Statin use before and after the KDIGO Lipids in chronic kidney disease guideline

A population-based interrupted time series analysis

Kampmann, Jan D.; Nybo, Mads; Brandt, Frans; Støvring, Henrik; Damkier, Per; Henriksen, Daniel P.; Lund, Lars C.

Published in:
Basic & Clinical Pharmacology & Toxicology

DOI:
10.1111/bcpt.13768

Publication date:
2022

Document version:
Final published version

Document license:
CC BY-NC

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Statin use before and after the KDIGO Lipids in chronic kidney disease guideline: A population-based interrupted time series analysis

Jan D. Kampmann¹,² | Mads Nybo³ | Frans Brandt¹,² | Henrik Støvring⁴,⁵ | Per Damkier⁶,⁷ | Daniel P. Henriksen⁶,⁷ | Lars C. Lund⁵

¹Internal Medicine Research Unit, University Hospital of Southern Denmark, Odense, Denmark
²Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
³Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
⁴Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
⁵Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
⁶Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark
⁷Department of Clinical Research, University of Southern Denmark, Odense, Denmark

Correspondence
Jan D. Kampmann, Department of Internal Medicine, Hospital of Southern Jutland, Sonderborg, Denmark, Sydvang 1, DK-6400 Sonderborg.
Email: jdk@rsyd.dk

Abstract
In November 2013, the Kidney Disease: Improving Global Outcomes Clinical Practice Guideline for Lipid Management in Chronic Kidney Disease was published, recommending statins for all individuals 50 years or older with an estimated glomerular filtration rate below 60 ml/min/1.73 m² to lower the risk of major cardiovascular events. We quantified the prevalence of statin use among the target population before and after the guideline publication in a large Danish cohort of individuals with an estimated glomerular filtration rate below 60 ml/min/1.73 m², to investigate the effect of the guideline, but found no difference in the prevalence of statin use prior to and after the guideline publication.

Keywords
chronic kidney disease, guidelines, statins

1 | INTRODUCTION

Patients with chronic kidney disease (CKD) are at increased risk of major cardiovascular events.¹ Multiple randomized, controlled trials have reported statins to reduce this risk by up to 17%.²⁻⁴ Since 2013, the Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Lipid Management in Chronic Kidney Disease has recommended statin and/or ezetimibe treatment to all who are 50 years or older, with an estimated Glomerular Filtration Rate (eGFR) below 60 ml/min/1.73 m², except for individuals receiving dialysis treatment.⁵ There is little evidence on the adherence to the 2013 KDIGO Guidelines for lipid management.⁶,⁷

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Therefore, we aimed to estimate the impact of the KDIGO guideline publication on the clinical implementation of statin treatment in an unselected population of patients with an eGFR below 60 ml/min/1.73 m².

2 | MATERIALS AND METHODS

Using a population-based laboratory cohort, we performed a controlled interrupted time series analysis quantifying the prevalence of statin use prior to and after the publication of the 2013 KDIGO Lipids in CKD guidelines among all individuals who were 50 years or older, with an estimated eGFR below and above 60 ml/min/1.73 m² on the island of Funen, Denmark.

2.1 | Study population

Data on more than 450,000 Danish residents were obtained from the Funen Laboratory Cohort, which holds complete information on creatinine measurements, prescription drug use and hospital diagnoses for all residents on the island of Funen, Denmark, during the study period of 15 February 2011 to 21 October 2015. The study period was divided into 90-day intervals before (N = 11) and after 1 November 2013 (N = 8). On the first day of every interval, we identified all individuals aged 50 years or older with at least two creatinine measurements during the previous year. Individuals were classified according to the median eGFR measured during the previous year (below or above 60 ml/min/1.73 m²), and individuals who had previously received hemo- or peritoneal dialysis were excluded.

2.2 | Exposure

The exposure of interest was the introduction of the KDIGO Lipids in CKD guideline (‘the intervention’), which was introduced in November 2013. The guideline was implemented in the Danish guidelines by the Danish Nephrology Society the same year. Individuals in all 90-day intervals prior to November 2013 were classified as unexposed, while all later intervals were considered exposed.

2.3 | Outcome

The outcome of interest was the period prevalence of statin use for each 90-day interval. Statin use was defined as any prescription fill for a statin. Any individual who filled a prescription for statins during the 3 months following the index date was considered a statin user.

2.4 | Statistical analyses

We fitted a segmented regression model (shown in the supporting information) to obtain the yearly trend and the immediate difference in the proportion of statin users before and after the guideline publication among individuals with an eGFR above and below 60 ml/min/1.73 m². Further, we calculated the difference in the proportion of statin users 1 year after the guideline publication between the observed scenario, and a counterfactual scenario where the guideline was not implemented (counterfactual difference), and the estimated pre-intervention trend was assumed to continue throughout the study period.

