CAD Is an Independent Risk Factor for Stroke Among Patients With Atrial Fibrillation

Steensig, Kamilla; Olesen, Kevin K.W.; Thim, Troels; Nielsen, Jens C.; Jensen, Svend E.; Jensen, Lisette O.; Kristensen, Steen D.; Bøtker, Hans Erik; Lip, Gregory Y.H.; Maeng, Michael

Published in: Journal of the American College of Cardiology

DOI: 10.1016/j.jacc.2018.08.1046

Publication date: 2018

Document version: Accepted manuscript

Document license: CC BY-NC-ND

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 13. Sep. 2023
Coronary artery disease is independent risk factor for stroke among patients with atrial fibrillation

Kamilla Steensig, BSc, Kevin K.W. Olesen, MD, Troels Thim, MD PhD, Jens C. Nielsen, MD PhD DMSc, Svend E. Jensen, MD PhD, Lisette O. Jensen, MD PhD DMSc, Steen D. Kristensen, MD DMSc, Hans Erik Bøtker, MD PhD DMSc, Gregory Y.H. Lip, MD, Michael Maeng, MD PhD

PII: S0735-1097(18)36961-4
DOI: 10.1016/j.jacc.2018.08.1046
Reference: JAC 25303

To appear in: Journal of the American College of Cardiology

Received Date: 5 July 2018
Revised Date: 14 August 2018
Accepted Date: 16 August 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Coronary artery disease is independent risk factor for stroke among patients with atrial fibrillation

Kamilla Steensig BSca, Kevin K.W. Olesen MDa,b, Troels Thim MD PhDa, Jens C. Nielsen MD PhD DMSc, Svend E. Jensen MD PhDd, Lisette O. Jensen MD PhD DMSe, Steen D. Kristensen MD DMSc, Hans Erik Bøtker MD PhD DMSa, Gregory Y. H. Lip MDe, and Michael Maeng MD PhDa

\textsuperscript{a) Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
\textsuperscript{b) Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
\textsuperscript{c) Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
\textsuperscript{d) Department of Cardiology, Odense University Hospital, Odense, Denmark
\textsuperscript{e) Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England

Funding: Funded by the Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
Disclosures: KKWO has received speaking honoraria from Bayer A/S. JCN is supported by the Novo Nordisk Foundation (NNF16OC0018658). SDK has received lecture fees from Aspen, AstraZeneca, Bayer, BMS/Pfizer and Boehringer-Ingelheim. GYHL is consultant for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Novartis, Verseon and Daiichi-Sankyo. Speaker for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, and Daiichi-Sankyo. No fees are directly received personally. MM has received lecture fees and consulting honoraria from Novo, Bayer, AstraZeneca, Boehringer-Ingelheim, and institutional grants from Volcano (now Philips), Boston Scientific, and Biosensors.

Abbreviations
AF: Atrial fibrillation
CAD: Coronary artery disease
CI: Confidence interval
IRR: Incidence rate ratios
TIA: Transient ischemic attack

Corresponding author:
Michael Maeng, MD, PhD
Department of Cardiology
Aarhus University Hospital
Palle Juul-Jensens Boulevard 99
8200 Aarhus N, Denmark
Telephone: +45 26703237
Fax: +45 78452260
E-mail: michael.maeng@ki.au.dk
Twitter: @AUHdk | @AarhusUni
Patients with atrial fibrillation (AF) have an increased risk of ischemic stroke, transient ischemic attack (TIA), and systemic embolism compared to patients without AF (1). In patients with AF, several risk factors are well documented and included in risk scores used for risk stratification. These include advancing age, diabetes mellitus, hypertension, congestive heart disease, peripheral artery disease, and previous stroke/TIA, among others. Coronary artery disease (CAD) and ischemic stroke share several common risk factors, but whether CAD is an independent risk factor for ischemic stroke among patients with AF has not yet been examined. The aim of this study was to investigate whether the presence of CAD provided independent prognostic information of the risk of future ischemic stroke and thromboembolism in patients with AF.

The association between CAD and ischemic stroke risk was examined in a large prospectively collected dataset of consecutive patients with AF who underwent coronary angiography in Western Denmark between July 1, 2004 and December 1, 2012. All patients’ angiographic findings are registered in the Western Denmark Heart Registry (2) by use of each patient’s unique 10-digit personal identifier, which is a personal number assigned to each Danish resident upon birth or after immigration. This personal identifier is used throughout every regional and national registry, where it ensures accurate cross linkage of healthcare information and minimizes loss to follow-up. Patient data from the Western Denmark Heart Registry concerning the patients’ angiographic findings were cross linked with information from the Danish National Patient Registry,(3) which records all hospital-based inpatient and outpatient diagnoses, and the Danish National Database of Reimbursed Prescriptions (3), which contains data on all reimbursed prescriptions at Danish pharmacies.
The total study cohort was divided into two groups; patients with CAD and patients without CAD. CAD was defined as obstructive (≥50%) coronary stenosis in ≥1 coronary vessel, or non-obstructive coronary stenoses in ≥2 coronary vessels. The primary endpoint was a composite of ischemic stroke, TIA, and systemic embolism obtained from the Danish National Patient Registry. Follow-up began 30 days after the index coronary angiography, and continued until endpoint event, death, emigration, or end of follow-up, whichever came first. The risk of ischemic stroke, TIA, and systemic embolism was estimated separately for both groups, and incidence rate ratios (IRR) were calculated with modified Poisson regression using patients without CAD as reference. We adjusted for age, gender, diabetes mellitus, hypertension, congestive heart disease, previous stroke/TIA, vascular disease (previous myocardial infarction and/or peripheral artery disease/aortic plaque), antiplatelet treatment, oral anticoagulant treatment, and statin treatment.

