Optimization of N-Substituted Oseltamivir Derivatives as Potent Inhibitors of Group-1 and -2 Influenza A Neuraminidases, Including a Drug-Resistant Variant

Zhang, Jian; Poongavanam, Vasanthanathan; Kang, Dongwei; Bertagnin, Chiara; Lu, Huamei; Kong, Xiujie; Ju, Han; Lu, Xueyi; Gao, Ping; Tian, Ye; Jia, Haiyong; Desta, Samuel; Ding, Xiao; Sun, Lin; Fang, Zengjun; Huang, Boshi; Liang, Xuewu; Jia, Ruifang; Ma, Xiuli; Xu, Wenfang; Murugan, Natarajan Arul; Loregian, Arianna; Huang, Bing; Zhan, Peng; Liu, Xinyong

Published in:
Journal of Medicinal Chemistry

DOI:
10.1021/acs.jmedchem.8b00929

Publication date:
2018

Document version:
Accepted manuscript

Citation for published version (APA):

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Optimization of N-Substituted Oseltamivir Derivatives as Potent Inhibitors of Group-1 and -2 Influenza A Neuraminidases, Including a Drug-Resistant Variant

Jian Zhang, Vasanthanathan Poongavanam, Dongwei Kang, Chiara Bertagnin, Huamei Lu, Xiujie Kong, Han Ju, Xueyi Lu, Ping Gao, Ye Tian, haiyong Jia, Samuel Desta, Xiao Ding, Lin Sun, Zengjun Fang, Boshi Huang, Xuewu Liang, Ruifang Jia, Xiuli Ma, Wenfang Xu, Natarajan Arul Murugan, Arianna Loregian, bing huang, Peng Zhan, and Xinyong Liu

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.8b00929 • Publication Date (Web): 02 Jul 2018

Downloaded from http://pubs.acs.org on July 4, 2018
<table>
<thead>
<tr>
<th>Sciences, Shandong University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma, Xiuli; Institute of Poultry Science, Shandong Academy of Agricultural Sciences</td>
</tr>
<tr>
<td>Xu, Wenfang; Shandong Univ, School of Pharmaceutical Sciences, Shandong University, Department of Medicinal Chemistry</td>
</tr>
<tr>
<td>Murugan, Natarajan Arul; Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology</td>
</tr>
<tr>
<td>Loregian, Arianna; University of Padova, huang, bing; Shandong Academy of Agricultural Sciences, Institute of Poultry Science</td>
</tr>
<tr>
<td>Zhan, Peng; Shandong Univ, Liu, Xinyong; School of Pharmaceutical Sciences, Shandong University, Department of Medicinal Chemistry</td>
</tr>
</tbody>
</table>
Optimization of N-Substituted Oseltamivir Derivatives as Potent Inhibitors of Group-1 and -2 Influenza A Neuraminidases, Including a Drug-Resistant Variant

Jian Zhang,† Vasanthanathan Poongavanam,† Dongwei Kang,† Chiara Bertagnin,&
Huamei Lu,† Xiujie Kong,† Han Ju,‡ Xueyi Lu,† Ping Gao,† Ye Tian,† Haiyong Jia,†
Samuel Desta,† Xiao Ding,† Lin Sun,† Zengjun Fang,‡*, Boshi Huang,‡ Xuewu Liang,†
Ruifang Jia,† Xiuli Ma,† Wenfang Xu,† Natarajan Arul Murugan,*, Arianna Loregian,&
Bing Huang,†*, Peng Zhan,†*, and Xinyong Liu†*

† Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
‡ Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, Jiaoxiao Road, Jinan, Shandong 250023, P. R. China.
& Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
† Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M. Denmark.
*,# Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden.
≠ The Second Hospital of Shandong University, No. 247 Beiyuan Avenue, Jinan 250033, China.
ABSTRACT: Based on our earlier discovery of N1-selective inhibitors, the 150-cavity of influenza virus neuraminidases (NAs) could be further exploited to yield more potent oseltamivir derivatives. Among the synthesized compounds, 15b and 15c were exceptionally active against both group-1 and -2 NAs. Especially for 09N1, N2, N6 and N9 subtypes, they showed 6.80-12.47 and 1.20-3.94 times greater activity than oseltamivir carboxylate (OSC). They also showed greater inhibitory activity than OSC towards H274Y and E119V variant. In cellular assays, they exhibited greater potency than OSC towards H5N1, H5N2, H5N6, and H5N8 viruses. 15b demonstrated high metabolic stability, low cytotoxicity in vitro, and low acute toxicity in mice. Computational modeling and molecular dynamics studies provided insights into the role of R group of 15b in improving potency towards group-1 and -2 NAs. We believe the successful exploitation of the 150-cavity of NAs represents an important breakthrough in the development of more potent anti-influenza agents.
INTRODUCTION

Influenza A virus is the pathogenic agent of seasonal, occasional, and pandemic influenza in both humans and animals, causing acute contagious respiratory infections that may be life-threatening or even lethal.1-3 According to the World Health Organization (WHO, 2018), the annual incidence of severe illness is about 3 to 5 million cases, with about 290,000 to 650,000 deaths.4 Currently, two subtypes influenza A virus (H1N1pdm09 and H3N2) are the predominant circulating strains responsible for annual/seasonal influenza epidemics.4 The influenza A virus has been the causative agent of five major pandemics in the last century and the beginning of this century: the 1918 Spanish flu (H1N1), 1957 Asian flu (H2N2), 1968 Hong Kong flu (H3N2), 1977 Russian flu (H1N1), and 2009 swine-origin pandemic flu (H1N1pdm09).5-7

Avian influenza virus (AIV), which belongs to the influenza A virus family, has caused substantial economic losses throughout the world due to high bird mortality and the cost of control measures to prevent its spread in poultry.8 In general, AIV strains have strong host-species barriers,11 but nevertheless, human and mammals are often infected with various AIV subtypes, including H5N1, H5N2, H5N6, H6N1, H7N9, and H9N2 strains.12-15 In particular, H5N1 and H7N9 (first identified in China in March 2013) showed mortality rates of 60% and 40%, respectively, in humans. Though their mode of transmission is not yet fully established, and there is no clear evidence of efficient human-to-human transmission,14,16 the worrying possibility remains that further adaptation of AIV for person-to-person transmission could give
rise to a worldwide pandemic.

Influenza A viruses contain two important surface antigenic glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Different subtypes are named according to the antigenic properties of the HA and NA molecules. In terms of NA, influenza A viruses can be classified into N1-N11 subtypes. NAs play an essential role in the release of newly formed virions from infected cells and facilitate propagation of the virus, therefore, NAs are promising targets for anti-influenza drugs. Indeed, several neuraminidases inhibitors (NAIs) have been approved for clinical use, including oseltamivir (Tamiflu®), zanamivir (Relenza®), laninamivir octanoate (Inavir®) and peramivir (Rapivab®) (Figure 1). Among the approved drugs, only oseltamivir (a prodrug of oseltamivir carboxylate) (OSC) is orally available, and it has been a first-line therapy since its approval in 1999. Other neuraminidase inhibitors are mainly administered by inhalation or intravenously due to their high polarity. However, various mutants with resistance to these four drugs have appeared, such as the most frequent NA substitutions reported in H5N1 (H274Y) and H3N2 (E119V) subtypes confer resistance to oseltamivir without altering susceptibility to zanamivir, which have severely limited Tamiflu’s clinical application. For NA of H5N1-H274Y mutant, Collins et al. revealed the molecular basis of the oseltamivir resistance of His274Y, suggesting that the mutation of histidine to a bulkier tyrosine residue could disorder the hydrophobic pocket formed by the methylene of Glu276, thus preventing OSC from making hydrophobic contact with the ligand-binding pocket. Thus, there is an urgent need to develop
improved NAIs for effective influenza therapy.

Figure 1. Structures of the licensed NA inhibitors 1–4

Typically, the classic NA inhibitors were designed based on the crystal structures of NAs. Based on the phylogenetic tree, the N1-N9 subtypes can be divided into two groups: group-1 (N1, N4, N5, and N8), and group-2 (N2, N3, N6, N7, and N9) (see Supporting Information, Figure S1). For group-1 NAs (except pH1N1 (09N1)), the crystal structures reveal that the 150-loop, containing residues 147-152, adopts an open conformation, forming the 150-cavity adjacent to the active site. In contrast, no group-2 NA has yet been crystallographically shown to have the 150-loop in a completely open conformation. As exemplified by N2, there is a key salt bridge between the conserved residues Asp147 and His150, which was considered to lock the 150-loop in the closed conformation and to control the formation of the 150-cavity. However, in contrast to the other characterized N1 subtypes, 09N1 does not have an open 150-cavity, and this surprising finding suggested that the 09N1 150-loop closely resembles that of group-2 rather than group-1 NAs. Therefore, except for 09N1, the 150-cavity is an unique feature of group-1 NAs. Various compounds, such as C-5 amino-substituted oseltamivir derivatives 5, 6, and 7 (N1-selective, more potent than OSC), oseltamivir analogues 8, (N1-selective, less potent than zanamivir), sialic acid derivative 9, (N1-selective, less potent than
zanamivir and sialic acid), zanamivir derivative 10,38 (less potent than zanamivir) and C-6 substituted oseltamivir derivatives 11 and 1239 (H3N2-selective) have been discovered to target the 150-cavity of NAs (Figure 2).

![Figure 2](image)

Figure 2. Structures of the group-1-specific influenza NA inhibitors 5-10 and H3N2-selective inhibitors 11 and 12.

Recently, molecular dynamics (MD) simulation studies indicated that the conformation of the 150-loop in group-1 NAs could generate an even more extended 150-cavity than that observed in the crystal structures.31,40,41 Similarly, the flexibility of the 150-loop of 09N1 is very high, and biophysical simulations showed that the 09N1 favors an open 150-cavity conformation overall.42 In addition, the amino acid sequences of the group-1 and group-2 NA 150-loops show a high degree of similarity.30 The recent crystal structure of a half-open 150-loop in a complex of N2 with OSC,32 and several computational studies further suggested that the conformation
of the 150-loop in NAs of both groups could be easily influenced by an introduced ligand, which might interact with the closed 150-loop and lock it in an open conformation.39, 42 Thus, the open 150-cavity may exist not only in group-1 NAs, but also in group-2 NAs in the physiological situation. In other words, intrinsic protein flexibility and ligand-induced protein flexibility could provide a basis for further anti-influenza drug discovery \textit{via} a structure-based approach.

\textbf{DESIGN OF OSELTAMIVIR DERIVATIVES}

The main objective of this research was to discover potent group-1 and group-2 NAIs as candidate anti-influenza agents by exploiting the 150-cavity adjacent to the active site of influenza A viral NAs. As shown in Figure 3, the C-5 amino group and C-6 of OSC in the NAs active site lie very close to the open 150-cavity of group-1 NAs (1918H1N1, H5N1, and H5N8) and the closed 150-loop of 09N1 and group-2 NAs (H3N2, H5N2, H5N6, and H7N9). The C-6 substituted oseltamivir derivatives 11 and 12 were designed to target both the active site and the 150-cavity of group-1 and -2 NAs, but the results were unsatisfactory, even though they showed potent H3N2-selective inhibitory activity.39 On the other hand, C-5 amino-substituted oseltamivir derivatives (5, 6, and 7) were potent N1-selective inhibitors, being more potent than OSC against N1.34-36 Moreover, at high concentration, the deprotonated C-5 amino group of OSC exerts a significant effect on the rigid closed N2 150-loop and can induce half-opening.32 So, we set out to modify the C-5 amino group of oseltamivir, aiming to probe the group-1 NAs 150-cavity and to force the unexplored
closed 150-cavity of 09N1 and group-2 NAs into open conformation.

![Figure 3](image)

Figure 3. Comparison of the crystal structures of the NA subtypes used in our NA inhibition assay, bound with OSC. Structures of N1 (H181H1N1, PDB ID: 3BEQ), 09N1 (H1N1pdm09, PDB ID: 3TI6), N2 (H3N2, PDB ID: 4GZP), N1 (H5N1, PDB ID: 2HU0), N2 (H5N2, PDB ID: 5HUK), N6 (H5N6 PDB ID: 5HUM), N8 (H5N8, PDB ID: 2HT7) and N9 (H7N9, PDB ID: 5L15) are in surface representation. It can be seen that 09N1 (H1N1pdm09), along with N2, N6, and N9 have a closed 150-loop, but N1 and N8 have an open 150-cavity.

Our previous report revealed that structure-based design of specific N1 inhibitors targeting the activity site and 150-cavity was a successful strategy for discovering anti-influenza agents, such as 5 and 6 (lead compounds, originally numbered 20I and 32, J. Med. Chem. 2014, 57, 8445-8458), which contain hydrophobic p-phenyl and p-(thiophen-2-yl)-benzyl groups, respectively, and exhibit more potent N1-selective inhibition than OSC.34 It turned out that the substituted benzyl group is an excellent privileged moiety for the 150-cavity.34 Recent computational models of N1 have revealed that N-containing polar groups (including hydrazine, imineamide and amino derivatives) and bulky moieties (including aromatic rings, heterocyclic group and
alkene moieties) are available for hydrogen bond formation with Gly147, Val149, and Asp151 and for van der Waals (vdW) interactions with Gln136, Asp151, and Thr439 in the 150-cavity, respectively. Consequently, an aromatic ring with polar moieties may be sterically and electronically complementary to the 150-cavity.43 In addition, MD studies indicated that the triazole-containing oseltamivir analogs (11 and 12,39 which were designed to adapt to the 150-cavity of N1 and N2, and showed higher efficacy against H3N2 strain than H1N1 strain) could alternatively occupy the 150-cavity and the catalytic site of N1 or N2, because of the short triazole group and the rigid and large angle between the central ring and the triazole group. Even so, it was clear that the 150-cavity of group-2 could be induced to open by oseltamivir derivatives, and N-containing groups (triazole group) play an important role in this process.

Our strategy here was to explore and optimize the substituted benzyl structure of lead compound 5 or 6 and to identify structure-activity relationships (SARs) that could be utilized to improve the potency against both group-1 and -2 NAs while also showing good potency against H5N1-274Y mutant, by introducing phenyl and alkyl-substituted N-containing groups or N-containing aryl groups at the \textit{para}-position of the benzyl group of 5 or 6. Thus, we designed and synthesized a series of C-5 amino-substituted oseltamivir derivatives (Figure 4), anticipating that 1) phenyl and alkyl-substituted N-containing groups or N-containing aryl groups at the \textit{para}-position of the benzyl group would have sufficiently large size, sufficient length, relative flexibility, and appropriate hydrophobicity to bind effectively to the 150-cavity of
group-1 NAs, 2) the 150-cavity of 09N1 and group-2 NAs is likely to be opened and bound by C-5 amino and substituted benzyl groups, and 3) the substituted benzyl group may form strong interactions with the 150-cavity of NAs of both groups to increase the affinity between the compounds and the targets and thus improve the anti-resistance profile. Given the importance of interactions between the substituted benzyl groups and 150-cavity, we were optimistic that these design and optimization strategies would be fruitful.

![Figure 4](image.png)

Figure 4. Further structural optimization of oseltamivir derivatives 5 and 6.

