Completing orientations of partially oriented graphs

J. Bang-Jensen* J. Huang† X. Zhu‡

Abstract

We initiate a general study of what we call orientation completion problems. For a fixed class C of oriented graphs, the orientation completion problem asks whether a given partially oriented graph P can be completed to an oriented graph in C by orienting the (non-oriented) edges in P. Orientation completion problems commonly generalize several existing problems including recognition of certain classes of graphs and digraphs as well as extending representations of certain geometrically representable graphs.

We study orientation completion problems for various classes of oriented graphs, including k-arc-strong oriented graphs, k-strong oriented graphs, quasi-transitive oriented graphs, local tournament, acyclic local tournaments, locally transitive tournaments, locally transitive local tournaments, in-tournaments, and oriented graphs which have directed cycle factors. We show that the orientation completion problem for each of these classes is either polynomial time solvable or NP-complete. We also show that some of the NP-complete problems become polynomial time solvable when the input oriented graphs satisfy certain extra conditions. Our results imply that the representation extension problems for proper interval graphs and for proper circular arc graphs are polynomial time solvable, which generalize a previous result.

Keywords: orientation completion problem, recognition, representation extension, partially oriented graph, friendly partial oriented graph, local tournament, locally transitive local tournament, in-tournament, proper interval graph, proper circular arc graph, NP-complete, polynomial time algorithm.

1 Introduction

For a fixed class C of oriented graphs, the orientation completion problem asks whether a given partially oriented graph can be completed to an oriented graph in C by orienting the (non-oriented) edges. Orientation completion problems commonly generalize several existing problems including recognition of certain classes of graphs and digraphs as well as extending representations of certain geometrically representable graphs.

For the class of acyclic oriented graphs, the orientation completion problem is easily seen to be polynomial time solvable; a partially oriented graph can be completed to an acyclic oriented graph if and only if it does not contain a directed cycle.

When the fixed class C consists of all transitive oriented graphs, the underlying graphs of the oriented graphs in C are precisely the comparability graphs. Thus if the input partially oriented graph has no oriented edges the corresponding orientation completion problem just asks whether the input is a comparability graph. So the problem is just the recognition problem for comparability graphs, cf. [13]. In general the orientation completion problem for this C can be solved in polynomial time using Gallai’s decomposition scheme of comparability graphs, cf. [9, 12].

Suppose that C is the class of all strong oriented graphs. A result from [6] implies that a partially oriented graph can be completed to a strong oriented graph if and only if it has no bridge and no directed cut. Either a bridge or a directed cut in a partially oriented graph (if any exists) can be detected in...
polynomial time. Hence the orientation completion problem for C is polynomial time solvable. In contrast to this, the orientation completion problem for the class of k-strong oriented graphs is NP-complete for each $k \geq 3$ (see Theorem \ref{thm:orientation-completion}.

Orientation completion problems also generalize the problem of extending partial proper interval representation of proper interval graphs, cf. \cite{17}. A proper interval graph is the intersection graph of a family of intervals in a line where no interval is contained in another. Suppose that an induced subgraph H of a graph G is represented by a family of intervals where no interval contains another. The representation extension problem for proper interval graphs asks whether it is possible to obtain a proper interval representation of G that includes the one given for H. It is well-known that a proper interval representation of G corresponds to an acyclic local tournament orientation G, cf. \cite{14}. Thus the representation extension problem for proper interval graphs is just the orientation completion problem for the class of acyclic local tournaments where the partial orientation of G corresponds to an interval representation of H. The representation extension problem for proper interval graphs was shown to be polynomial time solvable, cf. \cite{17}.

In this paper we study orientation completion problems for various classes of oriented graphs but focusing on three of them: local tournaments, locally transitive local tournaments, and acyclic local tournaments. These three classes are nested; the class of local tournaments properly contains the class of locally transitive local tournaments which in turn properly contains the class of acyclic local tournaments. We show that the complexity of the orientation problems for the three classes alternates; while the orientation completion problem is polynomial time solvable for the class of local tournaments and for the class of acyclic local tournaments, it is NP-complete for the class of locally transitive local tournaments. In fact we show that the problem remains NP-complete for the class of locally transitive tournaments (i.e., complete locally transitive local tournaments). Since, as mentioned above, the orientation completion problem for acyclic local tournaments generalizes the representation extension problem for proper interval graphs, our result on the orientation completion problem for acyclic local tournaments generalizes a result from \cite{17}. We also show that if the input oriented graphs are restricted to being friendly (see the definition in Section \ref{sec:terminology}) then the orientation completion problem for locally transitive local tournaments is polynomial time solvable. The underlying graphs of connected locally transitive local tournaments are precisely the proper circular arc graphs. Our result on the restricted orientation completion problem for locally transitive local tournaments implies that the representation problem for proper circular arc graphs is solvable in polynomial time. For various other classes of oriented graphs, including k-arc-strong oriented graphs, k-strong oriented graphs, quasi-transitive oriented graphs, in-tournaments, and oriented graphs which have directed cycle factors, we show that the corresponding orientation completion problems are either polynomial time solvable or NP-complete.

The paper is organized as follows. In Section \ref{sec:terminology} we provide some terminology and notation as well as some preliminary results. We show in Section \ref{sec:equiv} that two polynomially equivalent problems are NP-complete. These include the orientation completion problem for the class of locally transitive tournaments. Section \ref{sec:results} includes several cases where the orientation problems are shown to be polynomial time solvable. Finally in Section \ref{sec:conclusion} we make some concluding remarks and state some open problems.

2 Terminology and preliminary results

Notation or terminology not introduced here follows \cite{8}. Both graphs and digraphs will be considered in this paper. For graphs we assume that they do not contain loops or multiple edges (i.e., they are simple) and for digraphs we assume they do not contain loops or two arcs joining the same pair of vertices (i.e., they are oriented graphs). Most of the time we will consider the so-called partially oriented graphs which may contain both edges and arcs.

A partially oriented graph (pog) $P = (V, E \cup A)$ is the edge-disjoint union of a graph $G = (V, E)$ and an oriented graph $D = (V, A)$ on the same vertex set V; thus no two vertices in a partially oriented graph can have two vertices joined by both an edge and an arc. In the case when $A = \emptyset$, P is just the graph G and similarly when $E = \emptyset$, P is the oriented graph D. When there is either an edge or an arc joining two vertices u, v in P, we say that u, v are adjacent, and use uv to denote the edge between u and v and use (u, v) to denote the arc from u to v. If (x, y) is an arc of P we say that x dominates y and call y an out-neighbour of x and x an in-neighbour of y. For a vertex $v \in V(D)$ we denote by $N^+(v)$ ($N^-(v)$) the set of out-neighbours (in-neighbours) of v. The underlying graph of a pog P,
denoted $UG(P)$, is obtained from P by suppressing the orientation of each arc. A pog P is connected if $UG(P)$ is a connected graph.

Given a partially oriented graph $P = (V, E \cup A)$, to complete P means to obtain an oriented graph by orienting each edge in E (that is, replacing each edge by an arc in one of the two possible ways). The central topic of this paper is the study of the following problem: Let C be a fixed class of oriented graphs.

<table>
<thead>
<tr>
<th>Orientation Completion Problem for C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance: A partially oriented graph P.</td>
</tr>
<tr>
<td>Question: Can P be completed to an oriented graph in C?</td>
</tr>
</tbody>
</table>

As an example suppose that C consists of all transitive tournaments (i.e., tournaments that contain no directed triangle). Then the orientation problem for C asks whether a partially oriented graph P can be completed to a transitive tournament. Clearly, if $UG(P)$ contains a pair of non-adjacent vertices or P contains a directed cycle, then P cannot be completed to a transitive tournament. A pair of non-adjacent vertices in $UG(P)$ or a directed cycle in P (if one exists) can be found in polynomial time. Otherwise P can be completed to a tournament in C as shown below.

Proposition 2.1 Let $P = (V, A \cup E)$ be a partially oriented graph. If $UG(P)$ does not contain a pair of non-adjacent vertices and P does not contain a directed cycle, then P can be completed to a transitive tournament.

Proof: Since P does not contain a directed cycle, its vertices can be ordered v_1, v_2, \ldots, v_n so that each arc $(v_i, v_j) \in A$ satisfies that $i < j$. Now we can now replace each edge $v_kv_l \in E$ with $k < \ell$ by the arc (v_k, v_l). Since $UG(P)$ does not contain a pair of non-adjacent vertices, it is complete and the resulting oriented graph is a transitive tournament completion of P. \diamond

A local tournament is an oriented graph D such that for every vertex v, $N^-(v)$ and $N^+(v)$ each induces a tournament in D. If $N^-(v)$ and $N^+(v)$ each induces a transitive tournament for every vertex v, then D is called locally transitive. It follows from these definitions that every tournament is a local tournament and every transitive tournament is a locally transitive local tournament. But neither of the converses is true, as local tournaments or locally transitive local tournaments may not be tournaments. When a local tournament is also a tournament, we call it complete. When a locally transitive local tournament is complete, we call it a locally transitive tournament.

