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Abstract

Motivation: In quantitative bottom-up mass spectrometry (MS)-based proteomics the reliable estimation

of protein concentration changes from peptide quantifications between different biological samples is

essential. This estimation is not a single task but comprises the two processes of protein inference

and protein abundance summarization. Furthermore, due to the high complexity of proteomics data and

associated uncertainty about the performance of these processes, there is a demand for comprehensive

visualization methods able to integrate protein with peptide quantitative data including their post-

translational modifications. Hence, there is a lack of a suitable tool that provides post-identification

quantitative analysis of proteins with simultaneous interactive visualization.

Results: In this article, we present VIQoR, a user-friendly web service that accepts peptide quantitative

data of both labeled and label-free experiments and accomplishes the crucial components protein inference

and summarization and interactive visualization modules, including the novel VIQoR plot. We implemented

two different parsimonious algorithms to solve the protein inference problem, while protein summarization

is facilitated by a well established factor analysis algorithm called fast-FARMS followed by a weighted

average summarization function that minimizes the effect of missing values. In addition, summarization is

optimized by the so-called Global Correlation Indicator (GCI). We test the tool on three publicly available

ground truth datasets and demonstrate the ability of the protein inference algorithms to handle shared

peptides. We furthermore show that GCI increases the accuracy of the quantitative analysis in data sets

with replicated design.

Availability and implementation:

VIQoR is accessible at: http://computproteomics.bmb.sdu.dk:8192/app_direct/VIQoR/

The source code is available at: https://bitbucket.org/veitveit/viqor/

Contact: veits@bmb.sdu.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The last decades mass spectrometry (MS) has established as the preferred

technology in quantitative proteomics (Gygi et al., 1999; Aebersold

and Mann, 2003). High-throughput bottom-up analysis is the most

used MS-based approach for the identification and quantification of

thousands of proteins and the characterization of post-translational

modifications (PTMs) in complex biological samples (Larsen et al.,

2006; Zhang et al., 2017). Using this approach, the protein samples are

enzymatically digested into shorter peptides to overcome problems with

mass accuracy and complex MS/MS spectra. The resulting proteolytic

peptide mixtures, either isotopically labeled (Thompson et al., 2003;

Ross et al., 2004) or label-free (Cox et al., 2014), are typically first

separated via liquid chromatography and then analyzed by tandem mass

spectrometry (LC-MS/MS) to measure peptide mass, peptide intensity and

the peptide fragment ions. Once peptides are identified and quantified using

appropriate computational tools, the digestion needs to be computationally

reverted by inferring proteins and summarize their abundance. These

tasks can be computationally challenging and require robust methods and

algorithms that reduce the contributions of false peptide identifications
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and inaccurate abundance measurements to the quantified proteins (Huang

et al., 2012).

Protein inference aims to determine the presence or absence of

candidate proteins in a given sample, thus it can be considered as a protein

identification process (Li and Radivojac, 2012). According to protein

inference, a set of proteins presumed to be present in a sample is assembled

from a set of identified peptides. In reality, however, solving the protein

inference problem is not an easy task due to peptides that are shared by

multiple proteins. To address this limitation, parsimony-based algorithms

have been utilized to solve the protein inference problem (Yang et al.,

2004; Alves et al., 2007; Zhang et al., 2007; Slotta et al., 2010; Koskinen

et al., 2011; Uszkoreit et al., 2015). Algorithms that fall into this category

rely on Occam’s razor principle, according to which, the most acceptable

explanation of an occurrence is the simplest one. In this sense, the solution

to the protein inference problem is a subset of the candidate proteins that

explain the presence of all identified peptides in a sample in the most

minimal way, therefore a solution to the NP-hard problem of minimum set

cover (Karp, 1972; Huang et al., 2012; Li and Radivojac, 2012).

Parsimony-based algorithms are capable of creating minimal protein

sets while handling shared peptides (Audain et al., 2017; The et al.,

2018). However, they don’t utilize peptide quantitative measurements to

infer proteins and are not providing estimations of protein concentrations.