CHEMISTRY

The synthetic protocols for the new oseltamivir derivatives are outlined in Schemes 1-6. All derivatives were synthesized by well-established methods using commercially available oseltamivir phosphate as the primary starting material. In Scheme 1, oseltamivir phosphate was treated with a series of different aldehydes in the presence of NaBH₃CN to afford the key intermediates 14a-14d. Subsequently, 14a-14d were hydrolyzed in the presence of NaOH aqueous solution and acidified with hydrochloric acid aqueous solution to give the corresponding target compounds 15a-15d.
Compound 19 was synthesized according to the synthetic protocols in Scheme 2. 4-Thiomorpholinobenzaldehyde (17) was prepared by reaction of thiomorpholine with 4-fluorobenzaldehyde (16) in the presence of potassium carbonate. The target compound 19 was prepared via similar procedures from 15a-15d. Compound 22 was obtained according to the method shown in Scheme 3.

A Buchwald-Hartwig cross-coupling reaction of the 4-bromobenzaldehyde with aniline, N-methyl or ethyl substituted aniline afforded another three aryl aldehydes 24a-24c, which were transformed to the corresponding target compounds 26a-26c (Scheme 4).

Compounds 29a-29b were also prepared via similar procedures from 15a-15d, as depicted in Scheme 5. Lead compound 6 (originally numbered 32, J. Med. Chem. 2014, 57, 8445-8458) was obtained according to the method we previously reported.34 All novel derivatives were fully characterized by electrospray ionization mass spectrometry (ESI-MS), high-resolution mass spectroscopy (HRMS), proton nuclear magnetic resonance (1H NMR) spectroscopy, and carbon nuclear magnetic resonance (13C NMR) spectroscopy. The purity of all target compounds was >95% as determined by analytical HPLC.

Scheme 1. Synthesis of Compounds 15a-15d

```
(i) NaBH₃CN, EtOH, MeOH, rt, 60-70%; (ii) NaOH, MeOH, H₂O, rt, then HCl (2 mol/L),
```
60-75%.

Scheme 2. Synthesis of Compound 19

\[(i)\text{ DMSO, } K_2CO_3, 100-120^\circ\text{C, 4h, 68%; (ii) NaBH}_3\text{CN, EtOH, MeOH, rt, 63%; (iii) NaOH, MeOH, H}_2\text{O, rt, then HCl (2 mol/L), 60%}.\]

Scheme 3. Synthesis of Compound 22

\[(i)\text{ NaBH}_3\text{CN, EtOH, MeOH, rt, 76%; (ii) NaOH, MeOH, H}_2\text{O, rt, then HCl (2 mol/L), 74%}.\]

Scheme 4. Synthesis of Compounds 26a-26c

\[(i)\text{ toluene, Cs}_2\text{CO}_3, \text{Pd(OAc)}_2, \text{BINAP, reflux, 60-70%; (ii) NaBH}_3\text{CN, EtOH, MeOH, rt, 60-70%; (iii) NaOH, MeOH, H}_2\text{O, rt, then HCl (2 mol/L), 58-70%}.\]

Scheme 5. Synthesis of Compounds 29a-29b

\begin{align*}
\text{(i) NaBH}_3\text{CN, EtOH, MeOH, rt, 55-65\%; (ii) NaOH, MeOH, H}_2\text{O, rt, then HCl (2 mol/L), 60-70\%}.
\end{align*}

RESULTS AND DISCUSSION

Inhibition of Influenza Neuraminidases

All the newly designed oseltamivir derivatives were screened for NA-inhibitory activity using a chemiluminescence-based assay with 2'-\((4\text{-methylumbelliferyl})\)-\(\alpha\)-D-N-acetylneuraminic acid (MUNANA) as the substrate.34 For NA inhibition screening, we chose five NAs in each group (10 influenza subtypes in total): the endemic human strains seasonal H1N1, pandemic H1N1 (H1N1pdm09), and H3N2, which caused significant morbidity and mortality in
humans, and avian influenza viruses (H5N1, H5N2, H5N6, H5N8, H7N9, H9N2, and oseltamivir-resistant H5N1-H274Y) that pose a significant threat to birds, poultry, mammals and humans. In addition to the reference compounds oseltamivir carboxylate (OSC) and zanamivir, we also employed compound 6 as a reference, since it has been reported to show selectivity for N1 over N2. Table 1 summarizes the measured inhibition potencies of the synthesized compounds towards the above NAs. It is clear that OSC showed greater inhibitory potency towards wild-type group-1 NAs (IC$_{50}$ = 4.45-33.56 nM) and group-2 NAs (IC$_{50}$ = 4.17-15.72 nM). However, OSC showed weaker activity towards the H5N1-H274Y mutant (IC$_{50}$ = 1630 nM), as previously reported.

Impressively, several of the designed compounds had greater inhibitory potency than the reference compounds, and in particular, 15b showed single-digit nanomolar activity against NAs of the H1N1, H1N1pdm09, H3N2, H5N2, H5N8, H9N2 and H7N9 strains. However, compound 15a exhibited weaker activity against NAs of H5N1 (IC$_{50}$ = 120.93 nM) and H5N6 (IC$_{50}$ = 33.85 nM), showing approximately 3- and 2-fold lower potency than OSC, respectively.

The inhibitory effects of 15b and 15c bearing N,N-diethylamino and 1-pyrrolidine groups, respectively, toward the nine wild NA subtypes lay within a narrow concentration range (IC$_{50}$ values ranging from 0.35 nM to 33.72 nM and 1.81 nM to 14.31 nM, respectively). In the case of H5N1 NA, the IC$_{50}$ value of 15b was 33.72 nM, which is similar to that of OSC (IC$_{50}$ = 33.56 nM). As for the other eight wild NA subtypes, 15b turned out to be a highly potent inhibitor of both group-1 NAs
(H1N1, IC_{50} = 1.16 nM; H1N1pdm09, IC_{50} = 0.55 nM; H5N8, IC_{50} = 5.34 nM) and
group-2 NAs (H3N2, IC_{50} = 1.05 nM; H5N2, IC_{50} = 0.49 nM; H9N2, IC_{50} = 0.35 nM;
H5N6, IC_{50} = 1.26 nM; H7N9, IC_{50} = 1.79 nM), with greater potency than OSC or
zanamivir. In addition, compound 15c exhibited better inhibition of all wild-type NAs
of group-1 (H1N1, IC_{50} = 2.65 nM; H1N1pdm09, IC_{50} = 2.31 nM; H5N1, IC_{50} =
14.31 nM; H5N8, IC_{50} = 4.06 nM) and group-2 (H3N2, IC_{50} = 1.81 nM; H5N2, IC_{50} =
4.50 nM; H9N2, IC_{50} = 2.13 nM; H5N6, IC_{50} = 10.85 nM; H7N9, IC_{50} = 6.51 nM),
being 1.2 to 3.94-fold more potent than OSC. It is worth noting that the IC_{50} values of
15b were much lower against the five NAs of group-2 (especially H7N9 NA) and
09N1 than against the three NAs of group-1. Indeed, the IC_{50} values of 15b against
NAs of H1N1pdm09, H3N2, H5N2, H5N6, H9N2 and H7N9 were approximately 8, 7,
11, 13, 13, and 6 times, and 8, 6, 27, 18, 26, and 10 times lower than those of OSC
and zanamivir for the same NAs, respectively. In general, 15b showed comparable or
much better inhibitory activities relative to 15c against both group-1 and -2 wild-type
NAs, suggesting that the flexible N,N-diethylamino group at the R-position was more
advantageous for NAs inhibitory activity than the rigid 1-pyrrolidine group.

The presence of the 1-piperidine group (15d) and 4-thiomorpholine group (19)
resulted in decreased activities towards group-1 and -2 NAs (15d, IC_{50} =
16.64-165.90 nM; 19, IC_{50} = 48.38-557.77 nM) in comparison with OSC. Moreover,
neither compound displayed selectivity for group-1 or -2 NAs. Compared with 15d,
compound 19 was less potent against both group-1 and -2 wild-type NAs,
demonstrating that replacing the 1-piperidine group with a 4-thiomorpholine group
resulted in reduced NA-inhibitory activity. Compound 22 (IC_{50} = 10.91-581.03 nM) with an N-acetamide group at the R-position showed significantly reduced activity against both group-1 and -2 wild-type strains, especially H5N1 (IC_{50} = 581.03 nM), H5N2 (IC_{50} = 31.73 nM), H5N6 (IC_{50} = 181.17 nM), H5N8 (IC_{50} = 216.53 nM) and H7N9 (IC_{50} = 31.47 nM) relative to 15a-15c, OSC and zanamivir. Therefore, we did not further explore amide groups as the R group of oseltamivir derivatives.

Based on the above information and our previously established structure-activity relationships (SAR) results,34,43 we concluded that N,N-dialkyl-substituted aniline derivatives preferentially bind to the 150-cavity of both group-1 and -2 NAs, and the key factors influencing the activities are the size, flexibility and hydrophobicity of the N,N-dialkyl substituted group. Compounds with N,N-diethylamino (15b) and 1-pyrrolidinyl groups (15c), which possess moderate size, flexibility, and hydrophobicity, at the R-position enhanced the activities against both group-1 and -2 wild-type NAs, while relatively bulky, rigid (15d and 19) or small (15a) substituent groups appeared to have a negative effect on the potency, possibly because their conformational effects impaired the binding of other structural parts of oseltamivir derivatives to the corresponding pockets of the active site. In addition, an amide substituent group reduced the activity, as exemplified by compound 22.

To further examine the effects of N-substituted fragments, one of the two methyl groups of 15a or ethyl groups of 15b was replaced with a phenyl group or a hydrogen atom (cf. compounds 26a-26c). Among them, compound 26b (N-methylaniline derivative) exhibited the most potent activity against NAs of H3N2 and H9N2 (IC_{50} =
5.65 nM and 2.29 nM, respectively), being more potent than the reference compounds. It also exhibited similar potency towards NAs of H1N1 (IC\textsubscript{50} = 9.62 nM), H1N1pdm09 (IC\textsubscript{50} = 29.82 nM), H5N2 (IC\textsubscript{50} = 62.84 nM), H5N8 (IC\textsubscript{50} = 29.00 nM), and H7N9 (IC\textsubscript{50} = 11.37 nM) relative to OSC and zanamivir, but was less potent than OSC and zanamivir against NAs of H5N1 and H5N6. Nevertheless, 26a (IC\textsubscript{50} = 27.39-599.17 nM) and 26c (IC\textsubscript{50} = 275.3-2586 nM) showed significantly reduced NA-inhibitory activity towards both group-1 and -2 wild-type NAs. These results suggest that either too large (phenyl or ethyl), or too small (hydrogen atom) or too rigid (phenyl) N-substituted groups are unfavorable for NA-inhibitory activity, in accordance with the above-established SARs (i.e., relatively bulky, rigid or small substituent groups appeared to have a negative effect on the potency).

In addition, we replaced the N,N-diethylamino group of 15b with 1H-pyrrole and 1H-pyrazole groups (cf. 29a and 29b). Like reference compound 6, 29a and 29b turned out to be selective inhibitors of group-1 NAs (cf. Table 1). As per our established SARs for this class of compound, 29a and 29b showed significantly decreased inhibitory activity for group-2 NAs (H3N2, H5N2, H5N6, H9N2, and H7N9). It is noteworthy that 29a was a much more potent inhibitor of both group-1 and 2 wild-type NAs (1.17- to 15.22-fold) than 29b, indicating that increasing the number of N atoms at the R-position is not effective to improve the activity of oseltamivir derivatives.

Collectively, apart from the identified group-1 NAs-selective inhibitors (29a and 29b), the NA-inhibitory activities of the novel oseltamivir derivatives are very
sensitive to the size, flexibility, and hydrophobicity of the R group. Indeed, \textbf{15b} and \textbf{15c} with R groups of moderate size, flexibility, and hydrophobicity proved to be the most potent NA inhibitors and exhibited increased inhibitory activities towards the whole panel of wild-type NAs, especially the group-2 NAs. Our results indicate that \textit{N,N}-diethylamino and 1-pyrrolidine groups bound well with the 150-cavity of group-1 NAs, and that they are likely to induce opening of the 150-loop of 09N1 and group-2 NAs, while other structural parts interact with the active site in a similar manner to the case of OSC.

As for NA of the H5N1-H274Y mutant virus, which has been reported to be oseltamivir-resistant,34,44,45 OSC showed sharply reduced potency (IC\textsubscript{50} = 1630 nM), which was approximately 50-fold lower than that towards the wild-type NA of H5N1 (IC\textsubscript{50} = 33.56 nM); this result is in agreement with the finding of Schade and Xie.34,44

Among these oseltamivir derivatives, nine were found to be less active or to lack activity at the highest tested concentration of 100 µM against the mutant H5N1-H274Y NA. However, it is noteworthy that compounds \textbf{15b} and \textbf{15c} displayed superior activity (IC\textsubscript{50} = 387.07 and 663.9 nM, respectively), being 4- and 2-fold more potent than OSC, respectively. Besides, two representative compounds \textbf{15b} and \textbf{15c} were also performed an enzymatic assay against NA of H3N2-E119V, and the results are shown in Table 2. The NA of H3N2-E119V confer resistance to oseltamivir without altering susceptibility to zanamivir, which is consistent with reported data.46 \textbf{15b} and \textbf{15c} displayed robust potencies against NA of H3N2-E119V, with IC\textsubscript{50} values of 603.83 and 288.5 nM, respectively, which were more potent than OSC. These
compounds could serve as suitable lead compounds for further optimization studies
Table 1. Neuraminidase (NA) Inhibition of Oseltamivir Derivatives in Chemiluminescence-based Assay

![Chemiluminescence-based Assay Diagram]

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>NA Enzyme-Inhibitory Assay, IC₅₀ (nM)ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>15a</td>
<td></td>
<td>5.06±0.04 4.09±0.13 4.11±0.13 120.93±14.59 8.89±0.43 33.85±4.48 9.53±0.56 5.74±0.61 8.41±0.74 3365.67±181.95</td>
</tr>
<tr>
<td>15b</td>
<td></td>
<td>1.16±0.01 0.55±0.03 1.05±0.01 33.72±2.95 0.49±0.06 1.26±0.08 5.34±0.67 0.35±0.003 1.79±0.17 387.07±16.46</td>
</tr>
<tr>
<td>15c</td>
<td></td>
<td>2.65±0.09 2.31±0.03 1.81±0.07 14.31±1.80 4.50±0.09 10.85±0.73 4.06±0.38 2.13±0.08 6.51±0.12 663.9±98.31</td>
</tr>
<tr>
<td>15d</td>
<td></td>
<td>24.92±0.20 18.61±0.68 17.15±0.83 165.90±16.09 16.64±0.77 73.82±18.22 57.46±3.01 20.74±0.12 40.46±3.83 10028.33±679.75</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>65.93±1.82 48.38±1.54 62.59±4.55 557.77±60.10 127.63±10.79 363.57±37.51 288.37±24.70 74.18±3.22 155.90±14.72 >100000⁷</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>17.49±1.96 17.31±0.17 10.91±0.47 581.03±34.54 31.73±6.92 181.17±21.68 216.53±23.56 13.66±0.30 31.47±0.18 9387±717.29</td>
</tr>
<tr>
<td>26a</td>
<td></td>
<td>73.48±13.87 66.72±0.83 31.12±0.83 599.17±20.71 138.23±13.11 539.03±54.17 368.70±42.86 27.39±1.47 94.20±6.08 12540±1126.41</td>
</tr>
<tr>
<td>Concentration required to reduce NA activity to 50% of control NA activity (IC$_{50}$). Values are the mean of three experiments, presented as the mean ± standard deviation (SD).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Concentration required to reduce NA activity to 50% of control NA activity (IC$_{50}$). Values are the mean of three experiments, presented as the mean ± standard deviation (SD).</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>A/PuertoRico/8/1934.</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>A/California/04/2009.</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>A/Babol/36/2005.</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>A/Chicken/Hebei/LZF/2014.</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>A/duck/Guangdong/674/2014.</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>A/goose/Jiangsu/1306/2014.</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>A/chicken/china/415/2013.</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>A/Anhui/1/2013.</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>A/Anhui/1/2005.</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Highest tested concentration.</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>Zanamivir was found to be more potent towards group-1 NAs (with IC${50}$ values of 4.32-9.81 nM) than towards group-2 NAs (with IC${50}$ values of 6.82-22.80 nM). In agreement with the results of a previous study, zanamivir is more potent than OSC towards group-1 NAs but less potent than OSC towards group-2 NAs. The inhibitory effect of zanamivir on the</td>
<td></td>
</tr>
</tbody>
</table>
NA (H5N1-H274Y) (IC$_{50}$ = 6.71 nM) is still at a very effective level.
Table 2. N2 (H3N2-E119V) Inhibitory Activities of Compounds 15b and 15c

<table>
<thead>
<tr>
<th>compounds</th>
<th>15b</th>
<th>15c</th>
<th>OSC</th>
<th>zanamivir</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2 (H3N2-E119V) (nM)</td>
<td>603.83±32.39</td>
<td>288.5±26.18</td>
<td>817.43±98.61</td>
<td>33.55±1.99</td>
</tr>
</tbody>
</table>

Values are the mean of three independent experiments. A/Babol/36/2005 (H3N2)

Anti-Influenza-Virus Activity in Cell Culture

In order to investigate the efficacy of target compounds against influenza virus infection, we examined all the synthesized NAIs in cell-based assays that address the cytopathic effect (CPE) of AIV infection, using A/goose/Guangdong/SH7/2013 (H5N1) and A/goose/Jiangsu/1306/2014 (H5N8), as models for group-1 NAs-containing influenza strains, and A/Chicken/Hebei/LZF/2014 (H5N2), A/duck/Guangdong/674/2014 (H5N6) as models for group-2 NAs-containing influenza strains. As in the enzyme inhibition assay, OSC, zanamivir, and 6 were used as reference compounds in parallel. The values of EC\text{50} (anti-avian influenza A virus potency) and CC\text{50} (cytotoxicity) of the synthesized compounds are summarized in Table 3. Notably, all the tested compounds exhibited no appreciable cytotoxicity at the highest tested concentrations (CC\text{50} > 200 µM) in chicken embryo fibroblasts (CEFs).