A graph $G = (V, E)$ is a proper circular arc graph if there is a family of circular arcs $J_v, v \in V$ on a circle such that no circular arc is contained in another and for any two vertices $u, v \in V$, $uv \in E$ if and only if $J_u \cap J_v \neq \emptyset$. Such a family of circular arcs is called a proper circular arc representation of G. Given a proper circular arc representation $J_v, v \in V$ of $G = (V, E)$, an orientation of G can be obtained in such a way that (u, v) is an arc if and only if J_u contains the counterclockwise endpoint of J_v. It is easy to see that this orientation of G is locally transitive and hence is a local tournament. Thus every proper circular arc graph can be completed to a local tournament. The following theorem due to Skrien [22] assures that the converse is also true for connected graphs.

Theorem 2.2 [22] Let G be a connected graph. The following statements are equivalent:

1. G can be completed to a local tournament;
2. G can be completed to a locally transitive local tournament;
3. G is a proper circular arc graph. \diamond

Proper interval graphs form a subclass of proper circular arc graphs. A graph $G = (V, E)$ is a proper interval graph if there is a family of intervals $I_v, v \in V$ on a line such that no interval is contained in another and for any two vertices $u, v \in V$, $uv \in E$ if and only if $I_u \cap I_v \neq \emptyset$. Such a family of intervals is called a proper interval representation of G. Given a proper interval representation of G, one can obtain an acyclic local tournament orientation of G is a similar way as above for proper circular arc graphs. Conversely, if G is oriented as an acyclic local tournament then a proper interval graph representation of G can be obtained from the orientation, cf. [14].

1Locally transitive local tournaments are previously called local transitive tournaments, cf. [15].
Theorem 2.3 \[14\] Let G be a graph. The following statements are equivalent:

1. G can be completed to an acyclic local tournament;
2. G is a proper interval graph.

A **round ordering** of a digraph D is a cyclic ordering $O = v_1, v_2, \ldots, v_n, v_1$ of the vertices of D such that for each vertex v_i we have $N^+(v_i) = \{v_{i+1}, \ldots, v_{d^+(v_i)+i}\}$ and $N^-(v_i) = \{v_{i-d^-(v_i)}, \ldots, v_{i-1}\}$ where indices are modulo n. A digraph which has a round ordering is called **round**. Round digraphs are characterized in \[16\]. It is easy to see that if an oriented graph has a round ordering then it is locally transitive. The following theorem asserts that the converse is also true.

Theorem 2.4 \[7\] An oriented graph D has a round ordering $O = v_1, v_2, \ldots, v_n, v_1$ of its vertices if and only if D is a local tournament which is locally transitive. Furthermore, there is a polynomial algorithm for deciding whether a given oriented graph is round and find a round ordering if one exists.

Let D be an oriented graph on the vertices v_1, v_2, \ldots, v_n and let D_1, D_2, \ldots, D_n be vertex disjoint oriented graphs. To **substitute** D_i for v_i for each $i \in [n]$ is to obtain a new oriented graph from D by replacing v_i with D_i such that if (v_i, v_j) is an arc in D then (x, y) is an arc in D' for all $x \in V(D_i)$ and $y \in V(D_j)$ and there is no other arcs in D'. We use $D[D_1, D_2, \ldots, D_n]$ to denote the new digraph D'. When D is locally transitive and D_i is a transitive tournament for each $i \in [n]$, D' is also locally transitive.

A tournament T is **highly regular** if it is regular and has a round ordering. Highly regular tournaments are the basic structure frames for constructing all tournaments that are locally transitive.

Theorem 2.5 \[12\] Every locally transitive tournament is obtained from a highly regular tournament T by substituting a transitive tournament for each vertex of T.

Given a locally transitive tournament T', we can obtain a highly regular tournament T as indicated in Theorem 2.4 by repeatedly identifying two vertices x, y with $N^-(x) \setminus \{x, y\} = N^-(y) \setminus \{x, y\}$ and $N^+(x) \setminus \{x, y\} = N^+(y) \setminus \{x, y\}$ and deleting the loop resulted from the identification, until no two such vertices remain.

Let $O = v_1, v_2, \ldots, v_n, v_1$ be a cyclic ordering of the vertices of a pog $P = (V, E \cup A)$. An arc $(v_i, v_j) \in A$ **dominates** an arc $(v_s, v_t) \in A$ with respect to O if the vertices of the two arcs appear in the order v_i, v_s, v_t, v_j in O, where we can have $i = s$ or $j = t$. An arc $(v_i, v_j) \in A$ dominates an edge v_pv_q if both of the vertices v_p, v_q occur in the interval $[v_i, v_j]$ from v_i to v_j according to O. An arc is **maximal** with respect to O if it is not dominated by any other arc. A cyclic ordering of the vertices of a pog P is **excellent** if P has no pair of arcs $(v_1, v_1), (v_n, v_n)$ so that these vertices occur in the order v_i, v_s, v_t, v_j in the cyclic ordering, where we may have $i = t$ or $s = j$.

Lemma 2.6 Suppose $P = (V, E \cup A)$ is pog which has an excellent cyclic ordering $O = v_1, \ldots, v_n, v_1$ of its vertices. Then P can be completed to an oriented graph D' for which the same cyclic ordering O is excellent.

Proof: Let $P = (V, E \cup A)$ be a pog and let $O = v_1, v_2, \ldots, v_n, v_1$ be an excellent cyclic ordering of D. Let $a_1 = (v_{j_1}, v_{j_1}), a_2 = (v_{j_2}, v_{j_2}), \ldots, a_k = (v_{j_k}, v_{j_k})$ be the maximal arcs of D with respect to O. By the assumption of the lemma, for each arc a_r every arc (v_{j}, v_{j}) for which both vertices v_{j}, v_{j} occur after in the interval $[v_i, v_j]$ satisfy that the vertices occur in the order $v_{i_r}, v_{j}, v_{j}, v_{j_r}$. For each $r \in [k]$ in increasing order and all indices p, q with $v_{j}, v_{j}, v_{j}, v_{j}$, occurring in that order such that $v_{j}v_{j}$ is an edge of P we orient this edge as the arc (v_{j}, v_{j}). Let $D^* = (V, A \cup A^*)$ be the oriented graph consisting of the original arcs and those edges which we have oriented so far. By construction of D^*, O is an excellent ordering of D^*. Hence if no edge of E is still unoriented we are done. It suffices to show that we may orient one of the remaining edges, since then the claim follows by induction on the number of unoriented edges. Let $v_{j}v_{j}$ be an edge which was not oriented and orient this as (v_{j}, v_{j}). We claim that O is an excellent ordering of $D^* \cup \{(v_{j}, v_{j})\}$. If not then there is an arc (v_{a}, v_{b}) of D^* such that the vertices occur in the order $v_{a}, v_{a}, v_{b}, v_{b}$ but then the edge $v_{j}v_{j}$ is dominated by the arc (v_{a}, v_{b}) and hence by one of the arcs a_1, \ldots, a_k, contradicting that it was not oriented above. \(\diamondsuit\)
Lemma 2.7 An oriented graph \(D \) has an excellent cyclic ordering \(O \) if and only if it can be extended to a round local tournament \(D^* \) by adding new arcs. In particular, every excellent ordering of \(D \) is a round ordering of \(D^* \) and conversely.

Proof: Suppose first that \(D \) can be extended to a round local tournament \(D^* \). According to Theorem 2.4 there is a round ordering \(O = v_1, v_2, \ldots, v_n \) of \(V(D^*) = V(D) \). We claim that this ordering is also excellent. If not, then there are arcs \((v_i, v_j}\) and \((v_k, v_l}\) so that the vertices occur in the order \(v_i, v_k, v_l, v_j \) according to \(O \). Since \(O \) is a round ordering, we have that \((v_i, v_k}\) and \((v_j, v_l}\) are arcs of \(D^* \) but then the neighbours of \(v_l \) do not occur correctly according to \(O \), contradiction. So \(O \) is an excellent ordering of \(D^* \) and hence also of the subdigraph \(D \). To prove the second part let \(O = v_1, v_2, \ldots, v_n, v_1 \) be an excellent cyclic ordering of the oriented graph \(D \). It suffices to observe that for every maximal arc \((v_i, v_j}\) with respect to \(O \) and any pair of non-adjacent vertices \(v_a, v_b \) in the interval \([v_i, v_j]\) with \(v_a \) before \(v_b \) we may add the arc \((v_a, v_b}\) and still have an excellent ordering of the resulting oriented graph. Now the claim follows by induction on the number of such non-adjacent pairs.

