical way of thinking 
beyond the scope of this course. However, the deviation is given in D’Agostino, R. and E.S. Pearson (1973). 
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Critical Values for Bowman-Shenton Test 
Observations, n 10 % significance 5 % significance Observations, n 10 % significance 5 % significance 

20 
30 
40 
50 
75 

100 
150 

2.13 
2.49 
2.70 
2.90 
3.09 
3.14 
3.43 

3.26 
3.71 
3.99 
4.26 
4.27 
4.29 
4.39 

200 
250 
300 
400 
500 
800 
∞ 

3.48 
3.54 
3.68 
3.76 
3.91 
4.32 
4.61 

4.43 
4.51 
4.60 
4.74 
4.82 
5.46 
5.99 

 
 
Example 
Consider the data set analyzed in the notes to Chapters 2 and 3 in Bowerman. By use of the 
descriptive statistics function in Excel we can calculate skewness and kurtosis. We find that 
SK = −0.35 and KU = 0.12. The data set considered has 20 observations. The tester equals 
 

 B = n 









24

)(

6

)( 22 KUSK
 = 42.0

24

)12.0(

6

)35.0(
20

22












 

 
With 20 observations the critical value at 5 % level of significance is equal to 3.26 as 
observed from the table above. Because 0.42 < 3.26 we accept H0. So the data set can be 
said to be Normal distributed. 
 
We also considered an example where an extreme observation was added to the dataset. For 
example if the value of the maximum was increased from 24 to 34 then SK =1.19 and KU = 
3.88. The now tester equals 
 

B = n 









24

)(

6

)( 22 KUSK
 = 27.17

24
)88.3(

6
)19.1(

20
22









  

 
As 17.27 > 3.26 we accept H1. So the distribution easily becomes non-normal! 
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Bera, A.K. and C.M. Jarque (1981): ”An Efficient Large-sample Test for Normality of 
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D’Agostino, R. and E.S. Pearson (1973): “Tests for departure from normality. Empirical 
results for the distributions of b2 and 1b ”. Biometrika 60. Pp. 613-622.  
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2. Sign Test 
(BO Section 15.1) 
 
If a population is highly skewed, then the median might be a better measure of the central 
tendency than the mean. Further, if the sample size is very small, then the t-test outlined in 
Bowerman Chapter 9 may not be valid. In such a case, it may be better to set up a 
hypothesis with regard to the median than with regard to the mean. 
 
Exact, we want to test the hypotheses: 
 
 H0: Md = M0 (The median and the stated median are equal) 
 H1: Md ≠ M0 (The median and the stated median are not equal) 
 
How can a test for the median be developed? Bowerman considers a case of a DVD or 
compact disc player. The developer of the product wishes to show that the lifetime of the 
player exceeds 6,000 hours of continuous play3. To examine the issue the developer 
randomly selects 20 new players.  
 
Consider initially a descriptive statistical analysis of the data set: 
 

LifeTime  Life Time Data  
5 count 20  

947 mean 5,964.75  
2142 Variance 5,160,816.20  
4867 Standard deviation 2,271.74  
5840 minimum 5  
6085 maximum 7846  
6238 range 7841  
6411 skewness -1.81  
6507 kurtosis 2.32  
6687 1st quartile 6,023.75  
6827 median 6,757.00  
6985 3rd quartile 7,316.25  
7082 interquartile range 1,292.50  
7176 low extremes 3  
7285 low outliers 0  
7410 high outliers 0  
7563 high extremes 0  

7668 
7724 
7846 

 
 

                                                 
3 6,000 hours is a lot of time – actually 250 days. In real life, the process will be speeded up, and a simulation process 
will be used in order to generate the sample data. This process is normally used in many industries for example drilling 
equipment to off-shore operation (it is not that easy to replace an item for a drill on deep waters). 
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It is observed that the distribution is highly skewed to the left with 3 low extremes. 
Especially, the range is very high. A t-test may then be misleading. The Bowman-Shenton 
test give: 
 

 B = n 









24

)(

6

)( 22 KUSK
 = 12.9

24

)32.2(

6

)81.1(
20

22












> 3.26 at the 5 % level 

 
This is very significant, so the distribution is not normal. 
 
What can be done? By inspection of data it is evident that 5 observations only are below 
6,000 hours. This is indicated by the solid line in the table above. 
 
Remember that the median divides data into two parts of equal size. We can describe the 
distribution as a Binominal distribution with p = 0.5 and n = 20. By inspection of data we 
can observe that 15 observations are above 6,000. 
 
The p-value for testing H0: p = 0.5 versus H1: p > 0.5 is the probability computed assuming 
H0 is true of observing a sample result that is as least as contradictory to H0 as the sample 
result we have actually observed. Since any number of lifetimes out of 20 lifetimes that is 
greater or equal to 15 is at least that contradictory we have: 
 

p-value: 







20

15

20)5,0()5,0(
)!20(!