In the case of the H5N1 virus, the activities of 15a (EC\text{50} = 0.53 µM), 15b (EC\text{50} = 0.47 µM) and 15c (EC\text{50} = 0.49 µM) were superior to that of OSC. In contrast, 15d, 19, 22, 26a-26c, 29a, and 29b displayed sharply reduced antiviral activity. In particular, 19 bearing 4-thiomorpholine (EC\text{50} = 49.72 µM) and 22 bearing acetamide substituents (EC\text{50} > 100 µM) almost lacked anti-influenza potency. Overall, the anti-H5N1 activities of the novel oseltamivir derivatives were consistent with the results of the N1 (H5N1)-inhibitory activities, with the exception of 15a.

As for H5N2 virus, the antiviral activities of 15b (EC\text{50} = 0.012 µM) and 15c (EC\text{50} = 0.063 µM) were consistent with the N2 (H5N2)-inhibitory activities, and these compounds showed significantly greater activity than the reference compounds.
In addition, \textbf{15a, 15d, 22, 29a,} and \textbf{26a-26c} exhibited EC\textsubscript{50} values in the submicromolar range, being inferior to OSC, in accordance with their less potent inhibitory activities for NA of H5N2. Similarly, \textbf{29b} and \textbf{19} showed reduced antiviral activities (EC\textsubscript{50} = 1.25 and 1.54 \(\mu\text{M}\), respectively), in accordance with their N2 (H5N2)-inhibitory activities.

Against H5N6 virus, \textbf{15b} (EC\textsubscript{50} = 0.17 \(\mu\text{M}\)) and \textbf{15c} (EC\textsubscript{50} = 0.38 \(\mu\text{M}\)) turned out to be the most potent inhibitors, being 6- and 3-fold more potent than OSC, respectively. This is in line with their N6 (H5N6)-inhibitory activities. Moreover, \textbf{19} also showed more potent antiviral activity (EC\textsubscript{50} = 0.49 \(\mu\text{M}\)) than OSC. The activities of \textbf{15a} (EC\textsubscript{50} = 0.86 \(\mu\text{M}\)), \textbf{15d} (EC\textsubscript{50} = 1.60 \(\mu\text{M}\)), \textbf{26a} (EC\textsubscript{50} = 1.07 \(\mu\text{M}\)), \textbf{26b} (EC\textsubscript{50} = 1.78 \(\mu\text{M}\)) and \textbf{26c} (EC\textsubscript{50} = 0.74 \(\mu\text{M}\)) were equivalent to that of OSC. Compound \textbf{22} (EC\textsubscript{50} = 5.69 \(\mu\text{M}\)), in accordance with its lack of N6 (H5N6)-inhibitory activity, was ineffective against H5N6 virus. Like \textbf{6}, which showed selective anti-H5N1 and H5N8 virus activity, \textbf{29a} and \textbf{29b} showed 5-14 times lower anti-H5N6 potency than OSC.

More than half of the new oseltamivir derivatives in this study were found to show improved anti-H5N8 virus activities in comparison with OSC and zanamivir. Among them, \textbf{15a, 15b, 15c} and \textbf{29a} were highly potent anti-H5N8 virus agents, with EC\textsubscript{50} values ranging from 0.61 to 0.95 \(\mu\text{M}\), which are lower than those of OSC and zanamivir. Compounds \textbf{29b} and \textbf{26a} showed comparable anti-H5N8 virus activities relative to OSC. Interestingly, \textbf{26b} and \textbf{26c} exhibited the most potent activities, with EC\textsubscript{50} values of 0.29 and 0.31 \(\mu\text{M}\), respectively, being greatly superior to the reference compounds. Although \textbf{15d} and \textbf{22} displayed moderate activity in N8 (H5N8) inhibition assay, they showed attenuated anti-H5N8 virus activities with EC\textsubscript{50} = 6.78 \(\mu\text{M}\) and 16.27 \(\mu\text{M}\), respectively, comparable to the reference compounds. Unsurprisingly, \textbf{19}, which displayed a considerable decrease in N8 (H5N8)-inhibitory
activity, was inactive toward H5N8 virus even at the highest tested concentration of 100 µM.

Among the novel oseltamivir derivatives examined, 15b and 15c showed robust antiviral activity against the viral panel, being more effective than OSC in the same cellular assays; the EC_{50} values of 15b, 15c, and OSC were in the ranges of 0.012-0.61 µM, 0.063-0.75 µM, and 0.07-1.22 µM, respectively. More importantly, 15b and 15c exhibited more potent activity towards H5N2 and H5N6 than towards H5N1 and H5N8 viruses. This is consistent with their N1 (H5N1), N2 (H5N2), N6 (H5N6), and N8 (H5N8) inhibitory activities. It is also noteworthy that 26b and 26c showed remarkably improved anti-H5N8 virus activity in the cellular system, although they displayed only moderate N8 (H5N8)-inhibitory activities. The phenomenon that the potency of compounds can increase in a cellular environment may be due to multiple factors, including synergistic inhibition,48 cellular metabolism, protein-protein interactions, and asymmetric intracellular localization.49

Table 3. Anti-Influenza Virus Activity and Cytotoxicity of Oseltamivir Derivatives (CEFs)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC_{50}^a values (µM) towards influenza viruses</th>
<th>CC_{50}^b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H5N1</td>
<td>H5N2</td>
</tr>
<tr>
<td>15a</td>
<td></td>
<td>0.53±0.28</td>
<td>0.17±0.05</td>
</tr>
<tr>
<td>15b</td>
<td></td>
<td>0.47±0.09</td>
<td>0.012±0.002</td>
</tr>
<tr>
<td>15c</td>
<td></td>
<td>0.49±0.02</td>
<td>0.063±0.02</td>
</tr>
<tr>
<td>15d</td>
<td></td>
<td>3.02±0.77</td>
<td>0.86±0.38</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>49.72±18.33</td>
<td>1.25±0.27</td>
</tr>
<tr>
<td></td>
<td>(\text{EC}_{50})</td>
<td>(\text{CC}_{50})</td>
<td>(\text{EC}_{50})</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>22</td>
<td>(>100)</td>
<td>(0.299 \pm 0.14)</td>
<td>(5.69 \pm 2.37)</td>
</tr>
<tr>
<td>26a</td>
<td>5.11±1.43</td>
<td>0.17±0.06</td>
<td>1.07±0.16</td>
</tr>
<tr>
<td>26b</td>
<td>13.13±1.12</td>
<td>0.44±0.18</td>
<td>1.78±0.79</td>
</tr>
<tr>
<td>26c</td>
<td>23.54±6.88</td>
<td>0.57±0.12</td>
<td>0.74±0.14</td>
</tr>
<tr>
<td>29a</td>
<td>2.32±0.52</td>
<td>0.36±0.17</td>
<td>14.17±5.53</td>
</tr>
<tr>
<td>29b</td>
<td>10.94±2.67</td>
<td>1.54±0.26</td>
<td>9.26±2.19</td>
</tr>
<tr>
<td>6d</td>
<td>0.34±0.06</td>
<td>2.19±0.54</td>
<td>9.67±1.98</td>
</tr>
<tr>
<td>OSC</td>
<td>0.63±0.07</td>
<td>0.07±0.03</td>
<td>1.05±0.18</td>
</tr>
<tr>
<td>Zanamivir(^e)</td>
<td>0.23±0.11</td>
<td>0.51±0.24</td>
<td>0.58±0.08</td>
</tr>
</tbody>
</table>

\(^a\) \(\text{EC}_{50} \): concentration of compound required to achieve 50% protection of CEF cell cultures against influenza virus-induced cytotoxicity, presented as the mean ± standard deviation (SD) and determined by the CCK-8 method.

\(^b\) \(\text{CC}_{50} \): concentration required to reduce the viability of mock-infected cell cultures by 50%, as determined by the CCK-8 method.

\(^c\) Highest tested concentration. \(^d\) Lead compound 6 (originally numbered 32, J. Med. Chem. 2014, 57, 8445-8458).

\(^e\) Zanamivir displayed antiviral activity against H5N1, H5N2 and H5N6 virus with \(\text{EC}_{50} \) values in the submicromolar range and against H5N8 with \(\text{EC}_{50} \) values in the micromolar range.

Then, we tested compounds 15b, 15c, 19, 26b, and 29a in plaque reduction assays (PRA) with both the A/PR/8/34 (H1N1) and the A/Wisconsin/67/05 (H3N2) strain in MDCK cells. OSC and ZAN were used as positive controls for inhibition. We also tested the cytotoxicity of the test compounds, as well as OSC and ZAN as a reference, in MDCK cells by MTT assays. No cytotoxic effect was observed at the tested concentrations (250 \(\mu \text{M} \)) for any of the compounds. In the inhibitory activity evaluation against H1N1 and H3N2 strains, 15b exhibited the greatest inhibition, with
EC$_{50}$ values of 0.065 and 1.70 µM, respectively, which are similar to those of OSC and ZA. 15c had slightly decreased activity against H1N1 and H3N2 relative to OSC. However, other compounds (19, 26b, and 29a) showed remarkably reduced antiviral activity than OSC and ZA toward the two strains.

Table 4. Anti-Influenza Virus Activity and Cytotoxicity of Oseltamivir Derivatives (MDCK)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC$_{50}$ values (µM) towards influenza viruses</th>
<th>CC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H1N1c</td>
<td>H3N2d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>group-1</td>
<td>group-2</td>
</tr>
<tr>
<td>15b</td>
<td></td>
<td>0.07 ± 0.01</td>
<td>1.7 ± 0.6</td>
</tr>
<tr>
<td>15c</td>
<td></td>
<td>0.22 ± 0.01</td>
<td>2.35 ± 0.2</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>4.4 ± 1.0</td>
<td>19.0 ± 1.0</td>
</tr>
<tr>
<td>26b</td>
<td></td>
<td>1.95 ± 0.35</td>
<td>25.55 ± 6.7</td>
</tr>
<tr>
<td>29a</td>
<td></td>
<td>0.69 ± 0.06</td>
<td>29.0 ± 8.9</td>
</tr>
<tr>
<td>OSC</td>
<td></td>
<td>0.04 ± 0.02</td>
<td>0.90 ± 0.14</td>
</tr>
<tr>
<td>Zanamivir</td>
<td></td>
<td>0.05 ± 0.03</td>
<td>0.27 ± 0.06</td>
</tr>
</tbody>
</table>

a EC$_{50}$: concentration of compound required to achieve 50% protection of MDCK cell cultures against influenza virus-plaque formation, presented as the mean ± standard deviation (SD) and determined by the PRA method.

b CC$_{50}$: concentration required to reduce the viability of mock-infected cell cultures by 50%, as determined by the MTT method.

c A/PR/8/34. d A/Wisconsin/67/05. e Highest tested concentration.
MOLECULAR MODELING

To further understand and characterize the interaction pattern of the synthesized compounds with the various NAs, the most promising ligand 15b and OSC were subjected to computational docking into an open 150-loop conformation of the N1, N2, N6, N8, N9 and 09N1 strains, followed by explicit solvent MD simulations. Initially, both compounds were docked into the open-form structure of each NA using the Glide program and the best protein-ligand complex (pose) was chosen as the starting configuration for MD simulations; i.e., 12 simulations were performed in total. Of the 20 ns production run, only trajectories from the last 5 ns (500 snapshots) were retrieved for analysis (see the method section for more information). For each complex, the 500 snapshots were analyzed with respect to energy convergence in order to ensure that the protein-ligand complex is energetically stable (Supporting information, Figure S2).
Figure 5. Snapshots showing the binding mode of 15b (ball and stick) in the NA-binding sites. Important residues are highlighted and polar interactions are indicated by dotted lines.

As can be seen in Figure 5, compound 15b shows key interactions, such as salt-bridge formation between carboxylate and Arg (N1 and N8 of Arg371, 09N1 of Arg287, N2 of Arg290, N9 of Arg291, N6 of Arg292) and hydrogen bonding between the acetamide group and Arg (Arg152 in N8 and Arg71 in 09N1), as observed in the X-ray crystal structures of N8 bound to OSC. Schematic representation of protein-ligand interaction of 15b and binding mode OSC is provided in Supporting information, Figure S3 and Figure S4, respectively. The 5-amino linker in the molecule was also involved in hydrogen bonding with Asp located between the active site and the 150-cavity; this interaction is unique to 15b, and no such interaction was observed when the 5-amino group of OSC was unsubstituted. As described in the design section, N-substituted groups such as polar groups or aromatic rings may induce the open 150-cavity conformation, and may thereby increase the overall binding affinity. The MD simulation results indicate that N,N-diethylamino group of 15b strongly binds to the 150-cavity of all six NAs. In particular, the aromatic ring is solely surrounded by non-polar residues (Val, Thr and Pro) and the amino group in the N,N-diethylamino fragment is hydrogen-bonded with either Gly (147 of N8, 67 of N9, 66 of 09N1) or Thr (361 of N6) or Asp (66 of N2) in the 150-cavity. All of these interactions result in a high degree of structural complementarity.