Lemma 2.8 Every round oriented graph \(D \) can be completed to a locally transitive tournament.

Proof: We prove the statement by induction on the number of vertices in \(D \) which are not adjacent to all other vertices. By Theorem 2.4 the base case where there is no such vertex is true. So assume that all round oriented graph on \(n \) vertices with at most \(k \) vertices as above can be completed to a locally transitive tournament and let \(D \) be a round digraph with \(k + 1 \) vertices each of which has a non-neighbour. Let \(O = v_1, v_2, \ldots, v_n, v_1 \) be a round ordering according to Theorem 2.4. W.l.o.g. the vertex \(v_1 \) has a non-neighbour, so we have that \(v_{d^+(v_1)+2} \neq v_{n-d^-(v_1)} \). We claim that there is no arc \((v_p, v_q}\) with \(1 \leq q < p < n - d^-(v_1) \). Suppose such an arc does exist. Then we have \(p > d^+(v_1) + 1 \) by the choice of \(O \) and we have \(q > 1 \) since \(v_p \) is not adjacent to \(v_1 \). But this contradicts the fact that the vertex \(v_p \) sees its out-neighbourhood as an interval just after itself according to \(O \) because \(v_1 \) is not-adjacent to \(v_p \). Thus if add all the arcs \((v_1, v_{d^+(v_1)+2}), \ldots, (v_1, v_{n-d^-(v_1)-1})\) to \(D \) the order \(O \) is an excellent ordering of the resulting digraph \(D' \). By Lemmas 2.6 and 2.7 this implies that \(D' \) can be extended to a round local tournament \(D'' \) by adding new arcs. Now the claim follows by induction since \(D' \) has less vertices with non-neighbours than \(D \) does.

3 Hardness results on excellent orderings and completions to locally transitive tournaments

For a given oriented graph \(D \) we denote by \(D^c \) the partially oriented complete graph obtained from \(D \) by adding an edge between each pair of non-adjacent vertices. We shall use the following consequence of Lemmas 2.6, 2.7 and 2.8 as well as Theorem 2.4.

Lemma 3.1 An oriented graph \(D \) has an excellent ordering if and only if the pog \(D^c \) has a completion \(T \) to a tournament which is locally transitive. Furthermore, given an excellent ordering of \(D \) we can construct \(T \) in polynomial time and conversely, given \(T \) we can obtain an excellent ordering of \(D \).

Figure 1: Two different labellings of the same partially oriented complete graph on 4 vertices. For later convenience we name these \(X, \bar{X} \).

The following is easy to check.
Proposition 3.2 Each of the two labellings X, \bar{X} partially oriented complete graphs X, \bar{X} in Figure 4 have exactly two completions to a locally transitive tournament. For X these are obtained by orienting the two edges $ab, \alpha\beta$ as either $(b, a), (\beta, \alpha)$ or $(a, b), (\alpha, \beta)$. For \bar{X} they are obtained by orienting the two edges $uv, \alpha\beta$ as either $(v, u), (\alpha, \beta)$ or $(u, v), (\beta, \alpha)$. \hfill \diamond

Lemma 3.3 Let W be the partially oriented 6-wheel in Figure 4. If we orient the three edges $c_{11}c_{12}, c_{21}c_{22}, c_{31}c_{32}$ as $(c_{11}, c_{12}), (c_{21}, c_{22}), (c_{31}, c_{32})$ the resulting digraph D is not a spanning subgraph of any locally transitive tournament on 7 vertices and hence D has no excellent ordering. For all the 7 remaining orientations of the three edges $c_{11}c_{12}, c_{21}c_{22}, c_{31}c_{32}$ the resulting digraph D' can be completed to a locally transitive tournament and hence has an excellent ordering.

Proof: If we orient the three edges as $(c_{11}, c_{12}), (c_{21}, c_{22}), (c_{31}, c_{32})$ then the vertex c has a directed 6-cycle in its out-neighbourhood and hence no completion to a locally transitive tournament exists. By Lemma 2.7 this implies that D has no excellent ordering. On the other hand, for each of the remaining 7 orientations of the three arcs, the digraph D' we obtain is acyclic and hence it follows from Proposition 2.4 that we can extend D' to a transitive tournament T. The ordering corresponding to decreasing out-degrees of T gives an excellent ordering of W. \hfill \diamond

Theorem 3.4 The following polynomially equivalent problems are NP-complete.

- Deciding whether an oriented graph has an excellent ordering.
- Deciding whether a given partially oriented complete graph can be completed to a locally transitive tournament.

Proof: We describe polynomial reductions from 3-SAT to these problems.

Let F be an instance of 3-SAT with variables x_1, x_2, \ldots, x_n and clauses C_1, C_2, \ldots, C_m, where each clause is of the form $(\ell_1 \lor \ell_2 \lor \ell_3)$ and each ℓ_i is either one of the variables x_j or the negation \bar{x}_j of such a variable.

Let $p_j(q_i)$ be the number of times variable x_i (\bar{x}_i) occurs as a literal in F. The enumeration of the clauses C_1, \ldots, C_m induces an ordering on the occurrences of the same literal in the formula. Guided by this ordering we now construct a partially oriented graph $H = H'(F)$ as follows:

Let X, \bar{X} be as in Figure 1. For each variable x_i we form the partially oriented graph X_i from p_i copies of X and q_i copies of \bar{X} (these $p_i + q_i$ graphs are vertex disjoint) by identifying all the α vertices and all the β vertices and denote these identified vertices by $\alpha(x_i)$, $\beta(x_i)$, respectively. Denote the p_i copies of a, b by $a_{i,1}, \ldots, a_{i,p_i}$, $b_{i,1}, \ldots, b_{i,p_i}$ and the q_i copies of u, v by $u_{i,1}, \ldots, u_{i,q_i}$, $v_{i,1}, \ldots, v_{i,q_i}$.

Take m disjoint copies W_1, W_2, \ldots, W_m of the partially oriented 6-wheel from Figure 2 where the vertices of W_i are denoted $c_i, c_{11}^i, c_{12}^i, c_{21}^i, c_{22}^i, c_{31}^i, c_{32}^i$. Make the following association between literals of F and the W_i's: If $C_j = (\ell_{i,j} \lor \ell_{i,j} \lor \ell_{i,j})$ we associate the vertices c_{j1}^i, c_{j2}^i with the literal $\ell_{i,j}$ of C_j, $j \in [3]$.

Now we make the following vertex identifications. For each clause $C_i = (\ell_{i,1} \lor \ell_{i,2} \lor \ell_{i,3})$ we identify the vertices $c_{11}^i, c_{12}^i, c_{21}^i, c_{22}^i, c_{31}^i, c_{32}^i$ with vertices from the union of the graphs X_1, \ldots, X_n as follows: If $\ell_{i,j} = x_r$ and this is the hth occurrence of variable x_r according to the induced ordering of that literal, then identify c_{j1}^i with $a_{r,h}$ and c_{j2}^i with $b_{r,h}$. If $\ell_{i,j} = \bar{x}_r$ and this is the tth occurrence of \bar{x}_r according
to the induced ordering of that literal, then identify $c_1^{i_1}$ with $u_{r,t}$ and $c_1^{i_2}$ with $v_{r,t}$. Note that even after these identifications each of the subdigraphs W_1, \ldots, W_m are still vertex disjoint.

Clearly we can construct H' in polynomial time from F. Denote by H the oriented graph obtained from H' by deleting all (unoriented) edges. It is easy to check that the in- and out-neighbourhoods of each vertex in H is acyclic.

By Lemma 3.1, it suffices to show that H has an excellent ordering if and only if F is satisfiable.

First suppose that H has an excellent ordering. By Lemma 3.1, this means that the partially oriented complete graph H^c has a completion T as a locally transitive tournament. We claim that the following is a satisfying truth assignment: If the edge $\alpha(x_i)\beta(x_i)$ is oriented in T as $(\alpha(x_i), \beta(x_i))$ then let $x_i = \text{False}$ and if it is oriented as $(\beta(x_i), \alpha(x_i))$ then let $x_i = \text{True}$. First observe that, by Proposition 3.2, this implies that for each $i \in [n]$ the variable x_i is false if and only if each of the edges $a_i,j b_{i,j}$, $j \in [p_i]$ are oriented as $(a_{i,j}, b_{i,j})$ and each of the edges $u_{i,r} v_{i,r}$, $r \in [q_i]$ are oriented as $(v_{i,r}, u_{i,r})$.