Simple methods that traditionally have been used to summarize protein

concentrations, such as the average or median of the 3 most intense (top-

3) or all peptide abundances have been shown to inherit the issues related to

the current experimental and technical limitation of peptide quantification

and identification (Goeminne et al., 2015). Recently, Diffacto, a tool

for relative protein quantification has been developed to address these

issues (Zhang et al., 2017). The tool applies the factor analysis method

called fast-FARMS to extract the covariance between the observed peptide

abundances for each identified protein. Based on that, individual weights

are assigned to the peptides and in that way, unrepresentative or erroneous

peptides can be eliminated. The protein concentrations are then calculated

by a weighted average summarization of the remaining peptides. This

approach has been demonstrated to increase the accuracy of protein

abundance summarization in Diffacto, even in the case of few peptides

per protein. Nevertheless, the authors suggest an arbitrary peptide weight

threshold of 0.5 to filter incoherent peptides, due to the bimodally

distributed weights between 0 and 1. To date, a data-centric approach to

obtain the optimal threshold and thus more accurate protein quantifications,

is missing.

At the moment the available solutions that implement these processes

are mostly command-line tools, scripts, libraries or are embedded in

software suites (Breitwieser et al., 2011; Fischer and Renard, 2016; Zhang

et al., 2017; Uszkoreit et al., 2019; Gatto et al., 2021). To our knowledge,

there is still no tool for protein inference that provides an interactive

visualization schema on the quantitative level of peptides, PTMs

and proteins. Considering the superiority of advanced computational

methods for protein inference and summarization and the importance

of visualization tools as an essential step to understand and interpret

proteomics data, we have developed VIQoR, a user-friendly web service

for visually supervised protein inference and protein summarization. The

tool accepts peptide or peptide-to-spectrum matches (PSMs) quantitative

reports of any type of proteomics experiment (labeled or label-free) that

involves at least four samples. VIQoR utilizes the Occam’s razor principle

to infer proteins via two implemented parsimonious algorithms and adopts

fast-FARMS to conduct a factor analysis that enables a weighted protein

summarization. All processes are coupled to novel interactive visualization

modules, user-friendly parameter optimization, feedback on data quality

and configurable acquisition of high resolution graphs.

Fig. 1. Schematic representation of VIQoR’s main framework: the peptide quantitative data

and the protein sequence database files are imported in the Input tab (blue); the user can

apply different filtering tasks and data transformations in the Preprocessing tab (orange);

the sequence database and peptide sequences are used in the Protein Inference tab to create

a minimal protein group set (green); protein quantification is performed in the Protein

Summarization tab (red). The user can inspect and visualize the results of each process

in the corresponding analysis tab interface, create new visualizations or access graphs

generated in previous tabs to visually compare proteomics data of different levels.

2 Materials and Methods

The current framework of VIQoR accomplishes the processes that follow

peptide quantification to achieve protein quantification. The user can

navigate through a user-friendly web interface and perform these processes

along with interactive visualizations, as it is illustrated in the framework at

Fig. 1. We present here the methods employed for PTM filtering, protein

inference and protein summarization. Additionally, the visualization

methods implemented for VIQoR are listed and briefly explained.

2.1 Parsimony-based protein inference

Parsimonious algorithms model the relation between proteins and

associated peptides on bipartite graphs and report a minimal set of proteins

for each connected component. In graph theory, a connected component

is a maximal subgraph in which every pair of vertices are connected

by a path of edges. For each connected component, parsimonious

algorithms typically report the proteins connected to the largest number

of unexplained peptides, iteratively, until the presence of all peptides is

justified (Huang et al., 2012; Li and Radivojac, 2012). Protein inference

in VIQoR comprises two specific parsimonious algorithms that extend the

classic parsimony by introducing additional criteria. These criteria enable

different solutions for protein grouping regarding the inclusion of shared

peptides. Therefore we will use the term ‘protein group’ to refer to the

protein(s) inferred during each iteration and reported in the protein group

set PReported.

Given a connected component of a peptide set p related to a set of proteins

P .

Strict parsimony:
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1. Append to set PReported the protein PLeading of set P that is

connected to the most peptides of set p and therein has the most unique

peptides. In case of multiple proteinsPLeading with identical peptide

sets pLeading they form a protein group (1st Criterion).

2. Report along with the appended protein group the associated peptide

set pLeading .