Also, to further assess which part of the protein shows high flexibility during MD simulations when 15b and OSC are bound to NAs, we calculated the RMSF (root mean square fluctuation) and B-factor. The calculated B-factors were compared to the X-ray crystal structure values (the B-factor and average RMSF of protein atoms as a function of residue number are provided in the Supporting Information, Figure S5).
This information is essential to understand whether or not a ligand especially stabilizes the ligand-binding pocket (150-cavity) when bound to NAs. The B-factor values suggest that there is high mobility in the crystal structure, particularly at the 150-loop region, in all six NAs. In accordance with this, MD simulation with OSC showed high flexibility in the 150-loop region in all six NA simulations. Interestingly, when compound 15b is bound at the active site, the overall flexibility of the 150-loop is significantly reduced, which clearly indicates that the N,N-diethylamino group in 15b strongly stabilizes the 150-cavity through non-bonded interactions, for instance, hydrogen-bonding of the N,N-diethylamino group with polar residues such as Gly (147 of N8, 67 of N9, 66 of 09N1) or Thr (361 of N6) or Asp (66 of N2) in the 150-cavity.

Also, protein-ligand interaction fingerprint (PLIF) analysis was performed for compounds 15b, 15c, and 15d to understand the binding mode and characterize their key interactions with NAs (see PLIF analysis in the SI). Results obtained from the PLIF analysis suggest that 15b-d showed similar binding mode in all six NAs, i.e., compounds binding in the both active site and 150-cavity, but only differ in the position of the linker group (phenyl ring) which is passing through a small tunnel located between “active site” and “150-cavity” for 15b and 15c. Due to slightly bulkier piperidine ring, 15d adjusts its binding mode in a way to reduce the steric hindrance with “150-cavity” and linker region lies on the top of passage to 150-cavity (Figure 6) which could significantly reduce the affinity as compared to 15b or 15c (cf. PLIF section in Supporting Information). To further improve the binding affinity of molecule 15b without adding a bulky group in the N-substituted side chain position, substitution at phenyl ring (linker) either at meta or ortho position pay way for further lead optimization.
Further, we compared the amino acid sequences of six NAs (A/goose/Guangdong/SH7/2013 (H5N1), A/Chicken/Hebei/LZF/2014 (H5N2), A/chicken/china/415/2013 (H9N2), A/duck/Guangdong/674/2014 (H5N6), A/goose/Jiangsu/1306/2014 (H5N8) and A/Anhui/1/2013 (H7N9)) with those of proteins of the same NA subtype (2HU0, 3NSS, 4K1I, 5HUM, and 2HT7) as used for the MD simulation studies. We found that NAs of the same subtypes showed a high degree of similarity (> 90% for N1 of H5N1, 2HU0, and 3NSS; > 88% for N2 of H5N2 and H9N2, and 4K1I; > 99% for N6 of H5N6 and 5HUM; > 93% for N8 of H5N8 and 2HT7; 100% for N9 of H7N9 and 5L15 respectively; data shown in the Supporting Information S5). No more than 50 of the nearly 400 residues are different in NAs of the same subtype, and this supports the credibility of the MD simulation studies. The MD simulation protocol is described in the MD simulation studies section.

METABOLIC STABILITY IN THE PRESENCE OF HUMAN LIVER MICROSOMES AND STABILITY IN HUMAN PLASMA
The metabolic stability of 15b and 14b (the ethyl carboxylate of 15b) was measured in a human liver microsomes (HLM) assay. Testosterone, diclofenac, and propranolol were used as control compounds with moderate metabolic stability. As shown in Table 4 and Figure 7, only 0.6% of 14b remained after incubation for 60 min. The metabolite of 14b was confirmed to be 15b by LC-MS/MS. In contrast, 82.7% of compound 15b remained intact in the HLM assay, and no significant amount of metabolite was found by LC-MS/MS. Compound 15b ($t_{1/2} > 145$ min) showed greater metabolic stability than the control compounds ($t_{1/2}$ values of 26.6 min for testosterone, 12.3 min for diclofenac, and 6.4 min for propranolol). Moreover, the intrinsic clearance (CL) of 15b was very much lower (< 9.6 µL/min/mg) than those of control compounds in the same assay.

The stability of 15b was also evaluated in a human plasma assay. Propantheline bromide was tested for comparison. As shown in Table 5, 15b remained intact (measured as 120.7% of the initial amount) after incubation for 120 min, and 15b showed much greater stability than propantheline bromide (1.8% after 120 min). In short, 15b showed reasonable metabolic stability in HLM and good stability in human plasma. Therefore, the N,N-diethyl-N-methylaniline moiety at the C-5 amino group of oseltamivir seems to be a privileged modification with a drug-like profile.

Table 5. Metabolic Stability of 15b and 14b in the Presence of Human Liver Microsomes

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^2</th>
<th>$T_{1/2}$</th>
<th>$CL_{int(mic)}$</th>
<th>$CL_{int(liver)}$</th>
<th>Remaining ($T = 60$ min)</th>
<th>Remaining (*NCF=60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15b</td>
<td>0.7653</td>
<td>>145</td>
<td><9.6</td>
<td><8.6</td>
<td>82.7%</td>
<td>95.4%</td>
</tr>
<tr>
<td>14b</td>
<td>0.9592</td>
<td>8.4</td>
<td>165.2</td>
<td>148.7</td>
<td>0.6%</td>
<td>87.1%</td>
</tr>
<tr>
<td>Testosterone</td>
<td>0.9760</td>
<td>26.6</td>
<td>52.1</td>
<td>46.9</td>
<td>19.1%</td>
<td>78.0%</td>
</tr>
<tr>
<td>Compound</td>
<td>Batch</td>
<td>Time Point (min)</td>
<td>% Remaining<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofenac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9973</td>
<td>12.3</td>
<td>112.3</td>
<td>3.3% 84.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propafenone</td>
<td>0.9680</td>
<td>6.4</td>
<td>215.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>194.3 0.2% 90.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a R^2 is the correlation coefficient of the linear regression for the determination of the kinetic constant (see raw data worksheet in the Supporting Information).

^b $T_{1/2}$ is the half-life and $CL_{int (mic)}$ is the intrinsic clearance.

^c $CL_{int (mic)} = 0.693/half-life/mg microsome protein per mL$.

^d $CL_{int(liver)} = CL_{int (mic)} \times mg microsomal protein/g liver weight \times g liver weight/kg body weight$.

^e *NCF indicates no co-factor. No NADPH-regenerating system was added to the NCF sample (replaced with buffer) during the 60-min incubation.

Figure 7. Metabolic stability - Time courses of remaining 15b and 14b in the presence of human liver microsomes.

Table 6. Summary of the Results of Plasma Stability Assay

<table>
<thead>
<tr>
<th>Compound</th>
<th>Batch</th>
<th>Time Point (min)</th>
<th>% Remaining<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15b</td>
<td>/</td>
<td>30</td>
<td>119.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>119.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>120.7<sup>b</sup></td>
</tr>
<tr>
<td>Propantheline bromide</td>
<td>110M1921V</td>
<td>30</td>
<td>44.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>16.8</td>
</tr>
</tbody>
</table>
\% Remaining = 100 \times \frac{\text{PAR at appointed incubation time}}{\text{PAR at T0}} \quad \text{PAR is the peak area ratio of test compound versus internal standard. Accuracy should be within the range of 80\%–120\% of the marked value.}

\textbf{SAFETY ASSESSMENT}

Single-dose acute toxicity was studied in mice. After intragastric administration of 15b at a dose of 0.5 and 1 g·kg\(^{-1}\), no death occurred, and there was no abnormality of body weight increase over the subsequent one week.

\textbf{CONCLUSION}

In drug discovery, slight structural modifications of the lead compound can result in dramatic changes in potency and physicochemical properties, a phenomenon that is known as an “activity cliff” in the activity landscape.50,51 Therefore, the elaboration of approved drugs (OSC in this research) via subsequent medicinal chemistry campaigns based on three-dimensional structure data for NA-inhibitor interactions, such as multidimensional optimization and comprehensive SAR, is still highly desirable to improve the activity and selectivity and to overcome drug resistance.

We previously focused on the open 150-cavity adjacent to the active site of influenza A viral group-1 NAs, except for 09N1, as a target for the design of novel group-1 NAs-selective inhibitors. In this work, considering that several crystal structures and in silico studies have indicated that group-2 NAs are also able to adopt an open 150-cavity under the influence of specific ligands, we aimed to discover potent group-1 and -2 NAIs through structure-based modification studies, focusing on detailed optimization of the \textit{para}-position (R-position) of the benzyl group of
compound 5 or 6. All the changes at the R-position involving relatively bulky, rigid (15d, 19, and 26a-26c), small (15a) or amide (22) substituents appeared to have a negative effect on potency in NAs inhibition assays. Although several compounds exhibited high potency against H5N6 or H5N8 (for instance, 26b and 26c were superior to the reference compounds against H5N8), they showed decreased activity in the anti-influenza virus activity study in CEF. Like the reference compound 6, 29a and 29b also turned to be group-1-specific NA inhibitors.

On the other hand, 15b and 15c, with medium-sized substituents were mostly superior to the reference compounds in inhibiting NAs of H1N1, H1N1pdm09, H5N1 and H5N8 (group-1), and H3N2, H5N2, H9N2, H5N6, and H7N9 (group-2). Importantly, 15b showed similar or greater inhibitory potency against group-2 NAs and 09N1 (IC_{50} values of 0.35-1.79 nM) compared with the activities against group-1 NAs (IC_{50} values of 1.16-33.72 nM). In addition, 15b and 15c exhibited high activities against H5N1-H274Y and H3N2-E19V mutant NA. Both of them also exerted the greatest inhibition, with IC_{50} values of 89.28 and 86.04 nM against influenza B neuraminidase, respectively, which are similar to that of oseltamivir carboxylate (OSC, IC_{50} = 60.59nM) (see Supporting Information). In cellular assays (CEFs) too, 15b and 15c again exhibited better activity than OSC against AIV (H5N1, H5N2, H5N6, and H5N8), in accordance with the results of the NA-inhibitory activities. Similarly, 15b and 15c showed more potent antiviral activities against H5N2 and H5N6 viruses (containing group-2 NAs) than against H5N1 and H5N8 viruses (containing group-1 NAs).

Finally, the results of MD simulation studies clearly show that 15b occupies the 150-cavity in addition to retaining other key interactions of OSC in the active site of NAs. The molecular modeling studies also support the design hypothesis of this study,
i.e. that the N-substituted benzyl group would enhance the binding affinity by inducing the 150-cavity next to the active site, as proposed before. Furthermore, in the stability assays, 15b showed greater metabolic stability than all the reference substances in HLM and human plasma assays.

On the basis of these excellent in vitro and in vivo results, we consider that 15b and 15c are promising new drug candidates to treat influenza, and may have the potential to prevent or ameliorate the next pandemic.

EXPERIMENTAL SECTION

General Information on Synthesis

Oseltamivir phosphate was provided by Shandong Qidu Pharmaceutical Co., Ltd. Other chemicals and reagents were purchased from Aladdin, TCI, J&K, Energy Chemical, and Sinopharm Chemical Reagent Co., Ltd. and were at least 97% pure. All melting points were determined on a micro melting point apparatus (RY-1G, Tianjin TianGuang Optical Instruments) and are uncorrected. 1H-NMR and 13C-NMR spectra were recorded in CD3OD, CDCl3 or DMSO-d6 on a Bruker AV-400 spectrometer with tetramethylsilane (TMS) as the internal standard. Coupling constants are given in hertz, and chemical shifts are reported in δ values (ppm) from TMS; ESI-MS was conducted using an API 4000 LC/MS spectrometer (Applied Biosystems, USA). HRMS analysis was performed using an Agilent 6520 Q-TOF LC/MS spectrometer (Agilent, Germany). All reactions were routinely monitored by thin layer chromatography (TLC) on Silica Gel GF254 for TLC (Merck), and spots were visualized with iodine vapor or by irradiation with UV light (λ = 254 nm). Flash column chromatography was performed on columns packed with Silica Gel (200-300 mesh), purchased from Qingdao Haiyang Chemical Company. Solvents were purified.
and dried by means of standard methods when necessary. Organic solutions were
dried over anhydrous sodium sulfate and concentrated with a rotary evaporator under
reduced pressure. Other reagents were obtained commercially and were used without
further purification. Target compounds purity were analyzed on a Waers e2695 HPLC
instrument and Waters 2998a detector with GOLD C18 column (5 µm, 250 mm × 4.6
mm). HPLC solvent conditions: methanol/water with 0.1% acetic acid 10-90%; flow
rate, 1.0 mL/min; UV detection, from 200-400 nm; temperature, ambient; injection
volume, 20 µL. Purity of all tested compounds was >95%.

General Procedure for the Synthesis of Compounds 14a-14d. To a solution of
oseltamivir phosphate (0.82 g, 2.0 mmol) and an aldehyde (2.4 mmol, 1.2 equiv) in 30
mL ethanol and methanol (V:V = 2:1), NaBH₃CN (0.31 g, 5.0 mmol, 2.5 equiv) was
slowly added. The mixture was stirred at room temperature for 6 h. The solvent was
removed under reduced pressure, and then water (30 mL) was added. This mixture
was extracted with ethyl acetate and tetrahydrofuran (V:V = 2:1, 3 × 30 mL), and the
organic phase was washed with saturated sodium chloride (2 × 30 mL), dried over
anhydrous MgSO₄, and concentrated under reduced pressure to give the crude product,
which was purified by flash column chromatography to afford the corresponding
intermediate, 14a-14d.

**Ethyl(3R,4R,5S)-4-acetamido-5-((4-(dimethylamino)benzyl)amino)-3-(penta
n-3-yloxy)cyclohex-1-ene-1-carboxylate (14a).** White powder, 63% yield, mp:
102.9-104.5°C. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, J = 8.6 Hz, 2H, Ph-H), 6.78 (s,
1H, CH), 6.69 (d, J = 8.7 Hz, 2H, Ph-H), 4.30-4.15 (overlapped, 3H, CH₂, NH), 3.82
(d, J = 12.7 Hz, 1H, CH), 3.75-3.67 (m, 1H, CH), 3.64 (d, J = 12.7 Hz, 1H, CH), 3.35
(p, J = 5.7 Hz, 1H, CH), 3.15 (td, J = 9.3, 5.3 Hz, 1H, CH), 2.98-2.87 (m, 7H, 2CH₃,
CH), 2.79 (dd, J = 17.8, 5.2 Hz, 1H, CH), 2.25 (ddt, J = 17.8, 8.8, 2.7 Hz, 1H, CH), 2.10 (s, 1H, CH), 1.99 (s, 3H, CH₃), 1.55-1.46 (m, 4H, 2CH₂), 1.30 (t, J = 7.1 Hz, 3H, CH₃), 0.89 (td, J = 7.4, 3.3 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 166.5, 149.8, 137.3, 129.4, 129.0, 127.9, 112.7, 81.7, 77.3, 74.6, 60.8, 56.0, 53.3, 50.0, 40.7, 30.5, 26.1, 25.7, 23.7, 14.2, 9.4. ESI-MS: m/z 446.5 [M + H]⁺, C₂₅H₃₉N₃O₄ (445.60).