We now use this to show that each of the clauses of F is satisfied by our truth assignment. As T is locally transitive, for each of the induced subdigraphs $T(W_j), j \in [m]$ the out-neighbourhood of c_j is acyclic which implies that at least one of three arcs of H which correspond to the literals of F is oriented as (c_{j2}, c_{j1}). If this arc corresponds to the literal x_s then, by the identification rule above this is an arc of the form $(b_{s,t}, a_{s,t})$ so the variable x_s is true and C_j is satisfied. If the arc corresponds to the literal \bar{x}_s then the identification rule implies that this is an arc of the form $(v_{s,t}, u_{s,t})$, implying that \bar{x}_s is true so again C_j is satisfied. Thus we have shown that F is satisfiable if H^c has a locally transitive completion (H has an excellent ordering).

Now suppose that $t : \{x_1, \ldots, x_n\} \rightarrow \{\text{True, False}\}$ is a satisfying truth assignment for F. We shall use this truth assignment to construct an excellent ordering of the pog H'. Recall that this is also an excellent ordering of the directed part H of H'.

We first orient the edges $\alpha(x_1)\beta(x_1), \ldots, \alpha(x_n)\beta(x_n)$ as follows: If $x_i = \text{True}$ then orient $\alpha(x_i)\beta(x_i)$ as $(\beta(x_i), \alpha(x_i))$ and otherwise orient as $(\alpha(x_i), \beta(x_i))$. Denote by \hat{H} the resulting pog. It follows from Proposition 3.2, the way we made identifications between vertices of the W_j’s and variable vertices and the fact that t is a satisfying truth assignment that we can now orient all the remaining edges of \hat{H} (recall that those correspond to the literals) uniquely so that the resulting full orientation \hat{H} of H'.

Figure 3: Part of the digraph $H'(F)$ when $F = (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor \bar{x}_3)$. For better readability the vertices c_1, c_2, c_3 are not shown.
satisfies that the in- and out-neighbourhood of each vertex is still acyclic.

We now construct an excellent ordering for \(\overrightarrow{H} \). Denote by \(A(x_i) (B(x_i)) \), \(i \in [n] \) the set of out-neighbours (in-neighbours) of \(\alpha(x_i) \) in \(\overrightarrow{H} \). Note that if \(t(x_i) = \text{False} \), then we must have \(A(x_i) = \{b_{i,1}, \ldots, b_{i,p}, \alpha_{i,1}, \ldots, \alpha_{i,q}\} \), \(B(x_i) = \{a_{i,1}, \ldots, a_{i,p}, \nu_{i,1}, \ldots, \nu_{i,q}\} \) and there is no oriented arc from \(B(x_i) \) to \(A(x_i) \). Similarly, if \(t(x_i) = \text{True} \), then \(A(x_i) = \{b_{i,1}, \ldots, b_{i,p}, \nu_{i,1}, \ldots, \nu_{i,q}\} \), \(B(x_i) = \{a_{i,1}, \ldots, a_{i,p}, \alpha_{i,1}, \ldots, \alpha_{i,q}\} \) and there is no oriented arc from \(A(x_i) \) to \(B(x_i) \).

Furthermore observe that \(\beta(x_i) \) has no out-neighbour when \(t(x_i) = \text{False} \) and precisely one out-neighbour, namely \(\alpha(x_i) \) when \(t(x_i) = \text{True} \). Let \(1 \leq i_1 < i_2 < \ldots < i_k \leq n \) and \(1 < j_1 < j_2 < \ldots < j_g \leq n \) denote the indices of the true, respectively the false variables. Consider the following cyclic ordering \(\mathcal{O} \) of \(V(\overrightarrow{H}) \):

\[
\alpha(x_{i_1}), \alpha(x_{i_2}), \ldots, \alpha(x_{i_k}), c_1, c_2, \ldots, c_m, A(x_{i_1}), \ldots, A(x_{i_k}), B(x_{j_1}), \ldots, B(x_{j_g}), \alpha(x_{j_1}), \ldots, \alpha(x_{j_g}), A(x_{j_1}), \ldots, A(x_{j_g}), B(x_{i_1}), \ldots, B(x_{i_k})
\]

where the ordering inside each \(A(x_i), B(x_i) \) is as according to the way we listed those sets above.

We shall prove that the ordering \(\mathcal{O} \) is excellent. Suppose for contradiction that there is a pair of arcs \((v_i, v_j) \) with the vertices occurring in the order \(v_i, v_s, v_j \) according to \(\mathcal{O} \).

- We cannot have \(v_i = \alpha(x_{i_j}) \) for some \(j \in [k] \) because there is no backward arc in the interval of \(\mathcal{O} \) from \(\alpha(x_{i_j}) \) to \(\text{(the end of)} \ A(x_j) \) \((\alpha(x_{i_j}) \) is only adjacent to vertices in \(A(x_{i_j}) \)). Similarly, we cannot have \(v_i \) in the interval \([\alpha(x_{i_j}), \alpha(x_{i_k})] \).

- We cannot have \(v_i = c_p \) for some \(p \in [m] \) because the only arcs incident to \(c_p \) are from \(c_p \) to the six vertices which correspond to its three literals and we ordered the \(A \) and \(B \) sets and \(\alpha(x_{j_1}), \ldots, \alpha(x_{j_g}) \) in such a way that any arc between them goes forward in the ordering. In particular there are no backwards arcs with respect to the ordering in the interval \(A(x_{i_1}), \ldots, A(x_{i_k}), B(x_{j_1}), \ldots, B(x_{j_g}), \alpha(x_{j_1}), \ldots, \alpha(x_{j_g}), A(x_{j_1}), \ldots, A(x_{j_g}), B(x_{i_1}), \ldots, B(x_{i_k}) \).

- We cannot have \(v_i \) in the interval \(A(x_{i_1}), \ldots, A(x_{i_k}) \) since all out-neighbours of those vertices are in the interval \(B(x_{i_1}), \ldots, B(x_{i_k}) \) and then the remark above implies the claim. Similarly, we cannot have \(v_i \) in the interval \(A(x_{j_1}), \ldots, A(x_{j_g}) \).

- We cannot have \(v_i \) in the interval \(B(x_{j_1}), \ldots, B(x_{j_g}) \) because there are no backward arcs in the interval \(B(x_{j_1}), \ldots, B(x_{j_g}), \alpha(x_{j_1}), \ldots, \alpha(x_{j_g}), A(x_{j_1}), \ldots, A(x_{j_g}) \) and this contains all out-neighbours of such a \(v_i \).

- Finally we cannot have \(v_i \) in the interval \(B(x_{i_1}), \ldots, B(x_{i_k}) \) because all arcs out of a vertex in this interval remains inside the interval \(B(x_{i_1}), \ldots, B(x_{i_k}), \alpha(x_{i_1}), \alpha(x_{i_2}), \ldots, \alpha(x_{i_k}) \) and there is no backward arc here.

Thus we have shown that \(\mathcal{O} \) is excellent and hence, by Lemma 8.1 the partially oriented complete graph \(H^c \) has a completion to a locally transitive tournament.

\section*{4 Polynomial cases}

Let \(G = (V, E) \) be a graph. The \textbf{auxiliary graph} \(G^+ \) of \(G \) is defined as follows. The vertex set of \(G^+ \) consists of all ordered pairs \((u, v) \) for all \(uv \in E \) (note that every edge of \(G \) gives rise to two vertices of \(G^+ \)). Two vertices \((u, v) \) and \((u', v') \) of \(G^+ \) are adjacent if and only if one of the following conditions holds:

- \(u = u' \) and \(vv' \notin E \);
- \(uu' \notin E \) and \(v = v' \);
- \(u = v' \) and \(u = u' \).

\begin{lemma}[14] \label{lem:4.1}
A graph \(G \) is local tournament orientable if and only if \(G^+ \) is bipartite. Moreover, when \(G^+ \) is bipartite, for any two vertices \((u, v), (u', v') \) of odd distance in \(G^+ \), a local tournament of \(G \) must contain exactly one of them as an arc. In particular, the arcs of every local tournament orientation of \(G \) correspond to a colour class of \(G^+ \).
\end{lemma}
Theorem 4.2 The orientation completion problem is polynomial time solvable for the class of local tournaments is polynomial time solvable.