!20
)15(

x

xx

xx
XP  

 
and calculate for x = 15,16, ...., 20 
 
By use of the Appendix in Bowerman or Statistics Tables we find that 0207.0)15( XP  
 
If H0 is true there is only 2.07 percent probability that the distribution will be as the sample 
above. This implies that it is reasonable to conclude that the median lifetime of the player 
exceeds the advertised median life time equal to minimum 6,000 hours playing time. 
 

0 2000 4000 6000 8000 10000

LifeTime 

BoxPlot
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This is only good in small samples. If our sample is larger than 20 observations the table of 
the Binominal distribution is inefficient, and it is not handy to use a calculator. What can 
then be done? 
 
Remember from Chapter 6 in Bowerman that the Binominal distribution can be 
approximated to the Normal distribution. Define S as the number of observations over the 
hypothetical median . As the median divides the distribution into two parts of equal size p = 
0.5. For the Binominal distribution mean and standard deviation is given as μ = np = 0.5n 
and npnp 5.0)1(   
 

 Then the Z test can by use of the transformation 





 



X

Z  be written as: 

 

01.2
236.2

105,14

205.0

)20(5.0)5.015(

5.0

5.0)5.0(











n

nS
Z  

 
As 2.01 > 1.96 we reject the H0 hypothesis. What is the implication? The median in the 
present dataset is equal to 6,757. This value is significantly higher than 6,000. As this was 
the claim put forward by the producer, the statement of minimum 6,000 hours life time is 
valid. 
 
We can perform the sign test by use of Megastat. Use add-in / Megastat / Nonparametric 
Tests / Sign test and obtain 
 

 
 
 
We have to mark the hypothesized value (here 6,000) and specify the alternative hypothesis. 
Loading in the 20 observations will result in the out given below: 
 

Sign Test 
6,000 hypothesized value 
6,757 median LifeTime 

5 below 
0 equal 
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15 above 

20 n 

binomial 
.0207  p-value (one-tailed, upper) 

normal approximation 
2.01 z 

.0221  p-value (one-tailed, upper) 

 

The output confirms the results found above. 

 

3. Mann-Whitney Test 
(BO Section 15.2) 
 
This test is also called the Wilcoxon Rank Sum Test or the U−test. We consider two data 
sets, so the procedure is very similar to the procedure developed in Bowerman Chapter 10. 
In that test we examined, if the central tendency or locations were equal among samples. 
The nonparametric test for comparing the locations of the two samples is not necessarily a 
test about the difference between the population means. It is a more general test to detect 
whether the probability distribution of population 1 has shifted to the right or to the left of 
population 2. 
 
We assume independence as earlier. As the case with the sign test, the Mann-Whitney test is 
valid for any shapes that might describe the sampled populations. For each data set, a 
distribution is given as D1 and D2 respectively. The samples have observations n1 and n2. 
 
First we combine the data of the two samples. For this we use ranked data. This is done in 
order to bring the data into similar levels. The ranking is done as follows: Rank the n1 + n2 
observations from the smallest (rank 1) to the largest (rank n1 + n2). If two or more 
observations are equal, we assign to each “tied” observation a rank equal to the average of 
the consecutive ranks that would otherwise be assigned to the tied observations. 
 
Next, we for each data set calculate the sum of the rank, and denote them by T1 and T2. The 
outcome of the test can then be examined by the test statistic T to be T1 if n1≤n2 and to be 
T2 if n1>n2.  
 
The null hypothesis can be stated as: 
 
 H0: D1 and D2 are identical probability distributions 
 
The alternative hypothesis is a little bit more complicated: 
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     Reject H0 if 
 
 H1: D1 is shifted to the right of D2  T ≥ TU if n1 ≤ n2 
     T ≤ TL if n1 > n2 

H1: D1 is shifted to the left of D2  T ≤ TL if n1 ≤ n2 
     T ≥ TU if n1 > n2 
 H1: D1 is shifted to the right or left of D2 T ≤ TL or T ≥ TU 

 
 
The critical values of TL and TU can for small samples be found in Bowerman Table 15.2 
page 741.  
 
In Bowerman an example is given of processing times for two different courts on similar 
cases. The hypothesis to be examined is if the processing time is equal among the two 
courts for a very little data set with n1 = 10 and n2 = 7, see also the descriptive statistics 
below. 
 
In the example T1 = 72.5 and T2 = 80.5. Using Table 15.2 we for our sample sizes find that 
TL = 46 and TU = 80. 
 
As n1 > n2 and T2 = 80.5 ≥ TU = 80 we reject the H0 and accept the alternative. So D1 has 
shifted to the left of D2. Stated differently, the processing time of Coos is lower than the 
processing time of Lane. This is confirmed by the Box-plots of the two data sets below. 
 