Ethyl(3'R,4'R,5'S)-4-acetamido-5-((4-(diethylamino)benzyl)amino)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (14b). Off-white powder, 66% yield, mp: 80.9-81.5°C. ¹H NMR (400 MHz, CD₃OD): δ 7.10 (d, J = 8.6 Hz, 2H, Ph-NH), 6.75 (s, 1H, CH), 6.64 (d, J = 8.7 Hz, 2H, Ph-NH), 4.18 (q, J = 7.1 Hz, 2H, CH₂), 4.04 (d, J = 8.2 Hz, 1H, CH), 3.93 (dd, J = 10.6, 8.6 Hz, 1H, CH), 3.80 (d, J = 12.6 Hz, 1H, CH), 3.62 (d, J = 12.6 Hz, 1H, CH), 3.42-3.27 (overlapped, 5H, CH, 2CH₂), 2.98 (td, J = 10.1, 5.4 Hz, 1H, CH), 2.83 (dd, J = 17.6, 5.2 Hz, 1H, CH), 2.27 (ddt, J = 17.3, 9.6, 2.6 Hz, 1H, CH), 1.97 (s, 3H, CH₃), 1.52-1.39 (m, 4H, 2CH₂), 1.26 (t, J = 7.1 Hz, 3H, CH₃), 1.08 (t, J = 7.0 Hz, 6H, 2CH₃), 0.85 (dt, J = 10.7, 7.4 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, CD₃OD): δ 172.6, 166.1, 147.4, 137.4, 129.5, 128.4, 123.7, 112.0, 82.0, 75.4, 60.7, 53.8, 53.7, 48.7, 44.0, 28.7, 25.7, 25.2, 21.7, 13.1, 11.4, 8.5, 8.1. ESI-MS: m/z 474.5 [M + H]⁺, C₂₇H₄₃N₃O₄ (473.66).

Ethyl(3'R,4'R,5'S)-4-acetamido-3-(pentan-3-yloxy)-5-((4-(pyrrolidin-1-yl)benzyl)amino)cyclohex-1-ene-1-carboxylate (14c). White powder, 64% yield, mp: 120.5-122.8 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.80 (d, J = 9.1 Hz, 1H, NH), 7.07 (d, J = 8.4 Hz, 2H, Ph-H), 6.63 (s, 1H, CH), 6.47 (d, J = 8.5 Hz, 2H, Ph-H), 4.14 (q, J = 7.0 Hz, 2H, CH₂), 3.98 (d, J = 8.0 Hz, 1H, NH), 3.76-3.59 (m, 2H, 2CH), 3.49 (d, J = 12.7 Hz, 1H, CH), 3.35 (s, 4H, 2CH₂), 2.75-2.59 (m, 2H, 2CH), 2.12-1.98 (m, 1H, CH), 1.99-1.88 (m, 4H, 2CH₂), 1.84 (s, 3H, CH₃), 1.68 (s, 1H, CH), 1.42 (tp, J = 14.6,
7.3 Hz, 4H, 2CH₂), 1.22 (t, J = 7.1 Hz, 3H, CH₃), 0.81 (dt, J = 15.3, 7.4 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 170.0, 166.3, 147.1, 138.4, 129.2, 129.1, 127.6, 111.8, 81.3, 75.7, 60.8, 54.6, 54.5, 50.0, 30.9, 26.0, 25.6, 25.3, 23.4, 14.5, 9.9, 9.4. ESI-MS: m/z 472.4 [M + H]⁺, C₂₇H₄₁N₃O₄ (471.64).

Ethyl(3R,4R,5S)-4-acetamido-3-(pentan-3-yloxy)-5-((4-(piperidin-1-yl)benzyl)amino)cyclohex-1-ene-1-carboxylate (14d). White powder, 61% yield, mp: 119.2-120.8°C. ¹H NMR (400 MHz, CD₃OD): δ 7.17 (d, J = 8.6 Hz, 2H, PhNH), 6.93 (d, J = 8.7 Hz, 2H, Ph-H), 6.76 (s, 1H, CH), 4.20 (q, J = 7.1 Hz, 2H, CH₂), 4.04 (d, J = 8.7 Hz, 1H, CH), 3.90 (dd, J = 10.4, 8.5 Hz, 1H, CH), 3.76 (d, J = 12.6 Hz, 1H, CH), 3.59 (d, J = 12.6 Hz, 1H, CH), 3.36 (p, J = 5.6 Hz, 1H, CH), 3.14-3.05 (m, 4H, 2CH₂), 2.93-2.85 (m, 1H, CH), 2.85-2.77 (m, 1H, CH), 2.22 (ddt, J = 17.3, 9.4, 2.9 Hz, 1H, CH), 1.99 (s, 3H, CH₃), 1.70 (p, J = 5.7 Hz, 4H, 2CH₂), 1.61-1.55 (m, 2H, CH₂), 1.55-1.46 (m, 4H, 2CH₂), 1.29 (t, J = 7.1 Hz, 3H, CH₃), 0.89 (dt, J = 10.6, 7.4 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, CD₃OD): δ 172.4, 166.4, 151.5, 137.4, 130.5, 128.9, 128.7, 116.9, 82.0, 75.6, 60.6, 54.4, 53.9, 51.0, 49.0, 29.6, 25.7, 25.4, 25.3, 23.9, 21.7, 13.1, 8.5, 8.1. ESI-MS: m/z 486.6 [M + H]⁺, C₂₈H₄₃N₃O₄ (485.67).

Synthesis of Compounds 15a-15d. To a solution of intermediates 14a-14d (0.8 mmol) in 20 mL of CH₃OH was added 8 mL of NaOH aqueous solution (15%). The reaction mixture was stirred at room temperature for 5-6 h. After the reaction was complete, the organic solvent was removed under reduced pressure. The residue was taken up in water (30 mL), and the pH was adjusted to 4-5 with HCl aqueous solution (2 mol/L). This solution was extracted with ethyl acetate and tetrahydrofuran (V:V = 2:1, 4 × 30 mL). The combined organic phase was washed with saturated sodium chloride (2 × 30 mL) and water (30 mL), then dried over anhydrous MgSO₄ and concentrated under reduced pressure to afford the target compounds 15a-15d.
(3R,4R,5S)-4-Acetamido-5-((4-(dimethylamino)benzyl)amino)-3-(pentan-3-yl oxy)cyclohex-1-ene-1-carboxylic acid (15a). Pale yellow powder, 67% yield, mp: 136.1-138.5°C. 1H NMR (400 MHz, DMSO-d6): δ 8.09 (d, J = 6.5 Hz, 2H, NH), 7.28 (d, J = 7.9 Hz, 2H, Ph-H), 6.72 (d, J = 8.1 Hz, 2H, Ph-H), 6.62 (s, 1H, CH), 4.27-4.11 (m, 1H, CH), 4.05-3.86 (overlapped, 3H, CH, CH2), 3.29-2.99 (overlapped, 2H, 2CH), 2.86 (s, 6H, 2CH3), 2.84-2.75 (m, 1H, CH), 1.91 (overlapped, 4H, CH3, CH), 1.50-1.30 (m, 4H, 2CH2), 0.81 (dt, J = 17.9, 7.1Hz, 6H, 2CH3). 13C NMR (100MHz, DMSO-d6): δ 170.9, 167.4, 150.8, 137.7, 131.0, 128.5, 112.5, 81.4, 75.2, 54.0, 51.7, 46.6, 40.6, 26.0, 25.4, 23.8, 9.8, 9.3. HRMS calcd for C23H35N3O4 [M + H]+: 418.2700. Found: m/z 418.2696. HPLC purity: 98.12% (263 nm).

(3R,4R,5S)-4-Acetamido-5-((4-(diethylamino)benzyl)amino)-3-(pentan-3-ylo xy)cyclohex-1-ene-1-carboxylic acid (15b). White powder, 71% yield, mp: 205.2-208.9°C. 1H NMR (400 MHz, CD3OD): δ 7.28 (d, J = 8.6 Hz, 2H, Ph-H), 6.79 (s, 1H, CH), 6.74 (d, J = 8.7 Hz, 2H, Ph-H), 4.26 (d, J = 12.9 Hz, 1H, CH), 4.24-4.14 (m, 2H, CH2), 4.11 (d, J = 13.0 Hz, 1H, CH), 3.50 (dd, J = 12.3, 7.0 Hz, 1H, CH), 3.46 (d, J = 5.6 Hz, 1H, CH), 3.41 (q, J = 6.8 Hz, 4H, 2CH2), 3.05 (dd, J = 17.1, 4.6 Hz, 1H, CH), 2.63 (dd, J = 16.9, 9.9 Hz, 1H, CH), 2.07 (s, 3H, CH3), 1.55 (dt, J = 11.1, 5.9 Hz, 4H, 2CH2), 1.19-1.13 (m, 6H, 2CH3), 0.92 (q, J = 7.3 Hz, 6H, 2CH3). 13C NMR (100 MHz, CD3OD): δ 173.4, 148.5, 134.9, 130.8, 129.4, 116.0, 112.3, 111.5, 82.1, 74.8, 54.2, 51.6, 44.5, 43.9, 26.5, 25.7, 25.2, 21.9, 21.6, 11.3, 8.4, 8.1. HRMS calcd for C25H39N3O4 [M + H]+: 445.2941, Found: m/z 445.2944. HPLC purity: 98.62% (270 nm).

(3R,4R,5S)-4-Acetamido-3-(pentan-3-yl oxy)-5-((4-(pyrrolidin-1-yl)benzyl)a mino)cyclohex-1-ene-1-carboxylic acid (15c). White powder, 66% yield, mp: 168.1-170.3°C. 1H NMR (400 MHz, DMSO-d6): δ 8.12 (d, J = 8.9 Hz, 1H, NH), 7.30
(3R,4R,5S)-4-Acetamido-3-(pentan-3-yloxy)-5-((4-(piperidin-1-yl)benzyl)amino)cyclohex-1-ene-1-carboxylic acid (15d). White powder, 67% yield, mp: 210.2-213.1°C. 1H NMR (400 MHz, CD3OD): δ 7.42 (d, J = 8.0 Hz, 2H, Ph-H), 7.09 (d, J = 8.0 Hz, 2H, Ph-H), 6.91 (s, 1H, CH), 4.35 (t, J = 11.8 Hz, 2H, CH2), 4.25 (t, J = 13.7 Hz, 2H, CH2), 3.61 (s, 1H, CH), 3.53 (s, 1H, CH), 3.33-3.26 (m, 4H), 3.12 (s, 1H, CH), 2.71 (s, 1H, CH), 2.15 (s, 3H, CH3), 1.83-1.74 (m, 4H, 2CH2), 1.73-1.68 (m, 2H, CH2), 1.67-1.54 (m, 4H, 2CH2), 1.00 (q, J = 7.2 Hz, 6H, 2CH3). 13C NMR (100 MHz, CD3OD): δ 157.1, 152.7, 138.7, 136.5, 136.5, 130.5, 129.5, 129.5, 120.0, 116.0, 82.2, 74.6, 54.4, 51.6, 49.7, 47.2, 29.5, 25.7, 25.2, 23.9, 22.0, 21.6, 8.4, 8.1. HRMS calcd for C25H37N3O4 [M + H]+: 457.2935, Found: m/z 457.2934. HPLC purity: 99.04% (256 nm).

4-Thiomorpholinobenzaldehyde (17). Thiomorpholine (2.06 g, 20 mmol) and 4-fluorobenzaldehyde (2.98 g, 24 mmol) were added to DMSO (30 mL) and K2CO3 (10 g, 72 mmol), and the mixture was heated at 100-120°C for 6 hours, then poured into water, and extracted with ethyl acetate. The ethyl acetate solution was washed with saturated sodium chloride (2 × 30 mL) and water (30 mL), then dried over
anhydrous MgSO₄ and concentrated to give the crude product. Purification by column chromatography gave compound 17. Pale yellow oil, 68% yield. 1H NMR (400 MHz, CD₃OD): δ 9.65 (s, 1H, CH), 7.73 (d, J = 9.0 Hz, 2H, Ph-H), 6.97 (d, J = 8.9 Hz, 2H, Ph-H), 3.85 (dd, J = 6.2, 3.9 Hz, 4H, 2CH₂), 2.68-2.62 (m, 4H, 2CH₂). 13C NMR (100 MHz, CD₃OD): δ 190.9, 154.2, 131.9, 127.3, 126.1, 113.3, 49.9, 25.1. ESI-MS: m/z 208.2 [M + H]$^+$, C$_{27}$H$_{41}$N$_3$O$_4$S (207.29).

Ethyl(3R,4R,5S)-4-acetamido-3-(pentan-3-yloxy)-5-((4-thiomorpholinobenzyl)amino)cyclohex-1-ene-1-carboxylate (18). The synthetic method was similar to that of 14a-14d, starting from 17. Pale yellow sticky oil, 63% yield. 1H NMR (400 MHz, CD₃OD): δ 7.19 (d, J = 8.5 Hz, 2H, Ph-H), 6.90 (d, J = 8.6 Hz, 2H, Ph-H), 6.76 (s, 1H, CH), 4.20 (q, J = 7.1 Hz, 2H, CH$_2$), 4.08-4.00 (m, 1H, CH), 3.95-3.86 (m, 1H, CH), 3.77 (d, J = 12.6 Hz, 1H, CH), 3.72 (t, J = 6.6 Hz, 1H, CH), 3.62-3.57 (m, 1H, CH), 3.5-3.45 (m, 3H, CH$_3$), 3.37 (p, J = 5.4 Hz, 1H, CH), 2.95-2.74 (m, 2H, CH$_2$), 2.75-2.63 (m, 3H, CH$_3$), 2.28-2.14 (m, 1H, CH), 1.99 (s, 3H, CH$_3$), 1.91-1.80 (m, 1H, CH), 1.50 (qd, J = 8.7, 7.4, 5.0 Hz, 4H, 2CH$_2$), 1.29 (t, J = 7.1 Hz, 3H, CH$_3$), 0.89 (dt, J = 10.6, 7.4 Hz, 6H, 2CH$_3$). 13C NMR (100 MHz, CD₃OD): δ 172.4, 166.4, 150.7, 137.4, 130.4, 129.0, 128.8, 117.0, 82.0, 75.6, 67.4, 60.6, 54.4, 53.9, 52.1, 48.9, 29.5, 26.1, 25.7, 25.3, 25.1, 21.7, 13.1, 8.5, 8.1. ESI-MS: m/z 504.5 [M + H]$^+$, C$_{27}$H$_{41}$N$_3$O$_4$S (503.70).

(3R,4R,5S)-4-Acetamido-3-(pentan-3-yloxy)-5-((4-thiomorpholinobenzyl)amino)cyclohex-1-ene-1-carboxylic acid (19). The synthetic method was similar to that of 15a-15d, starting from 18. White or almost white powder, 60% yield, mp: 165.4-167.5 °C. 1H NMR (400 MHz, CD₃OD): δ 7.34 (d, J = 8.7 Hz, 2H, Ph-H), 6.97 (d, J = 8.7 Hz, 2H, Ph-H), 6.85 (s, 1H, CH), 4.25 (dd, J = 18.0, 10.4 Hz, 2H, CH$_2$), 4.20-4.12 (m, 2H, CH$_2$), 3.68-3.58 (m, 4H, 2CH$_2$), 3.55 (dt, J = 10.1, 5.0 Hz, 1H, CH),
3.44 (p, J = 5.6 Hz, 1H, CH), 3.05-2.96 (m, 1H, CH), 2.75-2.53 (overlapped, 5H, 2CH₂, CH), 2.05 (s, 3H, CH₃), 1.60-1.45 (m 4H, 2CH₂), 0.90 (q, J = 7.5 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, CD₃OD): δ 173.4, 151.6, 136.8, 131.0, 130.8, 120.1, 116.1, 115.8, 99.9, 82.3, 74.5, 54.4, 51.5, 51.0, 48.2, 25.9, 25.7, 25.4, 25.2, 22.0, 8.4, 8.1. HRMS calcd for C₂₅H₃₇N₃O₄S [M + H]⁺: 476.2577, Found: m/z 476.2578. HPLC purity: 96.17% (264 nm).