Proof: Let $P = (V, A \cup E)$ be a partially oriented graph and let $G = UG(P)$. The arc set A corresponds to a subset S of the vertex set of G^+. According to Lemma 4.1 P can be completed to a local tournament if and only if G^+ is bipartite and S is contained in a colour class of G^+. Checking whether G^+ is bipartite and in the case when G^+ is bipartite whether S is contained in a colour class of G^+ can be done in polynomial time.

An oriented graph $D = (V, A)$ is called 	extit{quasi-transitive} if for any three vertices x, y, z, $(x, y) \in A$ and $(y, z) \in A$ together imply there is an arc between x and z in either direction, cf. [14]. In a similar way we can define an auxiliary graph for each graph G which can be used to determine whether G can be completed to a quasi-transitive oriented graph, cf. [14]. This also implies that the orientation completion problem for the class of quasi-transitive oriented graphs is solvable in polynomial time.

We next consider the orientation completion problem for acyclic local tournaments. By Theorem 2.3 a partially oriented graph P can be completed to an acyclic local tournament if and only if $UG(P)$ is a proper interval graph. Since every (proper) interval graph is chordal, it has a perfect elimination ordering, which is a vertex ordering \prec such that if $x \prec y \prec z$ and xy, xz are edges then yz is an edge.

There is a simple algorithm which determines whether a graph is a proper interval graph and completes it to an acyclic local tournament (orientation) if it is, cf. [14]. Let G be a graph and let \prec be a vertex ordering of G. For two ordered pairs $(u, v), (u', v')$ of vertices of G, we say that (u, v) is lexicographically smaller than (u', v') with respect to \prec if either $u \prec u'$ or $u = u'$ and $v \prec v'$.

The following algorithm is taken from [14].

	extbf{Lexicographic 2-Colouring}: Let $G = (V, E)$ be a graph which is chordal and whose auxiliary graph G^+ is bipartite.

1. Find a perfect elimination ordering \prec of G.
2. While there exist uncoloured vertices in G^+: colour lexicographically the smallest uncoloured vertex (u, v) red and extend it a red/blue colouring of the connected component of G^+ containing (u, v).

Lemma 4.3 [14] Let $G = (V, E)$ be a graph which is chordal and whose auxiliary graph G^+ is bipartite. Let R be the set of all red vertices of G^+ obtained by the Lexicographic 2-Colouring algorithm above. Then G is a proper interval graph if and only if (V, R) is an acyclic local tournament orientation of G.

Rose, Tarjan and Lueker [21] developed a linear time algorithm for finding a perfect elimination ordering in a chordal graph. The algorithm is called the 	extbf{Lexicographic Breadth First Search} (LBFS) which is a refinement of the classical 	extbf{Breadth First Search} for graphs. Beginning with an arbitrary vertex of the graph, LBFS always labels the next vertex to be one whose neighbourhood among the labeled vertices is the lexicographically largest (that is, if $v_n, v_{n-1}, \ldots, v_{i+1}$ are labeled, then the next labeled vertex v_i for which $\{j : j > i \text{ and } v_jv_i \text{ is an edge}\}$ is the lexicographically largest among all unlabeled vertices. (For two distinct subsets $S, T \subseteq \{v_n, v_{n-1}, \ldots, v_{i-1}\}$, S is lexicographically larger than T if the vertex in $S \setminus T$ with the largest subscript belongs to S.)

Suppose that G is local tournament orientable. By Lemma 4.1 if D is a local tournament orientation D of G, then D

- does not contain two arcs whose corresponding vertices are of odd distance in G^+, and
- does not contain exactly one of any two arcs whose corresponding vertices are of even distance in G^+.

A partial orientation of G is called 	extbf{consentaneous} if it satisfies the two properties listed above.

Theorem 4.4 Let $P = (V, A \cup E)$ be a partially oriented graph. Suppose that $UG(P)$ is a proper interval graph and P is consentaneous. Then P can be completed to an acyclic local tournament if and only if P does not contain a directed cycle.
Proof: If \(P \) contains a directed cycle then it cannot be completed to an acyclic oriented graph and hence not to an acyclic local tournament. For the other direction, we first show that \(P \) admits a perfect elimination ordering \(v_1, v_2, \ldots, v_n \) such that all arcs are forward, that is, if \((v_i, v_j) \) is an arc then \(i < j \). To obtain such an ordering we apply a modified LBFS beginning with a vertex of outdegree 0, with preferences (in the case of ties) given to vertices having no out-neighbours among unlabeled vertices.

Let \(v_1, v_2, \ldots, v_n \) be an ordering obtained by the modified LBFS. According to [21], it is a perfect elimination ordering. Suppose that the ordering contains backward arc. Let \((v_i, v_j) \in \mathcal{A} \) be a backward arc having the largest subscript \(i \). Since \((v_i, v_j) \) is backward, we have \(i > j \). The choice of \(v_n \) implies \(n > i \). Since \(i > j \), at the time of labeling \(v_i \) the vertex \(v_j \) is an unlabeled out-neighbour of \(v_i \). The LBFS rule ensures that \(v_i \) is a vertex having the lexicographically largest neighbourhood among the vertices \(v_n, \ldots, v_{i+1} \). If the neighbourhood of \(v_i \) (among the labeled vertices) is lexicographically larger than the neighbourhood of \(v_j \), some some vertex \(v_\ell \) with \(\ell > i \) adjacent to \(v_i \) but not to \(v_j \) in \(P \). The assumption that \(P \) is consentaneous implies \((v_\ell, v_i) \) is an arc which is backward with respect to the ordering. This contradicts the choice of \((v_i, v_j) \). Hence \(v_i \) and \(v_j \) must have the same neighbourhood among the labeled vertices. But then the rule prefers \(v_j \) to \(v_i \) for the next labeled vertex, unless \(v_j \) has an out-neighbour \(v_k \) among unlabeled vertices. A similar proof above (when applied to \(v_j, v_k \)) implies \(v_j \) and \(v_k \) must have the same neighbourhood among the labeled vertices. Continuing this way, we obtain a directed cycle (consisting of vertices with the lexicographically largest neighbourhood), which contradicts the assumption. Hence \(v_1, v_2, \ldots, v_n \) is a perfect elimination ordering of \(P \) that contains no backward arcs.

Now we apply the Lexicographic 2-Colouring algorithm using the perfect elimination ordering to obtain a red/blue colouring of the vertices of \(UG(P)^+ \). Let \(R \) be the set of red vertices of \(UG(P)^+ \) produced by the algorithm. Since the perfect elimination ordering has no backward arc from \(A, A \subseteq R \).

Corollary 4.5 The orientation completion problem for the class of acyclic local tournaments is solvable in polynomial time.

Proof: Suppose that a partially oriented graph \(P = (V, A \cup E) \) is given. Denote \(G = UG(P) \). If \(G^+ \) is not bipartite, then the answer is "no". Obtain the minimal consentaneous partial oriented graph \(P' = (V, A' \cup E') \) from \(P \) by orienting (if needed) some edges in \(E \). If \(P' \) contains a directed cycle, then the answer is again "no" by Lemma 4.3 and Theorem 4.4. Otherwise, \(P' \) contains no directed cycle and we can complete \(P' \) to an acyclic local tournament orientation of \(P' \) according to Theorem 4.4. This acyclic local tournament is also a completion of \(P \). All these steps can be done in polynomial time.

Corollary 4.6 [17] The problem of extending partial proper interval representations of proper interval graphs is solvable in polynomial time.

Proof: We show how to reduce the problem of extending partial proper interval representations of proper interval graphs to the orientation completion problem for the class of acyclic local tournaments which is polynomial time solvable according to Corollary 4.5. Suppose that \(G \) is a proper interval graph and \(H \) is an induced subgraph of \(G \). Given a proper interval representation \(I_v, v \in V(H) \) of \(H \) (i.e., a partial proper interval representation of \(G \)), we obtain an orientation of \(H \) in such a way that \((u, v) \) is an arc if and only if \(I_u \) contains the left endpoint of \(I_v \). The oriented edges together with the remaining edges in \(G \) yield a partial orientation of \(G \). This partial orientation of \(G \) can be completed to an acyclic local tournament if and only if the partial representation of \(H \) can be extended to a proper interval representation of \(G \).

We now return to the orientation completion problem for local transitive tournaments. This problem is NP-complete in general and remains so even for complete graphs as shown in Section 3. We will show that the problem becomes polynomial time solvable if the input partially oriented graphs are all friendly (see definition below).

Let \(P = (V, A \cup E) \) be a partially oriented graph and let \(G = UG(P) \). A triple of vertices \(x, y, z \) in \(P \) is called bad if

- \(xyzx \) is a triangle in \(G \),
- the three edges in \(xyzx \) correspond to vertices from three different connected components in \(G^+ \), and
• exactly two edges in $xyzx$ are oriented in P.