 
 
 

Coos Lane  Coos (D1) Lane (D2) 
48 109 count 10 7 
97 145 mean 161.10 276.29 

103 196 Variance 5,914.54 20,658.24 
117 273 Standard deviation 76.91 143.73 
145 289 minimum 48 109 
151 417 maximum 294 505 
179 505 range 246 396 

220 
257 
294 
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For a larger data set, the use of the critical values is not handy. Instead, as the case with the 
sign test, we approximate our data by use of the Normal distribution. The calculation of the 
mean and the variance of the two pooled data set is given by the following formulas, see 
also Bowerman page 744: 
 

90
2

)1710(10

2

)1( 211 



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
nnn

T  

  24.10
12

)1710(710

12

)1( 1121 






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The Z tester is: 71.1
24.10

)905.72()(








T

TT
Z




 

 
Where T is the relevant sum of ranks to be tested here T1. If we had used T2 the outcome 
would have been reverse. What is the outcome? If we consider a one-sided test and assume 
that α = 0.05 then Z = −1.645. As −1.71 > −1.645 we reject the null and accept H1. 
 
This is consistent with the finding above. Notice that the two values of Z are very close, so 
the p-value is just below 0.05 (actually it is 0.0436), see below. If we had undertaken a two-
sided test the p-value would have been so high that the null hypothesis was accepted. If we 
inspect our findings above the result is not surprising. The value of TU = 80 is very close to 
the sum of the ranks for the second sample T2 = 80.5. 
 
We can perform the test by use of Megastat. Use add-in / Megastat / Nonparametric Tests / 
Wilcoxon – Mann-Whitney and obtain 
 
 

0 200 400 600

Coos 

BoxPlot

0 200 400 600

Lane 

BoxPlot
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Loading in the data the following output will appear 
 

Wilcoxon - Mann/Whitney Test 

n  sum of ranks  
10 72.5  Coos 
7 80.5  Lane 

17 153  total 

90.00  expected value 
10.24  standard deviation 
-1.66  z, corrected for ties 
.0485  p-value (one-tailed, upper) 

 
 
The p-value is a little different from mine properly due rounding off. 

 

5. The Kruskal Wallis-Test 
(BO Section 15.4) 

 
The Kruskal-Wallis H test is a nonparametric technique for the location of the median for 3 
or more data sets. Contrary to the ANOVA procedure it does not require any assumptions 
about the distribution of data. 
 
Intuitively, the test is identical the ANOVA single factor test with data replaced by their 
ranks. Hypotheses are also as under the ANOVA procedure. 
 
We have our data divided into p groups. We first rank all of the observations in the p 
samples from smallest to largest. If ni denotes the number observations in the ith sample, we 
are ranking a total of  n = n1 + n2 +…+ np. What if several observations have similar rank? 
Then we assign the tied observations the average of the consecutive ranks that would 
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otherwise be assigned to the tied observations. Megastat has a procedure to undertake this 
task. Next, we calculate the sum of the ranks of the observations in each sample called Ti. 
From this the ranked average iR  by group can be calculated. 
 
The Kruskal-Wallis tester is now found as:  
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This tester is 2 distributed with degrees of freedom equal to (p−1) similar to Bartlett’s test 
that was considered in the notes to Chapter 11 in Bowerman. 
 
 
The Kruskal-Wallis Test in Megastat 
The Kruskal-Wallis test can be performed in Megastat by selecting Add-in / Megastat / 
Nonparametric Tests / Kruskal-Wallis Test. The following screenshot will appear: 
 

 
 
Example 
In the notes to Chapter 11 in Bowerman, we investigated a case for seasonality in the 
distribution of advertisements over a year. We used weekly observations of the weight of 
advertises. Using a one-way ANOVA analysis, we found evidence that the amount of 
advertisements was higher during the fourth quarter of a year. We also found evidence that 
the data not was normally distributed. This motivated the use of the Kruskal-Wallis test. 
 
The result from Megastat is given below: 
 

Kruskal-Wallis Test 

  Median n Avg. Rank  
854.00  13 16.23  1 Q 

1,075.00  13 31.81  2 Q 
923.00  13 17.62  3 Q 

1,436.00  13 40.35  4 Q 
  1,028.50  52   Total 



16 
 

22.885  H (corrected for ties) 
3  d.f. 

0.00  p-value 

multiple comparison values for avg. ranks 
15.68 (.05) 18.69 (.01) 

 
 
The tester is calculated as: 
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The tester is 2 distributed with degrees of freedom equal to (p−1) = (4−1) = 3. Assuming 
a level of significance equal to 5 percent we find that 81.72

3  . As 7.81 < 22.88 the H0 is 
rejected and the H1 is accepted. The result is then that the median amount of advertises is 
different from quarter to quarter. 
 
In the bottom of the output from Megastat a multiple comparison of the ranks is provided by 
use of the Mann-Whitney test. It is found that quarter 4 is different from quarter 1 (at the 1 
percent level) and from quarter 3 (at the 5 percent level), but not different from quarter 2. 
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Appendix I: Example of a Questionnaire 

The example below shows how a questionnaire on online shopping can be undertaken 
mostly by use of answers based on a Lickert scale. 

Online Clothing Shopping Survey 
 

This is a survey being conducted for a marketing research class at a university to determine 
shopping behavior. Please answer the following questions honestly and thoroughly to help us 
with our research and final project. Thank you in advance for your assistance in our research 
project. 
 