Ethyl(3R,4R,5S)-4-acetamido-5-((4-acetamidobenzyl)amino)-3-(pentan-3-yl)oxy)cyclohex-1-ene-1-carboxylate (21). The synthetic method was similar to that of 14a-14d, starting from 20. White powder, 76% yield, mp: 89.1-92.3°C. ¹H NMR (400 MHz, CD₃OD): δ 7.63 (d, J = 8.5 Hz, 2H, PhNH), 7.40 (d, J = 8.5 Hz, 2H, PhNH), 6.85 (s, 1H, CH), 4.32-4.21 (overlapped, 3H, CH₂, CH), 4.16 (d, J = 5.1 Hz, 2H, CH₂), 4.14-4.10 (m, 1H, CH), 3.45 (tt, J = 11.2, 5.7 Hz, 2H, CH₂), 3.00 (dd, J = 17.4, 5.5 Hz, 1H, CH), 2.64-2.52 (m, 1H, CH), 2.12 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 1.59-1.45 (m, 4H, 2CH₂), 1.30 (t, J = 7.1 Hz, 3H, CH₃), 0.90 (q, J = 7.6 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, CD₃OD): δ 173.3, 170.4, 165.5, 139.6, 137.1, 129.9, 127.2, 127.0, 120.0, 82.3, 74.4, 60.9, 54.6, 51.8, 26.3, 25.7, 25.2, 22.4, 21.9, 21.6, 13.1, 8.4, 8.1. ESI-MS: m/z 460.5 [M + H]⁺, C₂₅H₃₇N₃O₅ (459.59).

(3R,4R,5S)-4-Acetamido-5-((4-acetamidobenzyl)amino)-3-(pentan-3-yl)oxy)cyclohex-1-ene-1-carboxylic acid (22). The synthetic method was similar to that of 15a-15d, and starting from 21. White or almost white powder, 74% yield, mp: 190.9-192.5°C. ¹H NMR (400 MHz, CD₃OD): δ 7.64 (d, J = 8.3 Hz, 2H, Ph-H), 7.42 (d, J = 8.3 Hz, 2H, Ph-H), 6.77 (s, 1H, CH), 4.31 (d, J = 13.0 Hz, 1H, CH), 4.16 (overlapped, 3H, CH₂, CH), 3.45 (dq, J = 16.4, 5.0 Hz, 2H, CH₂), 3.08-2.87 (m, 1H, CH), 2.71-2.51 (m, 1H, CH), 2.12 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 1.53 (dt, J = 11.3, 6.0 Hz, 4H, 2CH₂), 0.89 (q, J = 7.5 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, CD₃OD): δ
173.3, 170.4, 169.1, 139.7, 135.3, 130.1, 129.3, 126.5, 120.0, 82.1, 74.7, 54.7, 51.7, 47.2, 26.5, 25.7, 25.1, 22.4, 21.9, 8.4, 8.1. HRMS calcd for C_{23}H_{33}N_{3}O_{5} [M + H]^+: 432.2493. Found: m/z 432.2497. HPLC purity: 96.72% (246 nm).

Synthesis of Aldehydes 24a-24c. Aniline or N-methyl- or ethyl-substituted aniline (20 mmol) and 4-bromobenzaldehyde (24 mmol) were added to a solution of toluene (50 mL) containing Pd(OAc)$_2$ (56.13 mg, 0.25 mmol), BINAP (155.67 mg, 0.25 mmol), and Cs$_2$CO$_3$ (10 g, 30 mmol). The mixture was heated at reflux under a nitrogen atmosphere for 12 h, then poured into water and extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride (2 × 30 mL) and water (30 mL). The combined extract was dried over anhydrous MgSO$_4$ and concentrated under reduced pressure to give the crude product. Purification by column chromatography gave the corresponding product, 24a-24c.

4-(Phenylamino)benzaldehyde (24a). Yellow crystal powder, 63% yield, mp: 86.5-91.2 °C. 1H NMR (400 MHz, DMSO-d_6): δ 9.72 (s, 1H, CH), 8.99 (s, 1H, NH), 7.73 (d, $J = 8.7$ Hz, 2H, Ph-H), 7.40-7.31 (m, 2H, Ph-H), 7.23 (d, $J = 8.5$ Hz, 2H, Ph-H), 7.12 (d, $J = 8.7$ Hz, 2H, Ph-H), 7.04 (t, $J = 7.3$ Hz, 1H, Ph-H). 13C NMR (100 MHz, DMSO-d_6): δ 190.5, 150.4, 141.2, 132.3, 129.8, 127.8, 123.0, 120.5, 114.4. ESI-MS: m/z 198.3 [M + H]$^+$, C$_{13}$H$_{11}$NO (197.24).

4-(Methyl(phenyl)amino)benzaldehyde (24b). Pale yellow oil, 65% yield. 1H NMR (400 MHz, DMSO-d_6): δ 9.72 (s, 1H, NH), 7.73-7.66 (m, 2H, Ph-H), 7.51-7.44 (m, 2H, Ph-H), 7.32-7.26 (m, 3H, Ph-H), 6.85-6.80 (m, 2H, Ph-H), 3.36 (s, 3H, CH$_3$). 13C NMR (100 MHz, DMSO-d_6): δ 190.6, 153.8, 147.0, 131.8, 130.4, 126.7, 126.6, 126.4, 113.8, 40.6. ESI-MS: m/z 212.3 [M + H]$^+$, C$_{14}$H$_{13}$NO (211.26).

4-(Ethyl(phenyl)amino)benzaldehyde (24c). Pale yellow oil, 68% yield. 1H NMR (400 MHz, DMSO-d_6): δ 9.69 (s, 1H, CH), 7.70-7.63 (m, 2H, Ph-H), 7.53-7.46
(m, 2H, Ph-H), 7.35-7.30 (m, 1H, Ph-H), 7.29-7.24 (m, 2H, Ph-H), 6.78-6.72 (m, 2H, Ph-H), 3.82 (q, J = 7.1 Hz, 2H, CH₂), 1.17 (t, J = 7.1 Hz, 3H, CH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 190.4, 153.0, 145.4, 132.0, 130.6, 127.7, 126.8, 126.4, 113.6, 46.8, 12.6. ESI-MS: m/z 226.3 [M + H]^+, C₁₅H₁₅NO (225.29).

Synthesis of Compounds 25a-25c. The synthetic method was similar to that of 13-19, starting from 24a-24c.

Ethyl(3R,4R,5S)-4-acetamido-3-(pentan-3-yloxy)-5-((4-(phenylamino)benzy)amino)cyclohex-1-ene-1-carboxylate (25a). Pale yellow sticky oil, 65% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 8.12 (s, 1H, NH), 7.85 (d, J = 9.1 Hz, 1H, NH), 7.27-7.13 (m, 4H, Ph NH), 7.03 (t, J = 8.1 Hz, 4H, Ph-H), 6.80 (t, J = 7.3 Hz, 1H, Ph-H), 6.65 (s, 1H, CH), 4.15 (q, J = 7.0 Hz, 2H, CH₂), 4.04 (d, J = 7.8 Hz, 1H, NH), 3.45-3.30 (m, 1H, CH), 3.84-3.69 (m, 2H, CH₂), 3.63 (d, J = 12.5 Hz, 1H, CH), 2.90-2.76 (m, 1H, CH), 2.69 (dd, J = 17.5, 4.6 Hz, 1H, CH), 2.24-2.07 (m, 1H, CH), 2.04-1.69 (overlapped, 4H, CH, CH₃), 1.43 (ddt, J = 18.6, 14.0, 7.2 Hz, 4H, 2CH₂), 1.23 (t, J = 7.1 Hz, 3H, CH₃), 0.82 (dt, J = 15.1, 7.4 Hz, 6H, 2CH₂). ¹³C NMR (100 MHz, DMSO-d₆): δ 170.2, 166.2, 144.0, 138.4, 129.5, 129.5, 129.1, 128.9, 119.8, 117.1, 116.9, 81.3, 75.6, 60.8, 54.7, 49.4, 26.0, 25.6, 23.5, 14.5, 9.9, 9.4. ESI-MS: m/z 494.5 [M + H]^+, C₂₉H₃₉N₅O₄ (493.65).

Ethyl(3R,4R,5S)-4-acetamido-5-((4-(methyl(phenyl)amino)benzyl)amino)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (25b). Pale yellow sticky oil, 68% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.84 (d, J = 9.1 Hz, 1H, NH), 7.28-7.19 (m, 4H, Ph-H), 7.00-6.92 (m, 4H, Ph-H), 6.92-6.86 (m, 1H, Ph-H), 6.65 (s, 1H, CH), 4.15 (q, J = 7.0 Hz, 2H, CH₂), 4.03 (d, J = 8.0 Hz, 1H, NH), 3.81-3.67 (m, 2H, CH₂), 3.63 (d, J = 13.2 Hz, 1H, CH), 3.23 (s, 3H, CH₃), 2.78 (td, J = 9.8, 5.3 Hz, 1H, CH), 2.67 (dd, J = 17.5, 4.9 Hz, 1H, CH), 2.11 (dd, J = 17.5, 9.4 Hz, 1H, CH), 2.03-1.55
(overlapped, 4H, CH₃, CH), 1.50-1.36 (m, 4H, 2CH₂), 1.22 (t, J = 7.1 Hz, 3H, CH₃), 0.82 (dt, J = 14.9, 7.4 Hz, 6H, 2CH₃). \(^{13}\text{C}\) NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 170.1, 166.2, 149.1, 147.8, 138.4, 129.5, 129.4, 129.0, 121.0, 119.7, 81.3, 75.6, 60.8, 54.8, 54.2, 49.5, 46.2, 30.4, 26.0, 25.6, 23.5, 14.5, 9.9, 9.4. ESI-MS: m/z 508.5 [M + H], C\(_{30}\)H\(_{41}\)N\(_{3}\)O\(_{4}\) (507.68).

Ethyl(3\(R\),4\(R\),5\(S\))-4-acetamido-5-((4-(ethyl(phenyl)amino)benzyl)amino)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (25c). Pale yellow sticky oil, 64% yield. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 7.82 (d, J = 9.1 Hz, 1H, NH), 7.27-7.17 (m, 4H, PhNH), 6.94 (d, J = 8.5 Hz, 2H, Ph-H), 6.90 (d, J = 7.8 Hz, 2H, Ph-H), 6.85 (t, J = 7.3 Hz, 1H, Ph-H), 6.65 (s, 1H, CH), 4.15 (q, J = 7.0 Hz, 2H, CH₂), 4.03 (d, J = 8.0 Hz, 1H, NH), 3.80-3.65 (overlapped, 4H, 2CH, CH₂), 3.64-3.58 (m, 1H, CH), 2.78 (td, J = 9.7, 5.2 Hz, 1H, CH), 2.66 (dd, J = 17.4, 5.0 Hz, 1H, CH), 2.09 (dd, J = 17.4, 9.4 Hz, 1H, CH), 1.86 (s, 4H, 2CH₂), 1.51-1.36 (m, 4H, CH, CH₃), 1.22 (t, J = 7.1 Hz, 3H, CH₃), 1.11 (t, J = 7.0 Hz, overlapped 3H, CH₃), 0.82 (dt, J = 14.9, 7.4 Hz, 6H, 2CH₃). \(^{13}\text{C}\) NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 170.0, 166.3, 147.9, 146.1, 138.4, 134.6, 129.4, 129.1, 121.8, 120.6, 119.7, 81.3, 75.7, 60.8, 54.9, 54.4, 49.8, 46.2, 30.9, 26.0, 25.6, 23.5, 14.5, 12.8, 9.9, 9.4. ESI-MS: m/z 522.5 [M + H], C\(_{31}\)H\(_{43}\)N\(_{3}\)O\(_{4}\) (521.70).

Synthesis of Compounds 26a-26c. The synthetic method was similar to that of 15a-15d, starting from 25a-25c.

\(3R,4R,5S\)-4-Acetamido-3-(pentan-3-yloxy)-5-((4-(phenylamino)benzyl)amino)cyclohex-1-ene-1-carboxylic acid (26a). White powder, 59% yield, mp: 200.2-203.5 °C. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.18 (s, 1H, NH), 7.91 (d, J = 8.8 Hz, 1H, NH), 7.24-7.07 (m, 4H, Ph-H), 7.01-6.90 (m, 4H, Ph-H), 6.73 (t, J = 7.2 Hz, 1H, Ph-H), 6.52 (s, 1H, CH), 4.13-4.00 (m, 1H, CH), 3.96-3.72 (overlapped, 3H, CH, CH₂), 3.14-2.99 (m, 1H, CH), 2.78-2.62 (m, 1H, CH), 2.38-2.27 (m, 1H, CH),
2.16-1.54 (overlapped, 4H, CH, CH₃), 1.40-1.20 (m, 4H, 2CH₂), 0.70 (dt, J = 14.9, 7.3 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 170.8, 167.5, 144.0, 143.4, 137.8, 131.0, 129.7, 129.6, 128.6, 120.4, 117.5, 116.6, 115.6, 81.5, 75.2, 54.3, 52.1, 47.1, 26.0, 25.5, 23.8, 23.2, 9.8, 9.3. HRMS calcd for C₂₇H₃₅N₃O₄ [M + H]⁺: 466.2700. Found: m/z 466.2705. HPLC purity: 95.92% (289 nm).

(3R,4R,5S)-4-Acetamido-5-((4-(methyl(phenyl)amino)benzyl)amino)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylic acid (26b). White powder, 63% yield, mp: 209.8-211.2°C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.10 (d, J = 8.9 Hz, 1H, NH), 7.43-7.27 (m, 4H, PhNH), 7.11-6.98 (m, 3H, PhNH), 6.94 (d, J = 8.5 Hz, 2H, Ph-H), 6.64 (s, 1H, CH), 4.21 (d, J = 7.3 Hz, 1H, CH), 4.03 (overlapped, 3H, CH₂, CH), 3.33-3.22 (overlapped, 4H, CH₃, CH), 2.92-2.80 (m, 1H, CH), 2.59 (d, J = 11.0 Hz, 1H, CH), 1.91 (s, 3H, CH₃), 1.52-1.33 (m, 4H, 2CH₂), 0.82 (dt, J = 18.2, 7.3 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 170.1, 166.2, 149.2, 147.7, 138.4, 129.5, 129.3, 129.0, 121.1, 120.9, 119.6, 81.3, 75.6, 60.8, 54.8, 54.3, 49.6, 26.0, 25.6, 23.5, 14.5, 9.9, 9.4. HRMS calcd for C₂₈H₃₇N₃O₄ [M + H]⁺: 480.2857. Found: m/z 480.2853. HPLC purity: 95.94% (295 nm).

(3R,4R,5S)-4-Acetamido-5-((4-(ethyl(phenyl)amino)benzyl)amino)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylic acid (26c). White powder, 65% yield, mp: 158.5-160.2°C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.94 (d, J = 9.1 Hz, 1H, NH), 7.43-6.88 (m, 3H, Ph-H), 6.79 (d, J = 8.7 Hz, 2H, Ph-H), 6.54 (s, 1H, CH), 4.08 (d, J = 8.1 Hz, 1H, CH), 3.99-3.79 (m, 3H), 3.65 (q, J = 7.0 Hz, 2H, CH₂), 3.18-3.09 (m, 1H, CH), 2.73 (dd, J = 17.2, 4.9 Hz, 1H, CH), 2.51-2.41 (m, 1H, CH), 2.20-1.60 (overlapped, 4H, CH, CH₃), 1.33 (ddq, J = 19.1, 13.1, 6.9 Hz, 4H, 2CH₂), 1.02 (t, J = 7.0 Hz, 3H, CH₃), 0.71 (dt, J = 17.4, 7.4 Hz, 6H, 2CH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 171.0, 167.4, 147.9, 147.2, 137.8, 131.2,
129.9, 128.4, 122.9, 118.9, 81.5, 75.1, 54.4, 51.7, 46.7, 46.2, 30.8, 26.0, 25.5, 23.8, 12.8, 9.8, 9.3. HRMS calcd for C_{29}H_{39}N_{3}O_{4} [M + H]^+: 494.3013. Found: m/z 494.3090. HPLC purity: 96.02% (298 nm).