3. Remove the peptide set pLeading from set p.

Continue iteratively the above steps until the set p is empty, and thus the

presence of all identified peptides is explained uniquely by the minimal

protein group set PReported, a subset of P .

Soft parsimony:

The peptide set pInitial denotes a copy of the initial peptide set p.

1. Append to set PReported the protein PLeading of set P that is

connected to the most peptides of set p and therein has the most

unique peptides. For all the remaining proteins in set P , in case their

associated peptides in pInitial are a subset of pLeading , they form

a protein group with PLeading (2nd Criterion).

2. Report along with the appended protein group the associated peptides

of PLeading in set pInitial (3rd Criterion).

3. Remove the peptide set pLeading from set p.

Continue iteratively the above steps until set p is empty, and thus the

presence of all identified peptides is explained at least once by the minimal

protein group set PReported, a subset of P .

Moreover, for each connected component VIQoR can report a maximal

protein group set as a direct peptide to protein pairing, without employing

the principle of parsimony. In this case, each protein obtains the maximum

set of its unique and shared peptides. An example of each approach as a

comparison applied on the same connected component is illustrated in

Supplementary Fig. S2.

2.2 Relative protein abundance summarization

Protein abundance summarization in VIQoR is facilitated by a Bayesian

factor analysis method called fast-FARMS, which is a reimplementation

of FARMS (Factor Analysis for Robust Microarray Summarization), an

algorithm originally developed to summarize probe level oligonucleotide

microarray data based on their extracted covariance (Hochreiter et al.,

2006). Fast-FARMS has been implemented for Diffacto (Zhang et al.,

2017) to estimate relative protein abundances and has been previously

employed by ComplexBrowser (Michalak et al., 2019) and CoExpresso

(Chalabi et al., 2019) for protein complexes quantification. It has been

demonstrated that fast-FARMS is a robust method that can serve efficiently

as an additional post-identification filtering process on abundances of

peptides that appear to derive from the same proteins. Consecutively,

it has been shown that it outperforms in accuracy other popular protein

abundance summarization approaches (Zhang et al., 2017).

The method assumes that the real protein concentration ratio is

proportional to the abundance ratios of the proteolytic peptides, therefore

models their relation linearly with an additional Gaussian noise. The

following steps are performed for each inferred protein group:

1. Calculate the relative abundances of the log2 transformed and zero-

centered normalized peptides.

2. Apply the factor analysis of fast-FARMS to assign individual peptide

weights.

3. Apply minimum weight threshold and summarize protein concentration

ratios as the weighted average of the remaining representative

peptides.

The complete factor analysis algorithm is described in FARMS

manuscript (Hochreiter et al., 2006), while its application in proteomics

is presented by Diffacto authors (Zhang et al., 2017). VIQoR requires a

minimum of 2 peptides per protein group and reports the estimated signal-

to-noise ratio from the factor analysis that can be used to determine a false

quantification rate.

2.3 VIQoR plot

VIQoR plot is an interactive visualization module that combines both

quantitative and amino acid sequence information of a selected protein

between two samples or conditions. The horizontal axis denotes the

amino acid position on the selected protein sequence and the vertical axis

corresponds to the log2 fold change of the protein and peptide abundances

between the two selected samples or conditions. The peptide sequences

(modified and unmodified) that correspond to the selected protein are

visualized as horizontal bars with respect to their position in the protein

sequence. Additionally, the individual PTMs are mapped accordingly and

are annotated on the bars of the modified peptides.

2.4 Global correlation index

The protein summarization in VIQoR employs the weights assigned

to the peptides to assess the peptide coherence for the protein they

identify. Hence, not only the weights can lower the effect of erroneous

measurements but an additional application of a minimum threshold can

eliminate their contribution. Consequently, in VIQoR the user can select

a suitable cut-off weight value. In replicated experiments, the Global

Correlation Index (GCI) is a line plot that summarizes the correlation

of protein expression of replicates within the same conditions for a set of

predefined peptide weight thresholds. Assuming a replicated experiment of

CR samples comprising C (C > 1) conditions and R (R > 1) replicates,

the protein expression matrix of all quantified protein groups is calculated

for each peptide weight threshold w = 0, 0.1, 0.2, . . ., 1. Then, for each

threshold w, we calculate the Within correlation GCI(w) as the mean of

all pairwise CR(R − 1)/2 Pearson correlation coefficients between the

samples of the same condition. Correlations between identical samples are

excluded.