1.  Are you...   ___Female        ___Male 
 

2.  What is your status at this university? ___Bachelor     ___Master 
 
3.  Within the past month, how many times have you visited a web site for online shopping 

purposes? 
___ 0 ___ 1-2 ___ 3-4  __ 5 or More 

 

4.  Within the past month, how many times have you visited a web site in which clothing is 
offered for sale?   

___ 0 ___ 1-2 ___ 3-4  __ 5 or More 
 

**For questions 5 through 7, please circle the number that reflects your opinion** 
 

5.  Shopping online for clothing will become increasingly popular. 
 

/ 

Strongly Agree        Agree            Neutral          Disagree Strongly Disagree 
         ____________________________________________ 
          5                 4                      3                   2            1 
 
6.   Shopping online for clothing is a wise action for today’s consumers. 
 
 

Strongly Agree        Agree            Neutral           Disagree Strongly Disagree 
          ___________________________________________ 
          5                4                      3                     2           1 
 
7. Within the next 30 days, how likely are you to purchase clothing online? 
 

 
Very likely         Somewhat likely   Not sure      Somewhat unlikely    Very unlikely 
          ___________________________________________ 
          5                       4                      3                     2           1 
 

8.  What do you believe to be the main reason why people shop online for clothes?   
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___ Convenience     ___ Low Prices ___ More Selection     ___Others 
       (Please Specify): __________ 
 

 

9.  What do you believe to be the main reason why people AVOID shopping online for 
clothes?   

 

___ Credit Card Security    ___ Items May Not Fit ___ Difficult to Return     
___Others (Please Specify): ______________  
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Appendix II: Example of a Questionnaire with a Codebook 

In this questionnaire the goal is to find consumers preferences for pizzas in a pizzeria. The 
numbers behind the answers gives to options for the coding. 

 

 

The accompanying code sheet could look as: 
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1. Introduction 
 
Back in Bowerman Chapter 11, Sections 11.1 and 11.2, we worked with the Analysis of 
Variance (ANOVA). This method was a generalization of the test for comparing two 
independent samples for mean to p groups. We examined a hypothesis stating that the mean 
between the groups were equal. We considered the mean of the variable in the columns 
only. In some cases also the mean of the rows may be of importance. 
 
In such cases, we label the measurement variable of the column factor 1 and the 
measurement variable of the row factor 2 respectively. The factor of the row may be a 
single row or a group of rows. The first case is called a Randomized Block Design, whereas 
the latter is called Two-way ANOVA. 
 
Related to questionnaires, the more advanced approach to the ANOVA analysis will be of 
interest if we consider cases where several questions are related to each other. 
 
 
2. Randomized Block Design 
(BO Section 11.3) 
 
A randomized block design compares p treatments (columns) with b blocks (rows). Each 
block is used exactly one time to measure the effect of each and every treatment. The 
assumptions are similar to the ones used for the one-way ANOVA. Note, that for each 
treatment, the number of blocks has to be similar. 
 
Hypotheses 
Can be stated as: 
 
 H0: The means of p and b are equal 

 H1: Minimum one is different 
 
This can be elaborated further, but now things become more complicated: 
 
 H0: The means are equal  i)  For the p treatments 
    ii) For the b blocks 

 H1: Minimum one is different i)  For the p treatments 
    ii) For the b blocks 
 
Method 
Compared to the one-way ANOVA, the variation has to be decomposed into treatments as 
well as blocks. 
 
Total variation = Treatment   + Block                + Errors 
Sum Square Total = Sum Square Treatment + Block Sum Square + Sum Square Error 
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Or: 

 
SSTO = SST + SSB + SSE 

 
 
 
The calculations can by summarized into the extended ANOVA-table: 
 

Variation Squared sum (SS) Degrees of 
freedom (df) 

Mean square (MS) F-value 

Treatment 
 
 
Blocks 
 

  
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p(b – 1)   

 
There are now two F-tests to be considered. One for the p treatments and one for the b 
blocks. 
 
Degrees of freedom for the testers are: 
 
 Treatments: df1 = (p−1) df2 = (p−1)(b−1) 
 
 Blocks: df1 = (b−1) df2 = (p−1)(b−1) 
 
 
Example in Excel and Megastat 
Let us consider a little case, where the price of a basket of daily commodities is purchased 
in four different cities. In each city, the basket is purchased in five different supermarkets. 
The dataset measured in DKK look as: 

 
   Sønderborg Aabenraa Kolding Ribe

Netto  750 800 810 680

Fakta  780 790 790 740

Føtex  820 830 840 750

Lidl 790 770 730 730

Aldi  740 770 770 750
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In order to substantiate our analysis, let us first perform an ANOVA-analysis. The 
hypotheses to be inspected are: 
 
 H0: The means of the cities are equal ie. µSønderborg = µAabenraa = µKolding = µRibe 

 H1: Minimum one is different 
 
We perform along the lines described in the notes from the statistics course. In Excel 
perform data/data analysis/One-way ANOVA. The following output will appear: 
 

ANOVA: Single Factor 

Summary 

Groups  Obs  Sum Average Variance

Sønderborg  5 3,880 776 1030

Aabenraa  5 3,960 792 620

Kolding  5 3,940 788 1720

Ribe  5 3,650 730 850

ANOVA 

Source  SS  Df MS F‐value P‐value  F‐crit 
Between Groups 12,175 3 4,058.33 3.85 0.03  3.24 
Within Groups  16,880 16 1,055.00

Total  29,055 19         

 
The test is significant at the 5 percent level. A supplementary analysis will reveal that Ribe 
is cheaper than the other three cities. 
 