Synthesis of Compound 28. The synthetic method was similar to that of 14a-14d, starting from 27.

Ethyl(3R,4R,5S)-5-((4-(1H-pyrrol-1-yl)benzyl)amino)-4-acetamido-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (28a). White powder, 64% yield, mp: 144.1-145.1°C. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 7.72 (d, \(J = 9.0\) Hz, 1H, NH), 7.41 (d, \(J = 8.4\) Hz, 2H, Ph-H), 7.28 (d, \(J = 8.4\) Hz, 2H, Ph-H), 7.23 (t, \(J = 2.2\) Hz, 2H, pyrrole-H), 6.54 (s, 1H, CH), 6.17-6.10 (m, 2H, pyrrole-H), 4.04 (q, \(J = 7.0\) Hz, 2H, CH\(_2\)), 3.92 (d, \(J = 7.8\) Hz, 1H, NH), 3.72 (t, \(J = 12.3\) Hz, 1H, CH), 3.64 (t, \(J = 9.2\) Hz, 2H, CH\(_2\)), 3.92 (d, \(J = 7.8\) Hz, 1H, NH), 3.72 (t, \(J = 12.3\) Hz, 1H, CH), 3.64 (t, \(J = 9.2\) Hz, 2H, CH\(_2\)), 3.23-3.17 (m, 1H, CH), 2.77-2.63 (m, 1H, CH), 2.58 (dd, \(J = 17.5, 4.5\) Hz, 1H, CH), 2.04 (dd, \(J = 15.4, 9.1\) Hz, 1H, CH), 1.76 (s, 3H, CH\(_3\)), 1.32 (qt, \(J = 14.2, 7.2\) Hz, 2H, CH\(_2\)), 1.11 (t, \(J = 7.1\) Hz, 3H, CH\(_3\)), 0.71 (dt, \(J = 14.4, 7.4\) Hz, 6H, 2CH\(_3\)). \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 170.1, 166.2, 139.1, 138.4, 129.7, 128.9, 119.5, 119.3, 110.7, 81.3, 75.6, 60.8, 54.8, 54.2, 49.2, 30.4, 26.0, 25.6, 23.5, 14.5, 9.9, 9.4. ESI-MS: m/z 468.4 [M + H]^+, C\(_{27}\)H\(_{37}\)N\(_3\)O\(_4\) (467.61).

Ethyl(3R,4R,5S)-5-((4-(1H-pyrazol-1-yl)benzyl)amino)-4-acetamido-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (28b). Pale yellow sticky oil, 58% yield. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.37 (d, \(J = 2.5\) Hz, 1H, NH), 7.77 (d, \(J = 9.0\) Hz, 1H, pyrazole-H), 7.71 (d, \(J = 8.1\) Hz, 2H, Ph-H), 7.62 (d, \(J = 1.7\) Hz, 1H, pyrazole-H), 7.36 (d, \(J = 8.1\) Hz, 2H, Ph-H), 6.54 (s, 1H, CH), 6.42 (t, \(J = 2.1\) Hz, 1H, pyrazole-H), 4.04 (q, \(J = 7.0\) Hz, 2H, CH\(_2\)), 3.96 (d, \(J = 7.4\) Hz, 1H, NH), 3.86 (d, \(J = 11.9\) Hz, 1H, CH), 3.73 (dt, \(J = 17.6, 10.1\) Hz, 2H, 2CH), 3.40-3.10 (m, 2H, 2CH), 2.94-2.73 (m, 1H, CH), 2.68-2.53 (m, 1H, CH), 2.26-2.01 (m, 1H, CH), 1.77 (s, 3H, CH\(_3\)), 1.29 (qt,
\[J = 13.9, 5.5 \text{ Hz}, 4\text{H}, 2\text{CH}_2 \], 1.11 (t, \(J = 7.1 \text{ Hz}, 3\text{H}, \text{CH}_3 \)), 0.70 (dt, \(J = 14.6, 7.4 \text{ Hz}, 6\text{H}, 2\text{CH}_3 \)). \]
\[^{13}\text{C NMR} \ (100 \text{ MHz, DMSO-}d_6) : \delta 170.5, 166.0, 141.3, 139.4, 138.4, 131.9, 130.1, 129.1, 128.5, 128.0, 118.6, 108.2, 81.4, 75.3, 60.9, 54.7, 53.5, 48.5, 26.0, 25.6, 23.6, 23.2, 14.5, 9.8, 9.4. ESI-MS: m/z 469.4 [M + H]^+\], C_{26}H_{36}N_{4}O_{4} (468.60).

Synthesis of Compound 29. The synthetic method was similar to that of 15a-15d, starting from 28.

\((3R,4R,5S)-5-((4-(1H-Pyrrol-1-yl)benzyl)amino)-4-acetamido-3-(pentan-3-yl oxy)cyclohex-1-ene-1-carboxylic acid (29a)\). White powder, 66% yield, mp: 119.5-124.9°C. \(^1\text{H NMR} \ (400 \text{ MHz, DMSO-}d_6) : \delta 8.08 (d, \(J = 8.9 \text{ Hz}, 1\text{H}, \text{NH})\), 7.62 (d, \(J = 8.5 \text{ Hz}, 2\text{H}, \text{Ph-H})\), 7.55 (d, \(J = 8.3 \text{ Hz}, 2\text{H}, \text{Ph-H})\), 7.43-7.36 (m, 2H, pyrrole-H), 6.64 (s, 1H, CH), 6.32-6.22 (m, 2H, pyrrole-H), 4.19 (d, \(J = 7.4 \text{ Hz}, 1\text{H}, \text{NH})\), 4.08 (q, \(J = 12.8 \text{ Hz}, 2\text{H}, \text{2CH})\), 3.94 (q, \(J = 9.1 \text{ Hz}, 2\text{H}, \text{CH}_2\)), 3.32-3.05 (m, 2CH), 2.91-2.79 (m, 1H, CH), 2.60-2.40 (m, 1H, CH), 1.92 (s, 3H, CH_3), 1.55-1.33 (m, 4H, 2CH_2), 0.89-0.75 (m, 6H, 2CH_3). \(^{13}\text{C NMR} \ (100 \text{ MHz, DMSO-}d_6) : \delta 170.9, 167.5, 140.1, 137.9, 131.3, 128.6, 119.3, 111.0, 81.5, 75.2, 54.4, 52.0, 46.6, 27.4, 26.0, 25.5, 23.8, 9.8, 9.3. HRMS calcd for C_{25}H_{33}N_{3}O_{4} [M + H]^+ : 440.2544. Found: m/z 440.2539. HPLC purity: 96.94% (259 nm).

\((3R,4R,5S)-5-((4-(1H-Pyrazol-1-yl)benzyl)amino)-4-acetamido-3-(pentan-3-yl oxy)cyclohex-1-ene-1-carboxylic acid (29b)\). White powder, 61% yield, mp: 113.1-115.2°C. \(^1\text{H NMR} \ (400 \text{ MHz, DMSO-}d_6) : \delta 8.55 (d, \(J = 2.4 \text{ Hz}, 1\text{H}, \text{NH})\), 8.14 (d, \(J = 9.0 \text{ Hz}, 1\text{H}, \text{pyrazole-H})\), 7.89 (d, \(J = 8.5 \text{ Hz}, 2\text{H}, \text{Ph-H})\), 7.76 (d, \(J = 1.4 \text{ Hz}, 1\text{H}, \text{pyrazole-H})\), 7.65 (d, \(J = 8.4 \text{ Hz}, 2\text{H}, \text{Ph-H})\), 6.65 (s, 1H, CH), 6.58-6.54 (m, 1H, pyrazole-H), 4.33-4.08 (m, 3H, CH_2, CH), 3.99 (q, \(J = 8.6 \text{ Hz}, 1\text{H}, \text{CH})\), 3.60-3.20 (overlapped, 2H, 2CH), 2.90 (dd, \(J = 17.0, 4.3 \text{ Hz}, 1\text{H}, \text{CH})\), 2.70-2.54 (m, 1H, CH), 1.93 (s, 3H, CH_3), 1.53-1.33 (m, 4H, 2CH_2), 0.82 (dt, \(J = 16.9, 7.4 \text{ Hz}, 6\text{H}, 2\text{CH}_3\)). \(^{13}\text{C
NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 171.1, 167.3, 141.6, 140.1, 138.0, 131.6, 130.8, 128.3, 128.2, 118.6, 108.5, 81.5, 75.0, 54.3, 51.5, 46.0, 26.7, 26.0, 25.5, 23.9, 9.8, 9.3.

HRMS calcd for \(C_{24}H_{32}N_4O_4\) [M + H]\(^+\): 441.2496. Found: m/z 441.2498. HPLC purity: 98.45% (257 nm).

Synthesis of Lead Compound 6 (No. 32, J. Med. Chem. 2014, 57, 8445-8458).

Lead compound 6 was synthesized according to the literature procedure.\(^{33}\)

4-(Thiophen-2-yl)benzaldehyde (30). Pale yellow crystal powder, 68% yield, mp: 64.2-66.1°C. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 10.01 (s, 1H, CH), 7.96-7.92 (m, 2H, PhNH), 7.92-7.88 (m, 2H, PhNH), 7.74 (dd, \(J = 3.7, 1.1\) Hz, 1H, thiophene-NH)), 7.71 (dd, \(J = 5.1, 1.1\) Hz, 1H, thiophene-NH), 7.22 (dd, \(J = 5.1, 3.7\) Hz, 1H, thiophene-NH)). \(^13\)C NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 192.7, 142.3, 139.7, 135.3, 130.8, 129.4, 128.4, 126.4, 126.1. ESI-MS: m/z 189.3 [M + H]\(^+\), \(C_{11}H_{8}OS\) (188.24).

Ethyl(3R,4R,5S)-4-acetamido-3-(pentan-3-yloxy)-5-((4-(thiophen-2-yl)benzyl)amino)cyclohex-1-ene-1-carboxylate (31). White powder, 68% yield, mp: 139.2-144.1°C. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 7.82 (d, \(J = 9.1\) Hz, 1H, NH), 7.60 (d, \(J = 8.2\) Hz, 2H, Ph-H), 7.52 (dd, \(J = 5.1, 1.0\) Hz, 1H, thiophene-H), 7.48 (dd, \(J = 3.6, 1.0\) Hz, 1H, thiophene-H), 7.35 (d, \(J = 8.2\) Hz, 2H, Ph-H), 7.13 (dd, \(J = 5.0, 3.6\) Hz, 1H, thiophene-H), 6.64 (s, 1H, NH), 4.14 (q, \(J = 7.0\) Hz, 2H, CH\(_2\)), 4.01 (d, \(J = 8.0\) Hz, 1H, NH), 3.85-3.64 (m, 3H, CH\(_2\), CH), 3.40-3.35 (m, 1H, CH), 2.75 (dt, \(J = 14.9, 7.4\) Hz, 1H, CH), 2.67 (dd, \(J = 17.5, 4.8\) Hz, 1H, CH), 2.24-1.90 (m, 2H, 2CH), 1.87 (s, 3H, CH\(_3\)), 1.50-1.34 (m, 4H, 2CH\(_2\)), 1.22 (t, \(J = 7.1\) Hz, 3H, CH\(_3\)), 0.82 (dt, \(J = 14.4, 7.4\) Hz, 6H, 2CH\(_3\)). \(^13\)C NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 170.0, 166.2, 140.9, 132.5, 129.0, 128.9, 125.7, 125.6, 123.7, 81.3, 75.7, 60.8, 54.8, 54.5, 49.7, 30.8, 26.0, 25.6, 23.5, 14.5, 9.9, 9.4. ESI-MS: m/z 485.5[M + H]\(^+\), \(C_{27}H_{36}N_4O_4S\) (484.66).

(3R,4R,5S)-4-Acetamido-3-(pentan-3-yloxy)-5-((4-(thiophen-2-yl)benzyl)amino)cyclohex-1-ene-1-carboxylate (31).

ACS Paragon Plus Environment
no)cyclohex-1-ene-1-carboxylic acid (6). White powder, 74% yield, mp: 170.1-172.5°C. 1H NMR (400 MHz, CD$_3$OD): δ 7.73 (d, $J = 8.1$ Hz, 2H, Ph-H), 7.51 (d, $J = 8.1$ Hz, 2H, Ph-H), 7.45 (d, $J = 3.4$ Hz, 1H, thiophene-H), 7.42 (d, $J = 4.9$ Hz, 1H, thiophene-H), 7.14-7.07 (m, 1H, thiophene-H), 6.87 (s, 1H, CH), 4.41 (d, $J = 13.1$ Hz, 1H, CH), 4.27 (d, $J = 13.3$ Hz, 2H, CH$_2$), 4.23-4.16 (m, 1H, CH), 3.06 (dd, $J = 17.3$, 5.2 Hz, 1H, CH), 2.67 (dd, $J = 17.2$, 10.0 Hz, 1H, CH), 2.06 (s, 3H, CH$_3$), 1.60-1.46 (m, $J = 6.6$ Hz, 4H, 2CH$_2$), 0.90 (q, $J = 7.6$ Hz, 6H, 2CH$_3$). 13C NMR (100 MHz, CD$_3$OD): δ 173.5, 167.1, 142.7, 137.3, 135.7, 130.3, 129.6, 127.9, 127.2, 125.9, 125.3, 123.7, 82.3, 74.5, 54.9, 51.5, 47.1, 25.8, 25.7, 25.2, 22.0, 8.4, 8.1. HRMS calcd for C$_{25}$H$_{32}$N$_2$O$_4$S [M + H]$^+$: 457.2156, Found: m/z 457.2154. HPLC purity: 99.77% (289 nm).

Influenza Virus NA-Inhibitory Assay

The NA inhibition assay was conducted according to the standard method. The NAs (A/Anhui/1/2005 (H5N1-H274Y mutation), A/PuertoRico/8/1934 (H1N1), A/Babol/36/2005 (H3N2), A/Anhui/1/2013 (H7N9) and A/California/04/2009 (09N1)) were obtained from Sino Biological Inc. and diluted suspensions of influenza viruses (H5N1, H5N2, H5N6, H5N8, H9N2) were harvested from the allantoic fluid of influenza virus-infected embryonated chicken eggs. All of them were used for biological evaluation. The fluorogenic substrate, 2′-(4-methylumbelliferyl)-α-D-acetyl neuraminic acid sodium salt hydrate (4-MU-NANA) (Sigma, M8639), was cleaved by NA to afford a quantifiable fluorescent product. Test compounds were dissolved in DMSO first, and then diluted to the required concentrations in MES buffer (3.54 g 2-(N-morpholino)ethanesulfonic acid and 0.185 g CaCl$_2$ in 400 mL Milli-Q water). To a 96-well fluorescent plate, 10 µL of the diluted virus supernatant or NA assay diluent, 70 µL of MES buffer, and 10 µL of compounds at different concentrations were added.
successively, and the plate was incubated for 10 min at 37°C. The reaction was started by the addition 10 µL of fluorogenic substrate. After incubation for 40-60 min, the reaction was terminated by adding 150 µL of termination solution (6.01 g glycine and 3.20 g NaOH in 400 mL Milli-Q water). Fluorescence was measured with microplate reader (Thermo Scientific Microplate Reader) (excitation at 355 nm, emission at 460 nm). Substrate blanks were subtracted from the sample readings. The 50%-inhibitory concentration (IC₅₀) values were determined from the dose-response curves by plotting the percent inhibition of NA activity versus inhibitor concentrations.