2.5 Software implementation

VIQoR is implemented in R (version≥4.0.0) and customized

by JavaScript. For the user interface, the R packages Shiny

(version≥1.4.0), shinydashboard (version≥0.7.1), DT (version≥0.13),

shinyjs (version≥2.0.0), shinyBS (version≥0.61) and shinycssloaders

(version≥0.3) have been used. The visualization functionality of the

tool is facilitated by Plotly (version≥4.9.2), heatmaply (version≥1.1.0)

(Galili et al., 2018), networkD3 (version≥0.4) and webshot2

(version≥0.0.0.9000). Data analysis modules were developed by

the R packages igraph (version≥1.2.5), biostrings (version≥2.56.0),

protr (version≥1.6.2) (Xiao et al., 2015), dplyr (version≥1.0.3),

preprocessCore (version≥1.50.0). Additionally, PeptideMapper from the

compomics-utilities library (version≥4.12.9) (Barsnes et al., 2011) is used

for fast peptide to protein sequence mapping (Kopczynski et al., 2017).

VIQoR can be run independently on a local shiny server, via RStudio,

directly deployed using its docker container or accessed as a web service

at http://computproteomics.bmb.sdu.dk:8192/app_direct/VIQoR/.
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2.6 Ground truth datasets

Hybrid dataset 1: 20 tryptic peptide mixtures of human and yeast

cell lysates and bovine serum albumin (BSA) of known concentrations

were analyzed using label-free data-dependent acquisition (DDA) mass

spectrometry on an Orbitrap Q-Exactive Plus coupled to an LC system

(Thermo Fisher Scientific), in three technical replicates. The amount of

the human peptides among the conditions is reduced linearly (from 1000

to 1 ng), the amount of BSA peptides is increased exponentially (from

0.02 to 120 ng), while the proportion of yeast peptides added maintain the

total peptide amount in all samples at 1001 ng. An additional sample was

analyzed to serve as an internal standard with 350 ng, 7.6 ng and 636 ng

of human, BSA and yeast peptides respectively. Morpheus (revision 165)

was used for peptide identification, with a q-value threshold of 0.01 and

peptides were quantified by DeMix-Q workflow (Zhang et al., 2017).

Hybrid dataset 2: Two hybrid samples consisting of human, yeast

and E. coli proteins in known concentration ratios of 1:1, 10:1 and

1:10, respectively, were digested by trypsin. Three technical replicates of

proteolytic peptide mixtures for each sample were separated by an HPLC

system (Eksigent) and followed by label-free data-independent acquisition

(DIA) analysis on a 6600 TripleTOF (ABSciex) mass spectrometer.

Acquired MS/MS spectra were identified by PLGS at 1% FDR and peptide

abundances reported by ISOQuant. Hybrid dataset 2 is provided by the

LFQbench R package under the name hye110 (Navarro et al., 2016).

Spike-in dataset: tryptic peptides of mouse and rat lyophilized CERU

in four known concentration ratios were spiked into a background mixture

of trypsin digested albumin and IgC depleted human plasma proteins, for

an iTRAQ 4-plex designed experiment. Rat (P13635) and mouse (Q61147)

CERU concentration ratios are 1:2:4:10 and 10:5:2:1 respectively, while

human protein concentrations remained stable (1:1:1:1). The labeled

sample was analyzed on a hybrid LTQ-Orbitrap XL mass spectrometer

(Thermo Fisher Scientific) coupled to HPLC nanoflow system (Agilent).

Mascot (version 2.3) and Phenyx (version 2.6.1) conducted peptide

identification with individual peptide identification false positive rate lower

than 0.1%. The R package Isobar offers the Spike-in dataset under the name

ibspiked_set1 (Breitwieser et al., 2011).

2.7 Quantification benchmarking

The peptide abundances for Spike-in dataset were calculated as the

sum of their PSM intensities in each sample. For all three datasets the

peptides quantified in at least 2 samples were taken, log2 transformed and

zero-center normalized by median. Peptide abundances were relatively

expressed to the average abundance of each peptide in all samples. Factor

analysis hyperparameters weight and mu were both set to 0.1.