Now expand the problem, and consider the supermarket chain as well. In this case the 
hypotheses are: 
 
 H0: The mean of cities as well as supermarket chains are equal 
 H1: The means are different 
 
In Excel select data / data analyses / ANOVA: Two-Factor without Replication 
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A box is obtained looking as: 
 

 
 
Performing this sequence will result is the following output: 
 
ANOVA: Two‐factor without Replication

Summary  Obs Sum  Average Variance

Netto  4  3,040  760 3533

Fakta  4  3,100  775 567

Føtex  4  3,240  810 1667

Lidl  4  3,020  755 900

Aldi  4  3,030  758 225

Sønderborg  5  3,880  776 1030

Aabenraa  5  3,960  792 620

Kolding  5  3,940  788 1720

Ribe  5  3,650  730 850

ANOVA 

Source  SS  Df  MS F‐value P‐value F‐crit 
Rows (supermrk.)  8,380  4  2,095.00 2.96 0.06 3.26 
Columns (cities)  12,175  3  4,058.33 5.73 0.01 3.49 
Error  8,500  12  708.33

Total  29,055  19          

 
It is observed that the p-value for the cities has decreased from 0.03 to 0.01. This is for 
cities. It is also lower, than for rows (supermarkets). The p-value for the supermarkets is not 
significant at the 5 percent level, but at the 10 percent level only. Although, Føtex is the 
most expensive, it is not significantly more expensive than the cheapest supermarket namely 
Lidl. So the price span among the supermarkets remains constant, but level differs among 
cities. 
 

Data input
Labels
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In Megastat, a similar analysis can be conducted. Her post-hoc or supplementary analysis is 
performed as well. In Megastat use add-ins / Megastat / Analysis of Variance /Randomized 
Block Design. The dialog box looks as under one-way ANOVA. However, in Megastat 
some interesting plots can be produced see below. 
 

 
 
and 
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3. Two−Way ANOVA 
(Appendix D or BO Section 11.4, 4th edition) 
 
The two-way ANOVA is a further extension of the randomized block design. The 
treatments and blocks are now assumed to interact with each other. In our example this 
implies that the price setting of the Supermarkets not only follow an overall company 
policy, but also varies from city to city. 
 
Two factors are said to interact if the difference between levels (treatments) of one factor 
depends on the level of the other factor. Factors that do not interact are called additive. 
 
The three questions answerable by two-way ANOVA are: 
 

 Is there any factor A main effect (treatments)? 
 Is there any factor B main effect (blocks)? 
 Are there any interaction effects of factors A and B? 

 
Moving back to the example of the Supermarkets we add also information with regard to the 
supermarket chain “Coop”. The table looks now as: 
 

   Sønderborg Aabenraa Kolding Ribe 

Seg 1  Netto  750 800 810 680 
   Fakta  780 790 790 740 

Seg 2  Føtex  820 830 840 750 
   Coop  840 850 860 820 

Seg 3  Lidl  790 770 730 730 
   Aldi  740 770 770 750 

 
There are now a levels of factor A (a = 3), i.e. the segments, and there are b levels of factor 
B (b = 4) i.e. the cities. Thus, there are a×b (3×4 = 12) combinations of segments and cities. 
Finally, there are n = 2 elements/supermarkets in each segment. 
 
In the table, the elements of factor B rows have been further decomposed into 3 segments. 
So the grouping of factor B is curial for the outcome of the investigation. The 3 segments 
represents: 1) Danish owned discount supermarkets; 2) Normal Danish supermarkets, and 3) 
German owned discount supermarkets. Besides from an investigation of the price setting 
across the cities (factor A), we can analyze the price setting across supermarket chains 
(factor B), and finally the price setting of each segment across the cities (interaction among 
factor A and factor B). 
 