Out of 96,430 patients undergoing coronary angiography between 2004-2012, a total of 12,690 patients had a diagnosis of AF, were 18 years or above and had a follow-up time of >30 days. Among these patients 7,533 patients (59.4%) had CAD and 5,157 patients (40.6%) had no CAD. Maximal follow-up was 8.4 years, and median follow-up was 3 years (IQR 1.3-5.2). Baseline characteristics are shown in Table 1. The rate of ischemic stroke/TIA/thromboembolism was 2.62 (95% confidence interval (CI) 2.42-2.84) per 100 person-years for patients with CAD and 1.61 (95% CI 1.43-1.81) per 100 person-years for patients without CAD. Crude IRR was 1.62 (95% CI 1.41-1.87). The impact of presence of CAD remained significant after adjustment and suggested a 29% increased risk of ischemic stroke/TIA/thromboembolism (adjusted IRR 1.29, 95% CI 1.08-1.53).
Our study suggests that CAD is an independent risk factor for ischemic stroke among patients with AF. The association between CAD and ischemic stroke has also been indicated in a previous study analyzing our entire cohort, i.e. primarily including patients without AF.\(^{(3)}\) Patients with AF, however, have a greater risk of ischemic stroke than patients without AF. Moreover, prophylactic oral anticoagulant therapy is well-documented in patients with AF but not in non-AF patients. There are several risk scores recommended for risk stratification of AF patients into those with a low risk of thromboembolic events (no indication for oral anticoagulation) and those with a high risk (indication for oral anticoagulation) of thromboembolic events including ischemic stroke. According to the current study, CAD is an independent risk factor for thromboembolic events including ischemic stroke in AF patients. Consequently, we suggest that CAD should be considered as a potential additional risk factor in the risk scores used for stratification of AF patients.
References

Table 1. Baseline characteristics of 12,690 patients with atrial fibrillation undergoing coronary angiography

<table>
<thead>
<tr>
<th></th>
<th>No CAD(^*) (n=5,157)</th>
<th>Any CAD (n=7,533)</th>
<th>Total (n=12,690)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65 years</td>
<td>2,050 (39.8)</td>
<td>1,478 (19.6)</td>
<td>3,528 (27.8)</td>
</tr>
<tr>
<td>65-74 years</td>
<td>1,764 (34.2)</td>
<td>2,801 (37.2)</td>
<td>4,565 (36.0)</td>
</tr>
<tr>
<td>≥75 years</td>
<td>1,343 (26.0)</td>
<td>3,254 (43.2)</td>
<td>4,597 (36.2)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3,081 (59.7)</td>
<td>5,363 (71.2)</td>
<td>8,444 (66.5)</td>
</tr>
<tr>
<td>Female</td>
<td>2,076 (40.3)</td>
<td>2,170 (28.8)</td>
<td>4,246 (33.5)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never/former</td>
<td>3,632 (70.4)</td>
<td>5,105 (67.8)</td>
<td>8,737 (68.8)</td>
</tr>
<tr>
<td>Active</td>
<td>835 (16.2)</td>
<td>1,501 (19.9)</td>
<td>2,336 (18.4)</td>
</tr>
<tr>
<td>Missing</td>
<td>690 (13.4)</td>
<td>927 (12.3)</td>
<td>1,617 (12.7)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>735 (14.3)</td>
<td>1,664 (22.1)</td>
<td>2,399 (18.9)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3,033 (58.8)</td>
<td>5,420 (72.0)</td>
<td>8,453 (66.6)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>1,933 (37.5)</td>
<td>2,991 (39.7)</td>
<td>4,924 (38.8)</td>
</tr>
<tr>
<td>Stroke/TIA(^†)</td>
<td>564 (10.9)</td>
<td>1,116 (14.8)</td>
<td>1,680 (13.2)</td>
</tr>
<tr>
<td>Vascular disease(^‡)</td>
<td>733 (15.0)</td>
<td>3,752 (49.8)</td>
<td>4,525 (35.7)</td>
</tr>
<tr>
<td>PAD(^§)/aortic plaque</td>
<td>282 (5.5)</td>
<td>1,087 (14.4)</td>
<td>1,369 (10.8)</td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>536 (10.4)</td>
<td>3,171 (42.1)</td>
<td>3,707 (29.2)</td>
</tr>
<tr>
<td>Medical treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin K antagonists</td>
<td>3,390 (65.7)</td>
<td>4,125 (54.8)</td>
<td>7,515 (59.2)</td>
</tr>
<tr>
<td>NOAC(^//)</td>
<td>97 (1.9)</td>
<td>119 (1.6)</td>
<td>216 (1.7)</td>
</tr>
<tr>
<td>Aspirin</td>
<td>2,608 (50.6)</td>
<td>5,919 (78.6)</td>
<td>8,527 (67.2)</td>
</tr>
<tr>
<td>Statin</td>
<td>2,226 (43.2)</td>
<td>5,915 (78.5)</td>
<td>8,141 (64.2)</td>
</tr>
</tbody>
</table>

\(^*\) CAD: Coronary artery disease
\(^†\) TIA: Transient ischemic attack
\(^‡\) Vascular disease: Presence of previous myocardial infarction and/or peripheral artery disease/aortic plaque.
\(^§\) PAD: Peripheral artery disease
\(^//\) NOAC: Non-vitamin K antagonist anticoagulant treatment