For the Hybrid dataset 1, Pearson correlation coefficient was used to

investigate the relation between the protein group concentration profiles

and the 21 actual concentrations. Average correlation is then calculated as

the arithmetic mean.

The performance of the protein quantification in the Hybrid dataset 2

was assessed by calculating the root mean square error (RMSE) between

relative protein group abundances, averaged over the replicates, and the

expect changes.

To assess the accuracy of quantification for Spike-in dataset the RMSE

was calculated between the real and the estimated concentrations.

3 Results

VIQoR is a user-friendly R-based web application that facilitates

protein inference, protein abundance summarization and proteomics

data visualization loading standardized peptide abundance tables from

software like MaxQuant and Proteome Discoverer. The flowchart of

the implemented framework is illustrated by Supplementary Fig. S1.

An extensive description of the input data requirements and the tool’s

functionalities further including filtering and normalization can be found

in the manual (Sup. File S1). In this study we first examine the two

implemented parsimonious approaches and demonstrate their ability to

infer and separate proteins with largely similar sequences in data with a

considerable number of homologous peptides. Second, we demonstrate

how the GCI values can be used to optimize the accuracy of quantification

by fast-FARMS and lastly, we provide use case scenarios regarding the

application, visualization and interpretation of VIQoR plots.

3.1 Parsimony criteria and homologous protein separation

The two implemented parsimonious algorithms add flexibility to the classic

principle of parsimony to handle shared peptides by introducing additional

criteria. The Strict parsimony groups only proteins that share exactly the

same peptides, while Soft parsimony allows the contribution of shared

peptides to multiple protein groups. Consequently, by the Soft approach

all peptides are explained at least once, unlike the Strict approach where

all peptides are explained only once. The third approach of no parsimony

then corresponds to the ’softest’ side of that spectrum as the direct

peptide to protein pairing where shared peptides contribute to all their

associated proteins. A practical example of the three approaches on the

same connected component is illustrated in Supplementary Fig. S2. When

Soft parsimony is applied (Supplementary Fig. S2C), the tolerance in

accepting shared peptides is higher and protein grouping is promoted.

On the other hand, Strict parsimony distinguishably separates and reports

the most evident proteins until the presence of all peptides is uniquely

explained (Supplementary Fig. S2B).

Fig. 2. Ceruplasmin proteins of the considered species in exhibit different sets of peptides.

Venn diagram of the peptide composition for the three ceruplasmin proteins in the Spike-in

dataset.

To demonstrate the differences of the inference approaches to more

complex systems than a single connected component, we tested their

performance on the two hybrid datasets. Hybrid dataset 1 contains the

intensities of 38.794 unique peptides and Hybrid dataset 2 contains 13.444

measured peptide features, from which 12.667 are unique. The datasets fit

ideally to this demonstration since they contain a large number of shared

peptides, i.e. 1794 and 1150 individually. Both parsimonious approaches

reported the same number of protein groups for the two datasets (including

one-hit wonders), being 7118 and 3589, respectively (Supplementary

Table S1). Non-parsimonious inference reported more protein groups

compared to the parsimony driven methods. More specifically, 7263

groups for Hybrid dataset 1 and 5016 for Hybrid dataset 2. For both

datasets, the Strict algorithm reported the lowest number of protein

groups identified by more than one peptide, while inference without

parsimony reported the most, something that clearly derives from the

different levels of tolerance addressed to shared peptides. Furthermore,

we examined the overlap between the protein groups reported by the three

approaches (Supplementary Fig. S3). Interestingly, in both datasets and
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Fig. 3. Strict parsimony increases the quantification accuracy in ortholog proteins. Protein inference with Soft and Strict parsimony for spiked in proteins CERU_HUMAN, CERU_MOUSE

and CERU_RAT. A-F – Protein expression (thick blue) and peptide abundance (cyan and red) line plots. Protein expression is summarized by fast-FARMS with a peptide weight threshold of

0.5. Solid lines correspond to peptides of weight ≥ 0.5 and dashed lines to the eliminated peptides of weight < 0.5. Peptides assigned to the same protein group by both parsimony methods

are colored cyan and red otherwise. Pink highlighted area corresponds to the interval of ± one standard deviation. The RMSE statistics are calculated as a comparison to the standardized

real concentration of the proteins (thick dashed lines).

for an overall comparison, the groups yielded Soft parsimony in terms of

peptide composition are a subset of the groups reported when no parsimony

was employed. Additionally, for larger protein groups in terms of protein

composition, Strict appears to be a subset of the protein groups reported

by the Soft approach.