In the previous Section it was assumed that the numbers of the blocks are of equal size 
among all treatments. In addition, it is in the present case assumed that the sizes of the 
segments are equal. Therefore, we had to add “Coop” otherwise segment 2 would only 
consist of “Føtex”. 
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Hypotheses 
Can be stated as: 
 

Factor A:  H0: All a factors are equal 

(treatments)  H1: Minimum one is different 
 

Factor B:  H0: All b factors are equal 

(blocks)  H1: Minimum one is different 
 

Factor AB:  H0: All ab factors are equal 

(interaction)  H1: Minimum one is different 
 
Method 
The decomposition of the total variation is further extended relative to the randomized block 
design. The mathematical formulas are not handy, so for the present purpose we only state: 
 
 Total variation = Variation A + Variation B + Variation AB  +Variation Error 
 
 SST     =  SSA         + SSB            + SS(AB) + SSE 
 
The calculations can by summarized into the extended Two-way ANOVA-table: 
 
Variation Squared Sum Degrees of 

freedom (df)
Mean square (MS) F-value 

Factor A SSA a – 1 
1


a

SSA
MSA  

MSE

MSA
FA   

Factor B SSB b – 1 
1


b

SSB
MSB  

MSE

MSB
FB   

Interaction SS(AB)  (a–1)(b−1) 
)1)(1(

)(




bp

ABSS
MSAB  

MSE

MSAB
FAB   

Error SSE ab(n–1) 
)1( 


nab

SSE
MSE   

Total SST abn – 1   
 
There are now three F-tests to be considered. One for each factor and the F-test for the 
interaction among the two factors A and B. Degrees of freedom for the testers are: 
 
 Factor A: df1 = (a−1)  df2 = ab(n−1) 
 Factor B: df1 = (b−1)  df2 = ab(n−1) 
 Interaction df1 = (a−1)(b−1) df2 = ab(n−1) 
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Example in Excel and Megastat 
First the hypotheses have to be stated. This is a little more complicated than earlier. 
 
Factor A:  H0: The price basket among the segments is similar 

(treatments)  H1: Minimum one is different 
 
Factor B:  H0: The price basket among the cities is similar 

(blocks)  H1: Minimum one is different 
 
Factor AB:  H0: The segments of the Supermarkets and the cities are similar 

(interaction)  H1: Minimum one is different 
 
In Excel select data / data analyses / ANOVA: Two-Factor with Replication 
 

 
 
A box is obtained looking as: 
 

 
 
Performing this sequence will result is the following output: 
  

Data input 
(including labels) 

Denote the 
size of the 

segments = 2 
in the case 
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ANOVA: Two‐way with Replication 

Summary  Sønderborg  Aabenraa Kolding Ribe Total

Netto/Fakta            

Obs  2  2 2 2 8

Sum  1,530  1,590 1,600 1,420 6,140.00

Average  765  795 800 710 767.50

Variance  450  50 200 1800 1821.43

Føtex/Coop            

Obs  2  2 2 2 8

Sum  1,660  1,680 1,700 1,570 6,610

Average  830  840 850 785 826.25

Variance  200  200 200 2450 1141.071

Lidl/Aldi            

Obs  2  2 2 2 8

Sum  1,530  1,540 1,500 1,480 6,050

Average  765  770 750 740 756.25

Variance  1,250  0 800 200 483.93

Total          

Obs  6  6 6 6

Sum  4,720  4,810 4,800 4,470

Average  786.67  801.67 800 745

Variance  1,506.67  1,056.67 2,240 2,030

Two‐way ANOVA 

Source  SS  df  MS F F‐value F crit 

Factor A (seg./rows)  22,608.33  2 11,304.17 17.39 0.00 3.89 
Factor B (cities/col.)  12,566.67  3 4,188.89 6.44 0.01 3.49 
Interaction  3,758.33  6 626.39 0.96 0.49 3.00 
Error  7,800.00  12 650      

I alt  46,733.33  23        

 
Initially, a descriptive analysis of each segment by city is provided. This is some kind of 
“averaging” of the analysis found under the analysis of randomized block design. The 
outcome from the ANOVA-table has the following interpretation: Factor A is strongly 
significant, so the segments are observed. Further, there are in general price differences 
among the cities. However, this is not due to the presence of the segments. The segments 
prevail among the cities and do not lead to a change in competition. Or stated alternatively: 
If for example “Coop” and “Føtex” is the most expensive place to buy the basket of 
consumer goods, then this is the case in all cities. 
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Moving to Megastat, the post-hoc or supplementary analysis is performed as well. This is a 
Tukey comparison as described under the simple ANOVA-analysis; see Chapter 11 in 
Bowerman Section 11.2. In Megastat use add-ins / Megastat / Analysis of Variance /Two-
way ANOVA. The dialog box looks as under one-way ANOVA. However, in Megastat 
some interesting plots can be produced see below. 
 
Two factor ANOVA 

Factor 2 
Means:

Sønderborg Aabenraa Kolding Ribe 
Netto/Fakta 765.0 795.0 800.0 710.0  767.5  

Factor 1 Føtex/Coop 830.0 840.0 850.0 785.0  826.3  
Lidl/Aldi 765.0 770.0 750.0 740.0  756.3  

786.7 801.7 800.0 745.0  783.3  
  

ANOVA table   
Source SS    df MS F    p-value 

Factor 1 22,608.33  2 11,304.167 17.39 .0003 
Factor 2 12,566.67  3 4,188.889 6.44 .0076 
Interaction 3,758.33  6 626.389 0.96 .4884 
Error 7,800.00  12 650.000 
Total 46,733.33  23       