If P is consentaneous and has no bad triple then it is called **friendly**. When G is a complete graph, the three edges of each fixed triangle correspond to vertices from three connected components of G^+. Thus if a partially oriented complete graph is friendly then the arcs induce vertex disjoint tournaments.

Lemma 4.7 Let $P = (V, A \cup E)$ be a partially oriented complete graph. Suppose that the arc set A induces two vertex disjoint tournaments T' and T'' with $V(T') \cup V(T'') = V$ which are both locally transitive. Then P can be completed to a tournament that is also locally transitive.

Proof: Since T' is locally transitive, by Theorem 2.5 T' is obtained from a highly regular tournament H' with round ordering u_0, u_1, \ldots, u_{2a} by substituting transitive tournament T_i for u_i for each $i = 0, 1, \ldots, 2a$, that is, $T' = H'[X_0, X_1, \ldots, X_{2a}]$. Similarly we have $T'' = H'[Y_0, Y_1, \ldots, Y_{2b}]$ where H'' is a highly regular tournament with round ordering $v_0, v_1, \ldots, 2b$ and each Y_i is a transitive tournament replacing v_i. Without loss of generality assume $a \geq b$. Let $T = H'[X_0 \cup Y_0, \ldots, (X_b \cup Y_b), X_{b+1}, \ldots, X_a, (X_{a+1} \cup Y_{b+1}), \ldots, (X_{a+b} \cup Y_{2b}), X_{a+b+1}, \ldots, X_{2a}]$. It is easy to verify that the tournament T is an orientation completion of P and is locally transitive.

The following theorem characterizes friendly partially oriented complete graphs which can be completed to a tournament that is locally transitive.

Theorem 4.8 Let $P = (V, A \cup E)$ be a friendly partially oriented complete graph. Then P can be completed to a tournament that is locally transitive if and only if no directed triangle is contained in the in-neighbourhood or the out-neighbourhood of any vertex in P.

Proof: We only prove the sufficiency as the necessity is obvious. Suppose that P has no directed triangle contained in the in-neighbourhood or the out-neighbourhood of any vertex. Since it is friendly, P can be partitioned into vertex disjoint tournaments such that no arc is between any two of them. Since no directed cycle is contained in the in-neighbourhood or the out-neighbourhood of any vertex, each tournament is locally transitive. By Lemma 4.7 any two such tournaments can be completed to a tournament that is locally transitive and therefore P can be completed to a tournament that is locally transitive.

By Theorem 4.8 to determine whether a friendly partially oriented complete graph can be completed to a tournament that is locally transitive, one only needs to check if it has a directed triangle contained in the in-neighbourhood or the out-neighbourhood of a vertex. In the case when no such a triangle exists, following the proof of Theorem 4.8 we can complete the given partially oriented graph to a locally transitive tournament. All these can be done in polynomial time. Hence we have the following:

Corollary 4.9 The problem of deciding whether a friendly partially oriented complete graph can be completed to a tournament that is locally transitive and constructing such an orientation completion (if one exists) is solvable in polynomial time.

Let $P = (V, A \cup E)$ be a partially oriented graph and $G = UG(P)$. Two vertices in P are **similar** if they have the same closed neighbourhood in G. An edge xy (oriented or not) in G is called **balanced** if x and y are similar and is called **unbalanced** otherwise. A **cell** of P is a maximal subgraph of pairwise similar vertices. Note that each cell is a complete subgraph and two cells are either completely adjacent or completely nonadjacent. A vertex of P is **universal** if it is adjacent to all other vertices. Clearly universal vertices are similar to each other. The cell on the universal vertices of G will be called **universal** and any other cell will be called **non-universal**. Each edge xy in a cell corresponds to a connected component of G^+ on the two vertices $(x,y),(y,x)$. We shall call such a component of G^+ a **thin** component and others **thick** components.

We recall some results from [15] which are described in the next two theorems and will be useful in the discussion.

Theorem 4.10 Let D be a local tournament. Then the following statements hold:

- If B is a non-universal cell then B induces a transitive tournament.
- If B is a non-universal cell and $v \notin B$ is adjacent to the vertices in B, then v either completely dominates B or is completely dominated by B.
• If B and B' are two adjacent non-universal cells, then either B completely dominates B' or is completely dominated by B'.

\[\text{Theorem 4.11} \quad \text{Let } G \text{ be a connected graph that is local tournament orientable and let } C_1, C_2, \ldots, C_k \text{ be the connected components of the complement } \overline{G} \text{ of } G. \text{ Then the following statements hold.}

• Suppose that \overline{G} is not bipartite. Then \overline{G} has exactly one connected component (i.e., $k = 1$) and G^+ has exactly one thick component. Each cell of G is non-universal. A local tournament orientation of G is locally transitive if and only if each cell is a transitive tournament.

• Suppose that \overline{G} is bipartite. Then the vertices in each fixed thick component of G^+ correspond to either all unbalanced edges of G within a fixed C_i or all edges between two fixed C_i and C_j ($i \neq j$). In the case when $k = 1$ and G has at least two vertices, each cell is non-universal, G^+ has exactly one thick component, and moreover a local tournament orientation of G is locally transitive if and only if each cell is a transitive tournament.

\[\text{Theorem 4.12} \quad \text{Let } G \text{ be a connected graph that is local tournament orientable. Then a friendly partial orientation } P = (V, A \cup E) \text{ of } G \text{ can be completed to a locally transitive local tournament if and only if } P \text{ has no directed cycle contained in}

• a non-universal cell, or

• the in-neighbourhood or the out-neighbourhood of a vertex.

\textbf{Proof:} The necessity follows from Theorem 4.11 and the fact that a locally transitive local tournament has no directed cycle contained in the in-neighbourhood or the out-neighbourhood of any vertex.

For the sufficiency suppose that P has no directed cycle contained in a non-universal cell, or in the in-neighbourhood or the out-neighbourhood of a vertex. In view of Theorem 4.11 we may assume that G is not complete. This implies that \overline{G} has at least one non-trivial component and G^+ has at least one thick component.

We first explain how to complete the orientation of each non-universal cell in P. By assumption no directed cycle is contained in any non-universal cell. Thus the orientation of each cell can be completed to a transitive tournament. If G^+ has only one thick component then the resulting orientation of G can be further completed to a local tournament orientation of G that is locally transitive by Theorem 4.11.

In particular, when \overline{G} is not bipartite or \overline{G} is bipartite and has exactly one connected component, the partial orientation of G can be completed to a local tournament that is locally transitive. So we may assume that \overline{G} is bipartite and has at least two components. We may assume furthermore that each non-universal cell is a transitive tournament.

Let C_1, C_2, \ldots, C_q be the connected components of \overline{G}, each C_i with $1 \leq i \leq q$ is non-trivial and the rest are trivial (i.e., each consisting of a universal vertex of G). Consider a fixed C_i. According to Theorem 4.11, all unbalanced edges of G within C_i correspond the vertices of a component of G^+.

Since the partial orientation is friendly and hence consentaneous by definition, either all unbalanced edges of G within C_i are oriented or none of them is. In the latter case we orient all unbalanced edges of G within C_i using any one of the two colour classes of the component of G^+ corresponding the edges. Thus all edges of G within C_i are now oriented. The only edges in G that are not oriented (if any) are between the components C_1, C_2, \ldots, C_q.

Arbitrarily choose a vertex $s_i \in C_i$ for each $i = 1, 2, \ldots, q$ and consider the (complete) subgraph K of G induced by s_1, s_2, \ldots, s_q. Note that in each triangle of K the three edges correspond to vertices from three components of G^+. Since P is friendly, there cannot be exactly two edges in each triangle of K are oriented in P. This means that the subgraph of P induced by s_1, s_2, \ldots, s_q is a friendly partial orientation of K. By Theorem 4.8 it can be completed to a full orientation of K that is locally transitive. Denote this tournament by R. We explain how R can guide us to orient the remaining unoriented edges (between the components).

Let (S_i, T_i) be the bipartition of C_i for each $i = 1, 2, \ldots, p$. Without loss of generality assume $s_i \in S_i$ for each $i = 1, 2, \ldots, p$. Note that each C_i with $p + 1 \leq i \leq q$ consists of the single vertex s_i. Suppose that (s_i, s_j) is an arc in R. In the case when (s_i, s_j) is in P, all edges between C_i and C_j are oriented.
since P is consentaneous. So assume (s_i,s_j) is not in P. If $1 \leq i, j \leq p$, then orient the edges between C_i and C_j in such a way that $S_i \rightarrow S_j \rightarrow T_i \rightarrow T_j ; S_i$; if $1 \leq i \leq p$ and $p + 1 \leq j \leq q$, then $S_i \rightarrow S_j \rightarrow T_i$; if $1 \leq i \leq p$ and $p + 1 \leq j \leq q$, then $S_i \rightarrow S_j$. We remark that in the case when (s_i, s_j) is in P, the edges between C_i and C_j are oriented in the same way as defined above.