To investigate further the parsimony criteria on proteins with prior

knowledge of high amino acid sequence similarities, we used the Spike-in

dataset since its spiked proteins are orthologs of known concentrations.

In this comparison we exclude the non-parsimonious approach because

unlike the two parsimonious algorithms, it distributes the shared peptides

to all related proteins. The dataset is a PSM report consisting of 14991

PSMs of 1653 unique peptides. The samples of the Spike-in dataset contain

ceruloplasmin orthologs from mouse (CERU_MOUSE), rat (CERU_RAT)

and human (CERU_HUMAN). All three proteins follow the concentration

levels of their respective species throughout the four iTRAQ channels.

In total 101 peptides were identified for the three proteins and 20 of

them are shared as shown in Fig. 2. The resulting quantitative protein

profiles for CERU_HUMAN and CERU_MOUSE according to the two

parsimonious approaches are illustrated in Fig. 3. The Soft approach (Fig.

3A,C) added 8 and 18 shared peptides (red traces) to CERU_HUMAN and

CERU_MOUSE, respectively. The majority of these peptides do not follow

the real concentrations of the two species. Strict parsimony (Fig. 3B,D)

appears to separate the shared peptides in a more robust way and reduce

the variance of the peptide abundances in every sample. The erroneous



6 V. Tsiamis and V. Schwämumle

assignment of peptides in the Soft approach affects the estimation of protein

concentration by fast-FARMS. The summarized protein abundance for

both proteins with Strict parsimony is following more accurately the real

concentrations (Fig. 3, black dashed lines) compared to Soft, which is

confirmed by the lower RMSEs. CERU_RAT (Fig. 3E,F) is the protein

with most unique and shared peptides and thus uses the same set of peptides

for both parsimony principles.

3.2 Similarity within samples of the same experimental

condition as indicator of quantification quality

Protein quantification utilizing fast-FARMS in Diffacto has been reported

not only to summarize in total more protein groups but also to surpass

other summarization techniques in accuracy and precision, even for

protein groups with only few peptides (Zhang et al., 2017). We analyzed

the two hybrid datasets with VIQoR to verify the robustness that fast-

FARMS can provide in protein summarization and furthermore to present a

detailed comparison of the parsimonious approaches. For Hybrid dataset 1,

regardless of the protein inference approach and peptide weight threshold,

the average correlation of protein abundances for the 21 real concentrations

is higher than 0.78 (Fig. 4A, dashed lines). Similarly, the evaluation of

protein summarization of Hybrid dataset 2 resulted in RMSEs lower than

1 in all cases (Fig. 4B, dashed lines). For both datasets, the Strict parsimony

improved the summarization by more accurately reproducing the known

protein changes. Despite the generally accurate performance of the factor

analysis in the two datasets, the different elimination of incoherent peptides

by applying different weight thresholds has a considerable impact on the

accuracy of protein quantification. VIQoR employs the expected higher

similarity between sample replicates to estimate the most appropriate value

for the weight threshold. For that purpose, the GCI module in VIQoR’s

user interface presents the Within correlation traces. These are illustrated

as solid lines in Fig. 4.

As expected, the similarity in protein expression within each condition

results in high scores in GCI (Fig. 4). The Within correlation of GCI for

Hybrid dataset 1 is higher than 0.72 regardless of the weight threshold

value (Fig. 4A, solid lines). The GCI is maximized for all inference

approaches at the weight threshold of 0.7, with increasing scores in

the order of Strict, without parsimony and Soft. Similarly, the Within

correlation is higher than 0.83 for all instances for Hybrid dataset 2

(Fig. 4B, solid lines). For this dataset, the GCI has maximum peaks

in different weight thresholds, with the highest correlation at weight of

0.8 for Soft parsimony and highest correlations for Strict and without

parsimony summarization at weight of 0.7. The maximum peaks of GCI

for all evaluations align perfectly to the peptide weight thresholds that

result in the optimal protein quantification (Fig. 4). This shows that the

GCI allows optimizing the value of the weight threshold and subsequently

increases the accuracy and precision of protein quantification in VIQoR.