Post hoc analysis for Factor 1 
Tukey simultaneous comparison t-values (d.f. = 12) 

Lidl Netto Føtex

756.3 767.5 826.3 

Lidl 756.3      

Netto 767.5  0.88   

Føtex 826.3  5.49 4.61  

               critical values for experiment wise error rate: 
0.05 2.67
0.01 3.56

p-values for pair wise t-tests 
Lidl Netto Føtex

756.3 767.5 826.3 
Lidl 756.3      

Netto 767.5  .3948   
Føtex 826.3  .0001 .0006  
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Post hoc analysis for Factor 2 
Tukey simultaneous comparison t-values (d.f. = 12) 

Ribe Sønderborg Kolding Aabenraa 

745.0 786.7 800.0 801.7  

Ribe 745.0        

Sønderborg 786.7  2.83     

Kolding 800.0  3.74 0.91    

Aabenraa 801.7  3.85 1.02 0.11   

               critical values for experiment wise error rate: 
0.05 2.97
0.01 3.89

p-values for pair wise t-tests 
Ribe Sønderborg Kolding Aabenraa 

745.0 786.7 800.0 801.7  
Ribe 745.0        

Sønderborg 786.7  .0152     
Kolding 800.0  .0028 .3829    

Aabenraa 801.7  .0023 .3283 .9117   

 

 

What is the interpretation of the graphic illustration? In Appendix D in Bowerman, a guide 
is provided in order to read the graphs. This guide is shown on the top of the next page. 
Four cases are considered. In the present case the lower left panel seems to be the most 
appropriate. In the cases in the upper part of the illustration the use of two-way ANOVA has 
no effect because the variables not are related. In the lower panel the case to the left shows a 
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situation where both factors have influence, but there is no significant interaction. This is 
the case in the final illustration shown in the bottom panel to the right. Here the interesting 
issue is that the lines are crossing, but still displays a systematic pattern. Observe that in the 
illustration above in Ribe, the segments of Lidl/Aldi and Netto/Fakta crosses. This implies 
that the price basket of the two Danish discount markets is cheaper than the similar basket 
of goods supplied by Lidl/Aldi. In this case an interaction among the two segments with the 
feature that discount is still the cheapest way to buy consumer goods. In interaction is only 
observed for Ribe and is therefore not overall significant. That would properly have been 
the case, if this feature also had been observed in one of the three other cities.  
 
 

Different Possible Treatment Effects in Two-Way ANOVA 
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1. Working with SPSS 

SPSS is a widely used software package. It covers all types of statistical analyses. It is 
specially designed for analyses of questionnaires. Time series analysis is not optimal 
covered by the package. SPSS has a long tradition, and it has been a part of statistical 
analysis since the days of the mainframe systems from the 1960ties and later. 
 
Nearly all books on marketing research uses and advocates SPSS. Interestingly, no books on 
statistics use SPSS for applications, examples etc. This makes teaching on SPSS a little bit 
special. SPSS has a very good distribution system, but the license is expensive for business 
users just as the case with SAS. SDU supports SPSS. Over the past two decades SPSS has 
faced increased competition and several alternatives has occurred. SPSS has met this 
challenge by introduction a new version nearly every year. 
 
In recent versions a system of add-ins has been adopted. This has caused the price to 
decrease for the basic version, but here SPSS is not much better than the AnalysisToolPack 
by Excel/Microsoft. However, SDU has most of the add-ins, and they are being installed 
automatically when downloading the program from Backboard. SPSS run on Windows as 
well an on MAC. The license runs for a year, and has to be renewed every year at the end of 
June. Having the add-ins installed SPSS has many features. This is an advantage as well as a 
weakness of the package, because there are so many options, that the user easily gets 
confused. 
 
A freeware alternative to SPSS is PSPP. Just provide a search on “PSPP” and follow the 
instructions! PSPP also supports Linux etc. A second alternative is Winstat. This is an add-
in to Excel. This program is very competitive price set relative to SPSS, and with the 
analysis tool package loaded it is nearly as good. 
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The following is a very brief introduction to the package. SPSS has a very efficient help 
function that can answer nearly all questions. First get SPSS installed from the SDU system. 
Select if you are Windows or Mac user. 
 
Having SPSS successfully installed click on the SPSS icon and obtain the start screen: 
 

 
 
SPSS offers two possibilities for opening data namely in the SPSS data format *.sav or 
other formats like for example Excel *.xlsx. 
 
On the screen shot observe also: 
 

 The data view / variable view. This is a very handy feature. It allows you to type in 
data with very long names. For example a full question in a questionnaire. This is a 
good feature if you have for example 100 questions, and want to look on correlations 
or goodness-of-fit tests (notice, that the way data is organized is a little bit different 
and more efficient than the method applied by Excel). 

 The toolbar has all relevant main menus. Three of them are worth mentioning 
namely: data for data handling; analyze with all relevant menus for statistical 
analyses, and finally the help function to the right. 

 The button bar covers main function on opening of data, zoom and pivot functions 
etc. 