Let D denote the full orientation of G. We will show that D is locally transitive. According to Theorem 4.11 the subdigraph D_i of D induced by $V(C_i)$ is locally transitive for each i. Hence by Theorem 2.4 D_i has a round ordering u_1,u_2,\ldots,u_n. We claim that S_i induces a transitive tournament in D_i. Suppose to the contrary that the tournament induced by S_i contains a directed triangle. Without loss of generality assume $u_1 u_2 u_3$ is such a triangle. Recall that C_i is a connected component in G. In particular, each vertex of D_i has a non-neighbor in D_i. Let $X = \bigcap_{u \in S_i} N_D^D(u_b)$ and $Y = \{u_{a+1}, u_{a+2}, \ldots, u_{a-1}\}$. Note that the vertices of X appear consecutively in the round ordering, that is, $X = \{u_{c}, u_{c+1}, \ldots, u_{d}, \ldots, u_{d-1}\}$ for some c,d. Let $W = \{u_{b+1}, u_{b+2}, \ldots, u_{c-1}\}$ and $Z = \{u_{d+1}, u_{d+2}, \ldots, u_{a-1}\}$. The vertices in $W \cup X$ are pairwise adjacent as they are out-neighbors of u_b. Similarly vertices in $Z \cup X$ are pairwise adjacent as they are in-neighbors of u_a. Therefore the non-neighbors of each vertex in X can only be in Y. In particular the non-neighbors of each vertex in $X \cap S_i$ are in $Y \cap T_i$ since any two vertices in S_i are adjacent in G. Since $u_b \in S_i$, it is adjacent to every vertex in $W \cap S_i$. Every vertex in $W \cap S_i$ is adjacent to all vertices in $Y \cap T_i$ as they are out-neighbors of u_a. Similarly, every vertex in $Z \cap S_i$ is adjacent to all vertices in $Y \cap T_i$ as they are in-neighbors of u_b. Hence the non-neighbors of each vertex in $Y \cap T_i$ can only be in $X \cap S_i$. It follows that any path in G joining u_1 can only have vertices in $(X \cap S_i) \cup (Y \cap T_i)$. Since $u_b \notin (X \cap S_i) \cup (Y \cap T_i)$, there is no path in G joining u_1 and u_b, which contradicts the fact that they are in the same connected component of G. Therefore S_i must induce a transitive tournament in D. By symmetry, T_i also induces a transitive tournament.

Suppose to the contrary that D has a directed triangle xyz that is contained in the out-neighborhood of w. The proof is similar if D has a triangle that is contained in the in-neighborhood of a vertex. We claim each D_i (the subdigraph induced by $V(C_i)$) contains at most one vertex from $\{w,x,y,z\}$. Suppose D_i contains two vertices (say x, y) from the triangle. If $x, y \in S_i$, then $z \in T_i$ because every vertex not in D_i either dominates both x, y or is dominated by both of them and no vertex in S_i forms a directed triangle with x, y. Since w is dominates each of x, y, z, it can only be in D_i. Thus all four vertices w, x, y, z are in D_i, a contradiction to the fact that D_i is locally transitive. A similar argument shows that T_i cannot contain both x, y. By symmetry we may assume that $x \in S_i$ and $y \in T_i$. The above proof implies z cannot be in D_i (as otherwise either z, x would be both in S_i or z, y would be both in T_i). Since w dominates both x, y and no vertex not in D_i can have this property, w is also in D_i. Since $z \notin D_i$ is dominated by both w, y, the vertex w must be in T_i. Since x is an in-neighbor of y, it is adjacent to all in-neighbors of y in T_i. Since w dominates y and T_i induces a transitive tournament in D, each out-neighbor of y is an out-neighbor of w. Since x is an out-neighbor of w, it is adjacent to all out-neighbors of w and in particular to all out-neighbors of y. Hence x is adjacent to all other vertices in S_i. This contradicts the fact that C_i is a connected component in G. If D_i contains w and one of x, y, z (say y), then w, x cannot be both in S_i or both in T_i as $z \notin D_i$ dominates x and is dominated by w. On the other hand, since w and x both dominate $y \notin D_i$, they must be either both in S_i or both in T_i. So D_i cannot contain both w and x. Therefore each D_i contains at most one vertex from $\{w,x,y,z\}$. Assume that $w \in D_\alpha$, $x \in \beta, y \in \delta$, and $z \in \ell$. For each $i \in \{\alpha, \beta, \gamma, \ell\}$, let v_i be the only vertex in $V(D_i) \cap \{w, x, y, z\}$ (which may or may not be the vertex s_i (defined above) that is also contained in D_i). Denote by F the subdigraph induced by $\{w, x, y, z\} = \{v_\alpha, v_\beta, v_\gamma, v_\ell\}$. Suppose that (s_i, s_j) is an arc in D_i. Then (v_i, v_j) is an arc if either $v_i \in S_i$ and $v_j \in S_i$ or $v_i \in T_i$ and $v_j \in T_j$; otherwise (v_j, v_i) is an arc in D_i. It follows that the subdigraph induced by $\{s_\alpha, s_\beta, s_\gamma, s_\ell\}$ is either the same as F or is the same as the one obtained from F by reversing the arcs between v_α and the other three vertices. In any case it is easy to verify that the subdigraph induced by $\{s_\alpha, s_\beta, s_\gamma, s_\ell\}$ has a directed triangle contained in the in-neighborhood of the fourth vertex or a directed triangle contained in the out-neighborhood of the fourth vertex. It follows that the subdigraph induced by $s_\alpha, s_\beta, s_\gamma, s_\ell$ has a directed triangle contained in the in-neighborhood of the fourth vertex or a directed triangle contained in the out-neighborhood of the fourth vertex. This is a contradiction to the fact that the subdigraph induced by $s_\alpha, s_\beta, s_\gamma, s_\ell$ is locally transitive. Therefore D is a locally transitive local tournament which is an orientation completion of the given partial orientation P of G. \(\diamondsuit\)

Corollary 4.13 The problem of deciding whether a friendly partially oriented graph can be completed
to a locally transitive local tournament and obtaining such an orientation completion (if one exists) is solvable in polynomial time

Proof: By Theorem 4.12 it suffices to check whether the input friendly partially oriented graph has a directed cycle in a non-universal cell or a directed cycle contained in the in-neighbourhood or the out-neighbourhood of a vertex. This can be done in polynomial time. When no mentioned directed cycle is contained in the input partially oriented graph, the constructive proof of Theorem 4.12 explains how to complete it to a locally transitive local tournament.

Theorem 4.14 The problem of extending partial proper circular arc representations of proper circular arc graphs is solvable in polynomial time.

Proof: We show how to reduce the problem of extending partial representations of proper circular arc graphs to the problem of deciding whether a friendly partially oriented graph can be completed to a locally transitive local tournament. Since the latter problem is solvable in polynomial time by Corollary 4.13 so is the former one. Let

The problem of extending partial proper circular arc representations of proper circular arc graphs to the problem of deciding whether a friendly partially oriented graph can be completed to a locally transitive local tournament. Suppose that

\[J, v \in V(H) \] is a proper circular arc representation of

\[H \] (i.e., a partial proper circular arc representation of

\[G \]). We obtain an orientation of

\[H \] in such a way that

\[(u, v) \] is an arc if and only if

\[J_u \] contains the counterclockwise endpoint of

\[J_v \]. Let

\[C_1, C_2, \ldots, C_r \] be the connected components of

\[G \], each of which contains at least one vertex from

\[H \]. Let

\[H' \] be the subgraph of

\[G \] induced by

\[V(C_1) \cup V(C_2) \cup \cdots \cup V(C_r) \]. We extend the orientation from

\[H \] to

\[H' \] as follows: We first orient all unoriented edges in the cells of

\[H' \] so that each becomes transitive tournament. For each

\[i = 1, 2, \ldots, r \], if any unbalanced edge within

\[C_i \] is an oriented edge, then we extend the orientation of

\[H \] to all unbalanced edges of

\[G \] within

\[C_i \] using a colour class of the corresponding thick component of

\[G^+ \] (see Theorem 4.11). For each pair

\[i, j \], there must be at least one oriented edge between

\[C_i \] and

\[C_j \], we extend the orientation of

\[H \] to all edges of

\[G \] between

\[C_i \] and

\[C_j \] using a colour class of the corresponding thick component of

\[G^+ \] (see Theorem 4.11). Thus we obtain a partial orientation of

\[H' \], which yields a partial orientation

\[P = (V, A \cup E') \] of

\[G \] where

\[A \] consists of all arcs in

\[H' \]. The definition of

\[H' \] and the orientation of

\[H' \] ensures that

\[P \] is consentaneous. It also implies that in any triangle of

\[G \], if the three edges in the triangle correspond to vertices from three different connected components in