Nevertheless, this metric does not necessarily determine the most

suitable protein inference approach. For instance, the approach that has

the highest GCI scores for Hybrid dataset 1 is the protein inference with

soft parsimony. However, as stated above, the Strict parsimony provides

the optimal quantification for that dataset.

3.3 Protein quantitative analysis with simultaneous visual

inspection

In VIQoR the processes of protein inference and protein summarization

are coupled to visualization modules for the inspection of specific results

regarding protein groups and samples. The tool provides interactive tables

to display quantitative data, connected component graphs of the inferred

protein groups, Pearson correlation heatmaps of the protein and peptide

abundances and peptide-centric line plots of protein group profiles. All the

generated visualizations can be exported as vector graphics in .pdf format.

In order to visualize (modified and unmodified) peptide and protein

quantifications together with the sequence coverage of the selected

quantified protein groups, we implemented the VIQoR plot (Fig. 5). This

plot shows log2 fold changes of the summarized protein expressions and

the normalized peptide abundances between two samples or conditions.

The peptides are arranged horizontally according to their position in the

protein sequence, while the vertical distance equals the corresponding log2

fold change. In addition to the peptides involved in the summarization

process, the module also visualizes the incoherent peptides eliminated

by the peptide weight threshold (grey color). The VIQoR plot provides

supplementary information via tooltips, such as amino acid sequence and

its length, the position of the peptide on the reference sequence, the log2

fold change and the peptide weight value assigned by fast-FARMS.

Fig. 5, demonstrates a VIQoR plot of the CERU_MOUSE of the Spike-

in dataset inferred by Strict parsimony between the first and fourth iTRAQ

channels. The log2 fold change of the protein expression is -2.72, which

corresponds to a concentration ratio of 0.15, therefore reasonably close

to the real ratio of 0.1. The 13 peptides with assigned weight over 0.5

are colored green. The two eliminated peptides in grey color are the same

incoherent shared peptides with dotted traces in Fig. 3D. Generally, VIQoR

plot shows how an optimal peptide threshold reduces the overall variance

within all the considered peptides.

VIQoR provides flexible integration of modified peptides in the

analysis. Our tool supports peptide or PSM reports of both modified and

unmodified peptides. During the data preprocessing the modified peptides

are separated by modification type and the user can select which PTMs

will be proceeded for visualization purposes (Fig. 1). The abundance of the

selected modified peptides are not considered in protein summarization.

However, the peptides with these PTMs are still mapped on the inferred

protein sequences and used in the VIQoR plot. The PTM abundances are

not expressed relatively to the protein concentration but as the log2 fold

change of the modified peptide intensities. In that way, the PTM expression

patterns can be projected on the protein expression profile.

The changes of the modified peptides abundances do not necessarily

suggest changes of PTM levels relative to the protein, yet the

protein expression level should be considered too. Therefore, multiple

possible combinatorial scenarios between modified peptides and protein

abundances arise (Kim et al., 2016). To present some of the different

usage scenarios of the VIQoR plot regarding the behavior of the modified

peptides, we retrieved 4 phosphorylated peptides of CERU_MOUSE from

PhosphoSitePlus (Hornbeck et al., 2015), that contain the phosphorylation

sites F717, Y427, Y264 and Y259, Y264. The modified peptides

were assigned to Spike-in dataset measurements that follow the protein

concentrations of mouse, human and rat, respectively. We then added

the peptides to the Spike-in dataset (cases a − c in Fig. 5). In case a,

the modified peptides follow opposite regulatory behavior to the one of

the protein. A second scenario is shown in case b, where the modified

peptide abundance remains unchanged and the protein expression is down-

regulated. This could correspond to a proteoform of the selected protein

that does not get altered. Finally in case c, the modified peptide and the

protein follow the same changes and thus are co-regulated.

The VIQoR plot simplifies understanding the full behavior of a

protein including biologically relevant relative changes of its modified

peptides that do not follow the common trend of the unmodified protein.