The best way to learn the package is to load in a data set, and then flip around in the menus! 
So good luck! 
 

Data/variable 
view 

Toolbar 

Button bar 
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2. Logistic Regression 
(BO Section 14.12 or Appendix E in Bowerman 4e or older) 
 
This term logistic regression often is confusing, and in fact also in SPSS, where several 
menus claim that they can perform the same thing. In the present context we refer to what is 
known as the logistic regression model. A binary logistic regression model implies that that 
the dependent variable has only two categories for example 0 = success and 1 = failure just 
as the case with a dummy variable. 
 
Such a general linear probability model with k “regressors” labeled x can be written as 
 
   kk xxxyEy ...)( 22110  
 
But now compared to the “traditional” multiple regression model y is defined as: 
 

)"",,(0

)"",,(1

Tuborgdrinknovotecarabuynotchoosenisoptionealternativif

Carlsbergdrinkyesvotecarabuychoosenisoptioninitialif
y   

 
This model is complex to estimate by OLS. Only if y is divided into two equal large parts 
will the estimates be consistent. Otherwise the coefficients will be either upward or 
downward biased. The problem is that we have a non−linear model, and therefore we also 
need a non−linear estimator. This is a complex expression that is maximized (a little like the 
optimum method known from the course in mathematics). This method is called a log 
likelihood estimator. 
 
The interpretation of this expression is similar to the well known regression output. We 
illustrate with the example taken from Bowerman. A personal director of a firm has 
developed two tests to help determine whether potential employees would perform 
successfully in a particular position. To help estimate the usefulness of the tests, the director 
gives both tests to 43 employees that currently hold the position. If the employee is 
performing successfully we associate the value 1 for the y-variable and 0 if the employee is 
performing unsuccessfully. We label this variable Group. The data set has now the 
following set up: 
 

Observations Group Test 1 Test 2 

1 
2 
3 
... 
... 
... 
42 
43 

1 
1 
1 
... 
... 
... 
0 
0 

96 
96 
91 
... 
... 
... 
83 
81 

85 
88 
81 
... 
... 
... 
77 
71 
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We want to estimate the following model by use of SPSS: 
 

iiiii TestTestGroupEGroup   21)( 210  
 

We open SPSS and load in the data from the Excel file labeled Perftest.xls from the data 
directory accompanying Bowerman. In SPSS select on the tool bar “Analyze” then 
“Regression” and then “Binary Logistic...”. 

 

In order to import your data from an Excel file into the data format written by SPSS, you 
have to manipulate a little with the data loaded in from Excel.  Delete lines 1 and 2, and 
move into variable view (bottom left). Here give the variable the names in the equation 
above. 

Under “Binary logistic...”  the following menu appears: 
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As the dependent variable use Group, and as covariates (regressors) use the variables Test1 
and Test2 respectively. Click then on “OK”. A lot of things happen, but the final output 
looks very similar to Figure E.2 in Bowerman: 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a Test1 ,481 ,158 9,319 1 ,002 1,618

Test2 ,165 ,102 2,622 1 ,105 1,179

Constant -55,981 17,434 10,311 1 ,001 ,000

a. Variable(s) entered on step 1: Test1, Test2. 

 
What is interpretation? The “B”s are the coefficients. They are both positive. So a good test 
score means that you belong to the best group (1). What a surprise! The coefficient of 
“Test1” is the highest, so this is the most important test. The level of significance or the p-
value is shown under the column “Sig”. For “Test1” it is equal to 0.002. This is highly 
significant. For “Test2” it is equal to 0.105. This is higher than 0.05, so this variable is not 
significant. The conclusion is that only the first test is relevant for the overall performance 
of the employee. 

 

How good is the model? In the SPSS output we find: 

 

Model Summary 

Step 

-2 Log likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 27,886a ,519 ,694 

a. Estimation terminated at iteration number 7 because parameter estimates 

changed by less than .001. 

 
Depending on the measure used the model explains between 0.519 and 0.694 of the 
variation in data. In logistic regression these values are frequently low, so this is pretty 
good. 

What is the difference relative to the ordinary regression performed by use of Excel? In 
order to examine this issue consult the output by Excel below: 
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Regression Statistics 
Multiple R 0.73 
R-squared 0.54 
Adjusted R-square 0.51 
Standard error 0.35 
Observations 43 

ANOVA 

  df SS MS F-value Signif 
Regression 2 5.75 2.87 23.22 0.00
Residual 40 4.95 0.12
Sum 42 10.70       

  
Coeffi-
cient 

Standard 
error t-stat P-value 

Lower 
95% 

Upper 
95% 

Intercept -5.9291 0.9633 -6.1547 0.00 -7.8760 -3.9821 
Test 1 0.0586 0.0112 5.2330 0.00 0.0360 0.0812 
Test 2 0.0153 0.0100 1.5393 0.13 -0.0048 0.0354 

 

Comparison reveals that the significance and signs of the coefficients is quite similar, but 
the size of the coefficients is very different. The model performed by the traditional OLS 
method is therefore biased and insufficient. 
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