Cells and Viruses

Chicken embryo fibroblasts (CEFs) were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher Scientific) supplemented with 5% (vol/vol) fetal bovine serum (FBS, Thermo Fisher Scientific). The cells were maintained at 37°C in a humidified atmosphere supplemented with 5% CO₂. Madin-Darby Canine Kidney (MDCK) cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Life Biotechnologies) supplemented with 10% (vol/vol) fetal bovine serum (FBS, Life Biotechnologies) and antibiotics (100 U/mL penicillin and 100 µg/mL streptomycin, Life Technologies). The cells were maintained at 37°C in a humidified atmosphere supplemented with 5% CO₂.

Influenza H5N1, H5N2, H5N6, and H5N8 virus was obtained from Institute of Poultry Science, Shandong Academy of Agricultural Sciences. Influenza A/PR/8/34 virus (PR8) (H1N1, Cambridge lineage) was obtained from P. Digard (Roslin Institute, University of Edinburgh, United Kingdom). The H3N2 virus A/Wisconsin/67/05 (WSN) was provided by R. Cusinato (Clinical Microbiology and Virology Unit, Padua University Hospital, Padua, Italy).

Determination of EC₅₀ and CC₅₀ of NA Inhibitors in CEFs
The anti-flu activity and cytotoxicity of the newly synthesized compounds were evaluated as described by Shie et al.53 with minor modifications. Results were expressed as EC\textsubscript{50} values, which are the concentrations affording 50\% protection against H5N1, H5N2, H5N6, and H5N8 virus infection-mediated cytopathic effects (CPE). Aliquots of 50 µL of diluted H5N1, H5N2, H5N6, H5N8 at 50 TCID\textsubscript{50} were mixed with equal volumes of solutions of the newly synthesized compounds in serial two-fold dilutions in assay media (1\% FBS in DMEM). The mixtures were used to infect 100 µL of CEFs at 1 × 105 cells/mL in 96-well plates. The plates were incubated for 48 h at 37°C under 5.0\% CO\textsubscript{2} in air, then 100 µL per well of Cell Counting Kit-8 (CCK-8, Dojindo Laboratories) reagent solution (10 µL CCK-8 and 90 µL media) was added. After incubation at 37°C for 90 min, the absorbance at 450 nm was read on a microplate reader. Inhibitor EC\textsubscript{50} values were determined by fitting the curve of percent cytopathic effect (CPE) versus NA inhibitor concentration. OSC and zanamivir were used as reference compounds at the same time. The CC\textsubscript{50} value was employed as a measure of the cytotoxicity of newly synthesized compounds to CEF and was determined in the same manner as EC\textsubscript{50}, but without virus infection.

Plaque Reduction Assay (PRA) in MDCK Cells

The antiviral activity of selected compounds against the influenza A PR8 and WSN viruses was tested by PRA as previously described,54,55 with some modifications. For plaque reduction assays (PRA), MDCK cells were seeded at a density of 7 × 105 cells per well in 12-well plates. The next day, the culture medium was removed and the monolayers were first washed with serum-free DMEM, and then infected with FluA virus (PR8 or WSN strain) at 30-40 PFU/well in DMEM supplemented with 0.14\% BSA and 2 µg/mL TPCK-treated trypsin (Worthington Biochemical Corporation) for 1 h at 37°C. Cells were then incubated with medium containing 1.2\%
Avicel cellulose, 0.14% BSA, 2 µg/mL TPCK-treated trypsin, and different concentrations of each test compound. After 2 days of incubation, cell monolayers were fixed with 4% (vol/vol) formaldehyde and stained with 0.1% toluidine blue, and viral plaques were counted. Oseltamivir and Zanamivir were included in each experiment as reference compounds. Values obtained from the wells treated with only DMSO were set as 100% of plaque formation.

Citotoxicity Assay in MDCK Cells

Cytotoxicity of selected compounds was assessed in MDCK cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, as previously described. MDCK cells (seeded at a density of 2×10^4 cells per well) were grown in 96-well plates for 24 hours and then treated with serial dilutions of test compounds, or DMSO as a control, in DMEM supplemented with 10% FBS. After incubation at 37°C for 48 hours, 5 mg/ml of MTT (Sigma) in PBS was added into each well and incubated at 37°C for further 4 hours. Successively, a solubilizing solution (10% SDS, 0.01 N HCl) was added to dissolve the formazan salt and lyse the cells, and incubated O/N at 37°C. Finally, absorbance was read at the wavelength of 620 nm using an ELISA microplate reader (Tecan Sunrise). Values obtained from the wells treated with only DMSO were set as 100% of viable cells.

Computational Modeling

Preparation of Ligand and Protein Structures

The 3D conformations of OSC and compound 15b were built using the Maestro module. Subsequently, the ligands were preprocessed using the LigPrep module of the Schrödinger Suite (determination of protonation states using the Epik tool and energy minimization). The ligands were minimized using the MMFF95S force field.
The atomic coordinates of six subtypes of neuraminidases were extracted from the Protein Data Bank (N1: 2HU0\(^{30}\), resolution: 2.95 Å; N2: 4K11\(^{31}\), resolution: 1.8 Å; N6: 5HUM\(^{60}\), resolution: 1.6 Å; N8: 2HT7\(^{30}\), resolution: 2.6 Å, N9: 5L15\(^{61}\), resolution: 2.4 Å and 09N1: 3NSS\(^{32}\), resolution: 1.90 Å). Two forms of X-ray crystal structures have been deposited for NA, one being an “open form” in which the 150-cavity is accessible from the main ligand binding pocket and other being the closed form in which the 150-cavity is inaccessible. Subtypes N1 and N8 are in open forms and the remaining four subtypes (N2, N6, N9, and 09N1) are in closed form. In order to understand the binding mode of compound 15b in all six subtypes, open forms of the N2, N6, N9 and 09N1 structures were modeled at the loop region (residues between Gly147-Ser153) based on the N1 structure as the template. The modeled region was subsequently relaxed by energy minimization. Each protein structure further optimized with the Protein Preparation Wizard\(^{62}\) using the Schrödinger Suite. This optimization includes adding hydrogen atoms, assigning bond orders, and building disulfide bonds. The protonation states of the ionizable residues (at pH 7.0) were predicted by the PROPKA tool\(^{63}\) provided in the Protein Preparation Wizard. An optimized structure model was finally found by energy minimization (i.e., only positions of the hydrogen atoms) using the OPLS2005 force field.

Generation of Ligand Binding Conformation

The initial binding conformation of a ligand in the protein was generated based on the docking methodology. The receptor grid generation module of Glide\(^{64}\) was used to define the active site for the docking. As the N1 and N8 crystal structures have a bound ligand (OSC), the centroid of the grid box (of size 20 Å) was placed at this ligand, while for rest of the structures (N2, N6, N9, 09N1), key residues in the active site (which covers both the 150-cavity and ligand pocket) were set as the center of the
grid box (of size 20 Å). Water molecules at the active site located more than 3 Å from the bound ligand were deleted. The docking and scoring function (Standard precision) parameters and settings were chosen as defaults in this study. A proper starting configuration of a given ligand-protein complex represents a crucial step for molecular dynamics simulation studies. Therefore, both OSC and 15b ligands were docked, and the top-ranked 10 ligand poses were saved for further binding pose analysis and used for MD simulation studies. In total, 12 protein-ligand complexes (2 ligands × 6 NA structures) were chosen based on the protein-ligand interactions for explicit solvent MD simulations study.

Molecular Dynamics Simulations

Before conducting the MD simulations, we optimized OSC and 15b geometry at the level of B3LYP/6-31G(d) using Gaussian 09 and the atomic charges were calculated from the electrostatic potential (ESP) using density functional theory at the level of B3LYP/6-31G(d) with the PCM solvation model. These atomic charges were obtained using the CHELPG procedure as implemented in Gaussian 09.

All MD simulations were performed and analyzed using the Amber 14 software. The General Amber Force Field (GAFF) was used to describe the dispersion interaction of ligands with enzymes and solvents. The Amber FF99SB force field was used to describe the protein interactions. Subsequently, TIP3P water (solvent) molecules were added with a 12 Å buffering distance from the protein edge atoms and an orthorhombic simulation box was chosen. Suitable counter ions were also added to neutralize the system (4 Na\(^+\) ions for N1, 3 Na\(^+\) ions for N2 and ON91, 2 Na\(^+\) ions for N6 and N8). The *tleap* tool in the Amber suite was used to build coordinate and topology files. The disulphide bonds were built using the crystal structure information between pairs of residues for N2 subtype namely, 11-336, 43-48,
94-112, 102-149, 151-156, 197-210, 199-208, 237-256, and 340-366. Energy minimization was carried out in two steps; first, the system (ligand and solvents) was minimized using the steepest descent minimization with all heavy atoms restrained. The maximum number of minimization steps was set to 5000. In the second stage of the minimization, the entire system was energy-minimized. To avoid edge effects, periodic boundary conditions were applied during the MD simulations. In the process of thermalization, initial velocities were generated from a Maxwell-Boltzmann distribution at 100 K, and the system temperature was gradually increased to 300 K at constant volume over a 500 ps MD simulation. After the thermalization process, the system was equilibrated at constant temperature (300 K) and pressure (1 bar) using the Berendsen coupling algorithm68 for another 2 ns MD simulation. After the equilibration step, the MD production run was started for 20 ns using a time step of 2 fs. Coordinates were saved every 2 ps from the last 5 ns simulation for analysis (in total, 500 snapshots).

Acute Toxicity Experiment69

Animals

Kunming mice (20-30 g and 4-5 weeks old) were purchased from the animal experimental center of Shandong University. All animal treatments were performed strictly in accordance with the institutional guidelines of Animal Care and Use Committee at Shandong University, after gaining approved by the Animal Ethical and Welfare Committee (AEWC). We performed this study with an authorized standard method to detect acute toxicity using mice and accredited by Laboratory Animal Ethical and Welfare Committee of Shandong University Cheeloo College of Medicine. Animals were housed at 22 ± 2°C and relative humidity was 50 ± 10%. A 12 h light and 12 h dark cycle was maintained. Animals were given free access to food and
water.

Materials and Methods

To investigate the acute toxicity of compound 15b in mice, we used 30 healthy Kunming mice (5 males and 5 females per group) and divided them into three groups of five mice each. 15b was suspended in PEG-400 and water (V:V = 1:3) at concentrations of 0.05 and 0.1 g·mL⁻¹, respectively, and administered intragastrically by gavage after the mice had been fasted overnight (12 h). Dosages of 0.5 and 1 g·kg⁻¹ were administered to two groups of mice (5 males and 5 females per group). Blank control (without 15b) was employed at the same time. Death, body weight and behavior (death, lethargy, clonic convulsion, anorexia, ruffled fur and no abnormality) were monitored every day. At the end of the experiment, all animals were sacrificed for subsequent experimental studies.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge via the Internet at http://pubs.acs.org.

Phylogenetic tree, influenza virus B NA inhibitory activities of oseltamivir derivatives, MD simulation figures, amino acid sequences of the NAs (A/goose/Guangdong/SH7/2013 (H5N1), A/Chicken/Hebei/LZF/2014 (H5N2), A/duck/Guangdong/674/2014 (H5N6), A/goose/Jiangsu/1306/2014 (H5N8) A/chicken/china/415/2013 (H9N2) and A/Anhui/1/2013 (H7N9)), determination of influenza virus TCID₅₀, TCID₅₀ of H5N1, H5N2, H5N6, and H5N8 in CEFs and MDCK cells, stability in human plasma and metabolic stability in human
liver microsomes, figures of body weight of acute toxicity experiment and in vivo pharmacokinetics study.

Molecular formula strings.

AUTHOR INFORMATION

Corresponding Authors

*B.H.: e-mail, hbind@163.com; phone, 086-531-85999436;

*P.Z.: e-mail, zhanpeng1982@sdu.edu.cn; phone, 086-531-88382005;

*X.L.: e-mail, xinyongl@sdu.edu.cn; phone, 086-531-88380270.

Notes

The authors declare that all experimental work complied with the institutional guidelines on animal studies (care and use of laboratory animals).

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (NSFC no. 81773574), Shandong Provincial Key Research and Development Program (no. 2015GNC110009), the Science and Technology Development Project of Shandong Province (no. 2014GSF118175), Young Scholars Program of Shandong University (YSPSDU No. 2016WLJH32), Major Project of Science and Technology of Shandong Province (no. 2015ZDJS04001), Key research and development project of Shandong Province (no. 2017CXGC1401), from the University of Padua, Progetto di Ricerca di Ateneo 2014 grant n. CPDA141311(to Arianna Loregian), and from Associazione Italiana per la Ricerca sul Cancro (AIRC), Investigator Grant n. 18855 (to Arianna Loregian). We are very grateful to Dr. Xiuli Ma and Min Shang at Shandong Academy
of Agricultural Sciences for their work in the biological activity assays.

ABBREVIATIONS USED

AIV, Avian influenza virus; CEF, chicken embryo fibroblasts; DMSO, dimethyl sulfoxide; CCK8, cell counting kit-8; CC50, 50% cytotoxicity concentration; DMEM, Dulbecco’s modified Eagle’s medium, CPE, cytopathic effects; EC50, the concentration causing 50% inhibition of antiviral activity; FBS, fetal bovine serum, HA, hemagglutinin; MD, molecular dynamics, MDCK, Madin-Darby Canine Kidney cells, HLM, human liver microsome; MUNANA, 2′-(4-methylumbelliferyl)-α-D-N-acetylenuraminic acid; NA, neuraminidase; 09N1, NA of H1N1pdm09; NAIs neuraminidases inhibitors; OSC, oseltamivir carboxylate; PRA, plaque reduction assay, SAR, structure-activity relationship; TMS, tetramethylsilane; TLC, thin-layer chromatography; TCID50, 50% tissue culture infectious dose; PR8, A/PR/8/34 virus, WSN, A/Wisconsin/67/05.
REFERENCES

(8) Sartore, S.; Bonfanti, L.; Lorenzetto, M.; Cecchinato, M.; Marangon, S. The effects of control measures on the economic burden associated with epidemics of

(9) Alexander, D. J. Should we change the definition of avian influenza for eradication purposes?. Avian Dis. 2003, 47, 976–981.

761–784.

(35) You, Q.; Huang, K.; Du, G.; Liu, A; Li, C. Derivatives of oseltamivir, and method and medical application thereof. C.N. Patent CN 102659615, **2012**.

(46) Abed Y.; Baz M.; Boivin G. Impact of neuraminidase mutations conferring influenza resistance to neuraminidase inhibitors in the N1 and N2 genetic

Table of Contents Graphic

Oseltamivir carboxylate

IC$_{50}$ (nM) =
4.45 (N1, 2009H1N1) 4.17 (N2, H9N2)
15.72 (N6, H5N6)
7.77 (N8, H5N8)
8.42 (N9, H7N9)
1630 (N1 H5N1-H274Y)

Scaffold

IC$_{50}$ (15b, 15e) (nM) =
0.55, 2.31 (N1, 2009H1N1)
0.35, 2.13 (N2, H9N2)
1.26, 10.85 (N6, H5N6)
5.34, 4.06 (N8, H5N8)
1.79, 6.51 (N9, H7N9)
387.07, 663.90 (N1 H5N1-H274Y)

Metabolic stability (15b): T$_{1/2}$ > 145 min in human liver microsome assay; intact after 120 min in human plasma