Pregnancy-associated fracture risk in women with osteogenesis imperfecta, a nationwide register-based SCCS

Lykking, Emilie Karense; Kammerlander, Heidi; Van Dijk, Fleur; Prieto-Alhambra, Daniel; Abrahamsen, Bo; Folkestad, Lars

Published in:
Bone Reports

DOI:
10.1016/j.bonr.2021.100786

Publication date:
2021

Document version:
Final published version

Document license:
CC BY

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
differ between clinical groups and are important when planning femoral osteotomies to correct FNA.

Purpose: This study aimed to compare FNA and regional femoral torsion of the femur between adults with XLH and controls.

Methods: 13 individuals with XLH (5 male, age 49±9y) and 12 age, sex and weight-matched control participants (7 male, age 49±8y) were recruited following ethical approval and informed consent. Magnetic resonance imaging (MRI) scans of the femur were obtained, from which FNA, ITT, ST and CT were measured. Data were normally distributed, therefore group differences were assessed using t-tests.

Results: FNA was 29° lower in individuals with XLH than controls (p<0.005). This resulted mainly from lower ITT (p<0.001) and in part CT (p<0.05) whereas ST was similar in the two groups (Fig. 1).

Conclusion(s): We observed differences in FNA and region-specific femoral torsion in individuals with XLH compared to controls. These differences may contribute to clinical problems such as hip osteoarthritis common in XLH. Information on region-specific differences may be useful in planning corrective surgeries. Future work should examine how pharmacological and other interventions in this group affect FNA.

COP03

Pregnancy-associated fracture risk in women with osteogenesis imperfecta, a nationwide register-based SCCS

Emilie Karense Lykking, Heidi Kammerlander, Fleur Van Dijk, Daniel Prieto-Alhambrad, Bo Abrahamsen, Lars Folkestad

1Odense University Hospital / University of Southern Denmark, Department of Endocrinology / Institute of Health Sciences, Odense, Denmark
2Hospital Lillebaelt, Department of Obstetrics and gynaecology, Kolding, Denmark
3London North West Healthcare NHS Trust, North West Thames Regional Genetics Service, London, United Kingdom
4University of Oxford, Csm-NDORMS, Oxford, United Kingdom
5Holbaek Hospital / University of Southern Denmark, Department of Medicine / OPEN, Holbaek, Denmark
6Odense University Hospital / University of Southern Denmark, Department of Endocrinology / Department of Clinical Research, Odense C, Denmark

Background/Introduction: Osteogenesis imperfecta (OI) is a hereditary disorder of the connective tissue with a heterogeneous clinical presentation. A hallmark of OI is frequent fractures occurring with little or no trauma. Pregnancy and lactation are periods of increased fetal demand for calcium known to often result in an asymptomatic and fully reversible decrease in maternal Bone Mineral Density. Fracture risk associated with this bone loss among women with OI has not yet been evaluated.

Purpose: To evaluate the fracture rates and risk in the short and longer term associated with pregnancy.

Methods: Self-controlled case series 12- and 19- months prior to conception compared to a period of 12- and 19 months, respectively, postpartum among women with OI. The study is based on register data from the Danish National Patient Register. All women registered in the Danish National Patient Register with a WHO International Classification of Diseases 8th or 10th edition code for OI who gave birth one or more times in the period between 01.01.1995-31.12.2018 and who had a 12 or 19 months pre- and postpartum observation period were included.

Results: We found an incidence rate (IR) 12 months prior to conception of 59.9 [95% CI 22.8-97] per 1000 person years and an IR 12 months postpartum of 29.9 [95% CI 3.7-56.18]. Comparing pre- and post-pregnancy periods we found an incidence rate ratio (IRR) of 0.5 [95% CI 0.17-1.46]. Adjusting for parity and age at delivery did not significantly change in IRR. For the 19 months window the IR per 1000 person years pre-pregnancy was 58.28 [95% CI 36.16-87.77] and the IR postpartum 51.12 [95% CI 23.33-78.91], leading to an IRR of 0.87 [95% CI 0.40-1.82].

Conclusion(s): We found no evidence that the anticipated physiological decline in BMD during pregnancy and lactation leads to a higher risk of fractures in women with OI.

COP04

Breast calcification chemistry as a biomarker for progression of in-situ breast cancer

Sarah Gosling, Doriana Calabrese, Emily Arnold, Jayakrupakar Nallala, Charlene Greenwood, Nicholas Stone, Keith Rogers

1Cranfield University, Cranfield Forensic Institute, Swindon, United Kingdom
2University of Exeter, School of Physics and Astronomy, Exeter, United Kingdom
3Keele University, School of Chemical and Physical Sciences, Keele, United Kingdom

Background/Introduction: Breast microcalcifications are deposits of calcium oxalate, found mostly in benign tissue, or calcium phosphate in the form of hydroxyapatite, found in benign and malignant tissue. Differences in the crystallographic properties and chemical make-up of hydroxyapatite breast microcalcifications have previously been noted in differing breast pathologies.

Purpose: Ductal carcinoma in-situ (DCIS) is a precancerous breast lesion, which has the potential to form invasive breast cancer. Currently there are no definitive markers to determine DCIS invasiveness, therefore this work aims to elucidate differences in the calcification chemistry between invasive and non-invasive cases of DCIS, ultimately developing a novel biomarker for DCIS progression.

Methods: 75 formalin fixed paraffin embedded archive breast tissue samples were used subject to NHS REC approval (ref. 18/LO/0945). X-ray diffraction was carried out at 12keV on beamline I18 at Diamond Light Source, UK to determine crystallographic properties