In supplementary analyses, we obtained estimates stratified by kidney function (eGFR 30–59, 15–29, <15 ml/min/1.73 m²), age (50–69 and 70+), sex and indication of statin use. Individuals without a history of acute myocardial infarction, ischaemic stroke or peripheral vascular disease were assumed to receive primary prophylaxis, while individuals with a history of above-mentioned diagnoses were considered to receive secondary prophylaxis. Finally, we also calculated the 180-day period prevalence of statin use at the beginning and end of the study period.

Codes used to define prescription drugs, diagnoses and conditions are shown in Table S1.

3 | RESULTS

Overall, we included 19,743 individuals with a median eGFR < 60 ml/min/1.73 m² who were 50 years or older and not on dialysis across all evaluated periods. The number of patients included during the first 90-day interval of the study period was 6765 and gradually increased to 10,194 included individuals during the last interval. At the time of the guideline publication, the median age was 79 years and 52% were females. When stratifying on the estimated kidney function, 84% were classified as CKD stage 3 (eGFR 30–59 ml/min/1.73 m²); 14% CKD stage 4 (eGFR 15–29 ml/min/1.73 m²) and 2.1% CKD stage 5 (eGFR < 15 ml/min/1.73 m² not on dialysis) (Table S2).

The overall period prevalence of statin use was 39% at the start and end of the inclusion period. No difference between the pre- and post-KDIGO guideline publication was observed when comparing the yearly pre-intervention trend (+0.1%, 95% confidence interval −0.5% to 0.7%) and post-intervention trend.
<table>
<thead>
<tr>
<th>Group</th>
<th>Immediate difference (%)</th>
<th>Counterfactual difference (%)</th>
<th>Pre-intervention trend (%/year)</th>
<th>Post-intervention trend (%/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any prescription redemption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR <60 ml/min/1.73 m²²</td>
<td>-0.1 (-1.1 to 1.0)</td>
<td>-0.1 (-1.3 to 1.2)</td>
<td>0.1 (-0.5 to 0.7)</td>
<td>0.1 (-0.6 to 0.8)</td>
</tr>
<tr>
<td>eGFR 60+ ml/min/1.73 m²²</td>
<td>0.7 (0.3 to 1.1)</td>
<td>0.8 (0.4 to 1.3)</td>
<td>-0.5 (-0.7 to -0.3)</td>
<td>-0.4 (-0.6 to -0.1)</td>
</tr>
<tr>
<td>CKD stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CKD3</td>
<td>0.1 (-1.0 to 1.2)</td>
<td>-0.0 (-1.4 to 1.4)</td>
<td>0.1 (-0.5 to 0.7)</td>
<td>-0.0 (-0.8 to 0.7)</td>
</tr>
<tr>
<td>CKD4</td>
<td>-1.4 (-4.3 to 1.5)</td>
<td>-0.5 (-4.1 to 3.1)</td>
<td>-0.3 (-1.9 to 1.3)</td>
<td>0.6 (-1.3 to 2.6)</td>
</tr>
<tr>
<td>CKD5</td>
<td>1.1 (-6.8 to 9.0)</td>
<td>1.0 (-8.4 to 10.3)</td>
<td>1.3 (-2.7 to 5.3)</td>
<td>1.2 (-4.2 to 6.6)</td>
</tr>
<tr>
<td>Indication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary prophylaxis</td>
<td>0.5 (-0.7 to 1.7)</td>
<td>0.6 (-0.9 to 2.1)</td>
<td>0.3 (-0.3 to 1.0)</td>
<td>0.4 (-0.4 to 1.2)</td>
</tr>
<tr>
<td>Secondary prophylaxis</td>
<td>-0.3 (-2.1 to 1.5)</td>
<td>-0.8 (-3.0 to 1.4)</td>
<td>0.0 (-1.0 to 1.0)</td>
<td>-0.5 (-1.7 to 0.8)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.4 (-1.1 to 1.8)</td>
<td>0.2 (-1.5 to 2.0)</td>
<td>0.1 (-0.7 to 0.9)</td>
<td>-0.0 (-1.0 to 0.9)</td>
</tr>
<tr>
<td>Male</td>
<td>-0.4 (-1.9 to 1.1)</td>
<td>-0.4 (-2.2 to 1.5)</td>
<td>0.1 (-0.8 to 0.9)</td>
<td>0.1 (-0.8 to 1.1)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–69</td>
<td>-0.2 (-2.7 to 2.2)</td>
<td>-0.8 (-3.7 to 2.2)</td>
<td>-0.3 (-1.6 to 1.0)</td>
<td>-0.9 (-2.5 to 0.7)</td>
</tr>
<tr>
<td>70+</td>
<td>0.0 (-1.1 to 1.1)</td>
<td>0.1 (-1.3 to 1.6)</td>
<td>0.2 (-0.4 to 0.9)</td>
<td>0.4 (-0.4 to 1.1)</td>
</tr>
<tr>
<td>New use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR <60 ml/min/1.73 m²²</td>
<td>0.1 (-0.3 to 0.6)</td>
<td>0.1 (-0.4 to 0.5)</td>
<td>0.0 (-0.2 to 0.2)</td>
<td>-0.0 (-0.3 to 0.2)</td>
</tr>
<tr>
<td>eGFR 60+ ml/min/1.73 m²²</td>
<td>0.1 (-0.0 to 0.3)</td>
<td>0.1 (-0.1 to 0.3)</td>
<td>-0.0 (-0.1 to 0.0)</td>
<td>-0.1 (-0.2 to 0.0)</td>
</tr>
</tbody>
</table>