\[G^+ \], then they are all oriented in

\[H' \] and hence in

\[P \]. Therefore

\[P \] is friendly. It remains to show that the proper circular arc representation of

\[H \] can be extended to a proper circular arc representation of

\[G \] if and only if

\[P \] can be completed to a locally transitive local tournament. Suppose that

\[G \] has a proper circular arc representation which extends the proper circular arc representation of

\[H \]. Then we can obtain an orientation of

\[G \] that is a locally transitive local tournament using the representation of

\[G \] (in a similar way as above for

\[H \]). By Theorem 4.11 and the definition of

\[P \], the orientation of

\[G \] is an orientation completion of

\[P \]. Conversely, suppose that

\[P \] is completed to a locally transitive local tournament. Then it is possible to extend the proper circular arc representation of

\[H \] to a proper circular arc representation of

\[G \] (see Theorem 3.1 in [14]).

5 Remarks and open problems

A digraph

\[D = (V, A) \] is

\[k \]-arc-strong for some

\[k > 0 \] if it remains strongly connected after the deletion of any subset

\[A' \subseteq A \] of at most

\[k - 1 \] arcs. A digraph

\[D = (V, A) \] is

\[k \]-strong if

\[|V| \geq k+1 \] and

\[D - X \] is strong for every subset

\[X \subseteq V \] of size at most

\[k - 1 \].

As we mentioned in the introduction, the orientation completion problem is polynomially solvable for the class of strong digraphs. It is natural to ask about the complexity of the problem for the class of

\[k \]-arc-strong, respectively the class of

\[k \]-arc-strong digraphs.

Theorem 5.1 The orientation completion problem is polynomially solvable for the class of

\[k \]-arc-strong digraphs.

Proof: (Sketch) It is well-known, see e.g. [3, Section 11.8] that there is a polynomial algorithm based on submodular flows for deciding whether a given undirected graph

\[G \] has a

\[k \]-arc-strong orientation. The way this works is that first an arbitrary orientation

\[D \] is assigned to the edges of

\[G \] and then using a submodular flow algorithm, we can determine whether we can reorient some arcs so that the result
is k-arc-strong (which by Nash-Williams orientation theorem (see eg. [3, Theorem 11.5.3]) is the case precisely when G is $2k$-edge-connected). Furthermore we can find a set of arcs whose reversal results in a k-arc-strong digraph if such a set exists. This approach does not quite work for the orientation completion problem since the starting orientation which we chose has to agree with the directed arcs of the input pog P and none of these may be reversed. The solution is to use a polynomial minimum cost submodular flow algorithm in which the two different orientations of an edge have (possibly different) costs assigned to them and the goal is to find a minimum cost submodular flow, corresponding to a minimum cost set of arcs of D whose reversal leads to a k-arc-strong orientation of G. Now we just have to assign infinite cost to any arc which is opposite to one of the arcs of P and zero to all other orientations (including both orientations of the edges of P), implying that P has a k-arc-strong completion if and only if the mincost feasible submodular flow has cost zero.

Theorem 5.2 For any natural number $k \geq 3$ the orientation completion problem is NP-complete for the class of k-strong digraphs.

Proof: It was shown in [8] that for every natural number $k \geq 3$ it is NP-complete to decide whether an undirected graph has a k-strong orientation. Hence also the more general orientation completion problem is NP-complete for the class of k-strong digraphs.

Thomassen [24] proved that a graph G has a 2-strong orientation if and only if G is 4-edge-connected and $G - v$ is 2-edge-connected for every vertex v. This implies that the orientation problem for the class of 2-strong digraphs is polynomial. It is also easy to check whether a given digraph is 2-strong. However, as far as we know, the complexity of deciding whether the edges of a mixed graph can be oriented so that the resulting digraph is 2-strong is open.

Problem 5.3 What is the complexity of the orientation completion problem for the class of 2-strong digraphs?

A digraph is an in-tournament if the set of in-neighbours of every vertex induces a tournament.

Theorem 5.4 The orientation completion problem is polynomial for the class of in-tournaments.

Proof: In [3, Section 11.1.4] it is shown how to reduce the problem of deciding whether a graph can be oriented as an in-tournament to an instance of 2-SAT. It is not difficult to see that we may extend that reduction to work when the input is a pog instead of a graph. We leave the details to the interested reader.

Proposition 5.5 [5] A graph is chordal if and only if it has an orientation as an acyclic in-tournament.

Problem 5.6 What is the complexity of the orientation completion problem for the class of acyclic in-tournaments?

We may also ask about the complexity of other properties of the target graph such as having a directed cycle factor, that is, a spanning collection of vertex-disjoint directed cycles. The following result shows that for this class the orientation completion problem is hard.

Theorem 5.7 It is NP-complete to decide whether pog P has a completion D with a directed cycle factor.

Proof: It was shown in [2] that is NP-complete to decide whether a bipartite digraph B has a directed cycle-factor C_1, C_2, \ldots, C_k so that no C_i has length 2. Let B be given and form the pog P from B by replacing the two arcs of each directed 2-cycle by an edge. It is easy to see that P has a completion with a directed cycle factor if and only if B has a cycle factor with no directed 2-cycle, implying the theorem.

Let $\pi = \{(s_1, t_1), \ldots, (s_k, t_k)\}$ be a set of k pairs of distinct vertices in a (di)graph H. A π-linkage in H is a collection of k disjoint paths R_1, \ldots, R_k so that R_i starts in s_i and ends in t_i. For a given class \mathcal{C} of digraphs, the \mathcal{C}-π-linkage completion problem is as follows: given a pog $P = (V, E \cup A)$ and a set π of k terminal pairs in V; it is possible to complete the orientation of P so that the resulting oriented graph is in \mathcal{C} and has a π-linkage?
For general digraphs the π-linkage problem, and hence also the completion version, is NP-complete already when $k = 2$ and even if the digraph is highly connected [10, 23]. Chudnovsky, Scott and Seymour [7] proved that the π-linkage problem is polynomial for semicomplete digraphs (that is, digraphs whose underlying graph is complete). This implies that the tournament-π-linkage completion problem is polynomial because such a completion is possible if and only if the digraph that we obtain from P by replacing each undirected edge by a directed 2-cycle is semicomplete and has a π-linkage (no two paths in a linkage intersect).

When k (the number of pairs to be linked) is part of the input, the acyclic-π-linkage completion problem is NP-complete already when P is an acyclic oriented graph or just a graph the problem is NP-complete [10, 18].

Problem 5.8 What is the complexity of the acyclic-π-linkage completion problem when k is fixed?

By the Robertson-Seymour linkage algorithm [20], the acyclic-π-linkage completion problem is polynomial when P is a graph: first find, using the $O(n^3)$ algorithm for k-linkage in graphs, a set of k disjoint paths R_1, \ldots, R_k linking the terminals. If no such set exists, we can report that the problem has no solution. Otherwise consider the ordering of V which lists $V(R_1), V(R_2), \ldots, V(R_k), X$, where X are the vertices not on any of the paths. Now just orient all edges from left to right to obtain an acyclic completion which still contain the paths $R_i, i \in [k]$. At the other extreme, when P is already an acyclic oriented graph, we may again decide the problem in polynomial time as shown by Fortune et all [10].

The following generalizes round orderings. A cyclic ordering $O = v_1, v_2, \ldots, v_n, v_1$ is nice if each there is no triple v_k, v_i, v_j where $(v_i, v_k), (v_j, v_i)$ are arcs and the vertices occur in the given order according to O. It is easy to check that every excellent cyclic ordering is also nice but the converse need not hold.

Problem 5.9 What is the complexity of deciding whether an oriented graph D has a nice cyclic ordering?

It was shown in [11] that when the input is just a set of cyclic triples (not coming from in-and out-neighbours of a digraph) and the goal is to find a cyclic ordering which agrees with all the triples, the problem is NP-complete.

Problem 5.10 Does every oriented graph with a nice cyclic ordering also have an excellent cyclic ordering?

If true, then Theorem [23] would imply that Problem 5.9 is NP-complete.

References