Additionally, since each modification type is annotated in a different

color, the user can obtain thorough insight into the relation between the

expression of different modification types.
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Fig. 4. GCI optimizes the performance of protein summarization by fast-FARMS. GCI scores and the evaluation of protein quantification per peptide weight threshold. Solid lines correspond

to the Within correlation scores between sample replicates, as reported by GCI module. Dashed lines show the evaluation of quantification and denote either the summarized correlation of

protein expression to real concentrations for Hybrid dataset 1 (A) or the RSME for Hybrid dataset 2 (B). Red lines represent the quantitative analysis followed by protein inference with Strict

parsimony, Green with Soft parsimony and Blue without parsimony. In all six evaluations (three for each dataset), the peptide threshold with the optimum quantification output corresponds

to the weight that maximizes the GCI.

Fig. 5. Visual exploration of peptide protein coverage that includes localization and quantification of post translationally modified peptides. VIQoR plot for CERU_HUMAN of the Spike-in

dataset. The protein is inferred with Strict parsimony. Blue stripe corresponds to the protein, green segments to the peptides of weight ≥ 0.5, grey to the eliminated peptides and pink to the

modified peptides. Orange annotations denote the modification type and site.; a - Modified peptides with phosphorylation sites Y264 and Y259, Y264, respectively.; b - Modified peptide

with phosphorylation site Y427.; c - Modified peptide with phosphorylation site F717

4 Discussion

In this study, we present VIQoR, a user-friendly online tool that processes

quantitative PSM/peptide reports and performs protein inference, relative

protein abundance summarization and simultaneous visualization. The

imported reports can derive from any type of experiment or MS analysis.

Hence, to evaluate the performance of VIQoR, we selected labeled and

label-free ground truth datasets of both DIA and DDA studies.

We assessed two parsimonious approaches for their performance

with respect to shared peptides. Strict parsimony showed more robust

separation of the shared peptides of ortholog proteins when compared to

the Soft approach and also provided more accurate protein quantification,

regardless of the peptide weight threshold. We also could show that the

parsimony principle outperformed the standard method of direct protein

assembly. Our comparison of protein inference approaches was restricted

to multi-species datasets that contain a large fraction of shared peptides but

should be generally applicable to single-species experiments with a lower

number of shared peptides where the parsimony principles differ in much

less cases. Soft parsimony might be more appropriate for the analysis of

datasets with a considerable number of proteins that contribute similarly

to the shared peptides and not via contrary expression profiles. However,

this will require further investigation.

Pearson correlation coefficients are often used to measure the

variability and reproducibility of both gene expression microarray (Kuo

et al., 2006) and quantitative proteomics (Perrin et al., 2013) experiments.

We have applied the same principle to access the similarities of protein

expression profiles between replicates. With that, we furthermore

demonstrate that the maximization of the Within correlation in GCI

increases the quantification quality. Indeed, for both ground-truth hybrid

datasets, the most accurate protein quantification was achieved by the

peptide weight threshold value that maximizes the GCI. We assume that

a similar unsupervised approach for parameter optimization could fit

in other methods involved in proteomics data analysis. However, as it

is demonstrated by the analysis of Hybrid dataset 1, GCI scores are

independent of the inference method and therefore they cannot indicate the

most accurate approach. We suspect that this is an effect of the increased
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amount of shared peptides between the reported protein groups inferred

by the non-parsimonious and Soft approaches, corresponding to 4.6% and

3.6% of the peptides respectively. We assume this higher number of shared

peptides in turn increases the similarities among the summarized protein

abundances.

Lastly, we have developed the VIQoR plot, a novel visualization

that combines quantitative details about peptide and protein changes with

amino acid sequence data. The plot can be used to compare the response

of a protein group between two biological states and at the same time

illustrates the quantitative patterns of all measured modified and non-

modified peptides. This makes VIQoR valuable to PTMs analysis as it

allows detailed views or PTM behavior with respect to the general trend

of a protein. VIQoR plots along with the other interactive visualization

modules can serve as an intuitive tool for exploratory analysis and data

interpretation, while the user can browse and visualize data on peptide,

PTM, protein and protein group level.

Acknowledgements

V.T. This work would not have been possible without the useful discussions

with Marija Nišavić and Maša Babović.
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