Note: The immediate difference is the estimated difference in the prevalence proportion immediately before and after the publication of the KDIGO guideline. The counterfactual difference is the estimated difference in the prevalence proportion 1 year after the publication of the Kidney Disease: Improving Global Outcomes (KDIGO) guideline, compared to the estimated prevalence proportion the pre-intervention trend has continued throughout the study period. Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.
and as less than 10% of patients with CKD are seen by a nephrologist. Our cohort includes both CKD patients who are followed by nephrologists and non-followed patients.

Apart from its role in cardiovascular events, statins may have an influence on kidney function. Both protective and as detrimental effects on renal function have been described. A recent review found that statins have a role in the prevention of cardiovascular disease; yet, there is not enough evidence for a role of statins in kidney protection. Future studies should assess the effects of chronic statin therapy on kidney function, especially in elderly and diabetic patients with CKD.

Limitations: Our study is limited by the lack of information on why patients were not treated with statins. Polypharmacy, age or side effects may have played a role. The different statins have different side effects, and specific drug interactions can cause additional side effects. A detailed discussion of potential statin toxicity is out of the scope of this short communication but can be reviewed in recent articles by Serban, Ward and Molazadeh.

Further, the study does not account for whether individuals were followed as outpatients. Our choice of effect measure (period prevalence) is affected by both the initiation and discontinuation of statin treatment and may therefore be less sensitive to guideline changes. However, we assumed that the primary objective of the guideline was to increase the prevalence of statin use among patients with an eGFR <60 ml/min/1.73 m². Further, the sensitivity analysis on the incidence of statin use yielded comparable results to the main analysis.

In conclusion, we found no evidence of an increased prevalence of statin use after the KDIGO guideline publication for lipid management in patients 50 years or older with an eGFR below 60 ml/min/1.73 m². Ensuring dissemination of the KDIGO guideline beyond nephrology specialists may improve evidence-based prophylactic statin treatment in a broader spectrum of CKD patients. The next step is to define clinical settings where the guidelines are insufficiently adhered to and to identify barriers for implementation in everyday clinical practice.

ACKNOWLEDGEMENT
We thank Lone Kjergård Larsen for proofreading the manuscript.

CONFICT OF INTEREST
JDK has no conflicts of interest to declare. MN has no conflicts of interest to declare. FB has no conflicts of interest to declare. HS reports personal fees from Bristol-Myers-Squibb, personal fees from Novartis and personal fees from Roche, outside the submitted work.
He has personally received fees from Atrium education, the Danish Pharmaceutical Industry Association, for teaching a pharmacoepidemiology course. PD has no conflicts of interest to declare. DH has no conflicts of interest to declare. LCL reports participation in research projects funded by Menarini Pharmaceuticals and LEO Pharma with funds paid to the institution where he was employed.

DATA AVAILABILITY STATEMENT
Aggregated time series data used to obtain regression coefficients for the main analysis can be found in the supporting information. Individual level data used to estimate 95% confidence intervals could not be published due to Danish privacy legislation.

ORCID
Jan D. Kampmann https://orcid.org/0000-0002-8844-8242
Per Damkier https://orcid.org/0000-0003-0591-7187

REFERENCES

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Kampmann JD, Nybo M, Brandt F, et al. Statin use before and after the KDIGO Lipids in chronic kidney disease guideline: A population-based interrupted time series analysis. Basic Clin Pharmacol Toxicol. 2022;131(5):306-310. doi:10.1111/bcpt.13768