A measure for describing and comparing postreproductive life span as a population trait

Levitis, Daniel; Bingaman Lackey, Laurie

Published in:
Methods in Ecology and Evolution

Publication date:
2011

Citation for published version (APA):
A measure for describing and comparing postreproductive life span as a population trait

Daniel A Levitis¹,²* and Laurie Bingaman Lackey³

¹Max Planck Institute for Demographic Research, Laboratory of Evolutionary Biodemography, Konrad-Zuse Strasse 1, 18057 Rostock, Germany; ²Museum of Vertebrate Zoology and Department of Demography, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3160, USA; and ³International Species Information System, 2600 Eagan Woods Drive, Suite 50, Eagan, MN 55121, USA

Summary

1. While classical life-history theory does not predict postreproductive life span (PRLS), it has been detected in a great number of taxa, leading to the view that it is a broadly conserved trait and attempts to reconcile theory with these observations. We suggest an alternative: the apparently wide distribution of significant PRLS is an artefact of insufficient methods.

2. PRLS is traditionally measured in units of time between each individual’s last parturition and death, after excluding those individuals for whom this interval is short. A mean of this measure is then calculated as a population value. We show this traditional population measure (which we denote PrT) to be inconsistently calculated, inherently biased, strongly correlated with overall longevity, uninformative on the importance of PRLS in a population’s life history, unable to use the most commonly available form of relevant data and without a realistic null hypothesis. Using data altered to ensure that the null hypothesis is true, we find a false-positive rate of 0.47 for PrT.

3. We propose an alternative population measure, using life-table methods. Postreproductive representation (PrR) is the proportion of adult years lived which are postreproductive. We briefly derive PrR and discuss its properties. We employ a demographic simulation, based on the null hypothesis of simultaneous and proportional decline in survivorship and fecundity, to produce a null distribution for PrR based on the age-specific rates of a population.

4. In an example analysis, using data on 84 populations of human and nonhuman primates, we demonstrate the ability of PrR to represent the effects of artificial protection from mortality and of humanness on PRLS. PrR is found to be higher for all human populations under a wide range of conditions than for any nonhuman primate in our sample. A strong effect of artificial protection is found, but humans under the most adverse conditions still achieve PrR of ≈ 0.3.

5. PrT should not be used as a population measure and should be used as an individual measure only with great caution. The use of PrR as an intuitive, statistically valid and intercomparable population life-history measure is encouraged.

Key-words: demography, life-history evolution, life-table methods, menopause, primates, simulation, Type I error

Introduction

Postreproductive life span (PRLS) is the phenomenon of individuals or cohorts surviving past the age at which they can no longer expect to produce offspring. Put another way, it is the demographic outcome of a delay in actuarial senescence (increase in mortality rate with age) compared to reproductive senescence (Hill & Hurtado 1991). The classical evolutionary theory of senescence and most life-history optimization models do not predict PRLS, as survival does not improve fitness if the individual is no longer reproducing. However, postreproductive individuals and seemingly significant PRLS at the population level have been detected in a wide range of organisms, not only diverse human populations (Hawkes et al. 1998; Lahdenpera et al. 2004) but also several other primates (Fedigan et al. 2007), very many mammals (Cohen 2004), guppies (Reznick, Bryant, & Holmes 2006), aphids (Kidd & Tozer 1985),...
nematodes (Chen et al. 2007) and species as phylogenetically distant as yeast (Minois et al. 2005). These findings have lead to the view that PRLS is a phylogenetically conserved trait (Cohen 2004), and Austad (1997) questions the need for ‘special pleading for a novel evolutionary explanation’ for women’s PRLS. Despite this, research into human-specific explanations for the origin and function of PRLS is a thriving field (Alvarez 2000; Tuljapurkar, Puleston, & Gurven 2007; Cant & Johnstone 2008; Gurven & Kaplan 2008; Lee 2008, Pa-vard, Metcalf, & Heyer 2008; Sears & Mace 2008; Hawkes, Smith, & Robson 2009, Gillespie et al. 2010). This apparent contradiction is generally explained by stating that human PRLS is importantly greater than, if not qualitatively different from, PRLS in other species.

Attempts have been made to reconcile the evolutionary theory of senescence with the finding of widespread significant PRLS (Pececi 2001; Cohen 2004). In this paper, we argue that such efforts may be premature, as the methods we have been using to assess the significance of PRLS are inappropriate and statistically invalid when applied to populations. We propose an improvement, to reduce Type I Error (falsely rejecting the null hypothesis), but also what has been called Type 0 Error: failing to ask the question (Michels & Rosner 1996). Data to test for PRLS are available for many taxa, but are often exploited, being in a form unsuited to the current method.

PRLS is traditionally measured in units of time. We will refer to such measurement as postreproductive time (PrT). We will argue here that PrT is an inherently flawed measure when applied to populations, useful only under very limited circumstances. We offer an alternative measure, which estimates the representation of postreproductive individuals in a stable population, postreproductive representation (PrR). We then compare the behaviour of PrT and PrR using a large data set on the demography of humans and other primates.

Methods old and new

THE OLD METHOD

PrT measures the distance between the end of fecundity and the end of life. Generally, its calculation proceeds as follows: First, all individuals not reaching a certain threshold are excluded. Most often, this means only those individuals living some minimum time beyond last parturition or a population measure of reproductive cessation are considered. Second, the time between each included individual’s last parturition and that individual’s death is measured. Finally, a mean of these times is calculated to produce a population measure. While these measures have been made for a wide range of species (as described above), they have rarely been used to compare between populations and taxa. PrT suffers from six shortcomings, described below, which may explain this lack of comparative application.

PrT is inconsistently calculated

Many methods have been used to calculate PrT. Fedigan et al. (2007) present a table of PrT for 20 primate species, all in units of years, but calculated in six different ways. Some authors subtract a measure of time during which the individual could have reproduced, but did not; others do not consider an individual to be postreproductive until she is well beyond the age at which her population ceases reproducing, or other variations (compiled in Cohen 2004). Fedigan et al. advocate a standardization of the measurement of PrT as individual age at death minus that individual’s age at last birth based on the calculations of Caro et al. (1995). This would include standardization in significance testing based on interbirth interval, as discussed elsewhere.

PrT is a biased measure of PRLS

PrT is measured based only on the experience of those living well beyond reproductive cessation (Caro et al. 1995; Pavelka & Fedigan 1999; Cohen 2004). Other individuals are excluded from analysis to avoid classifying as postreproductive those who simply die before they can give birth again. However, their exclusion introduces a serious bias. To be very confident that every individual in the sample is postreproductive, we must abandon confidence that every postreproductive individual is in the sample. Specifically, those individuals with short but legitimate PrT (the lower end of the distribution) will be excluded. Any mean so calculated is seriously inflated.

PrT fails to convey the relevance of PRLS

An associated effect is that PrT gives little guidance as to how important postreproductive periods are in the life history of populations, because it does not take into account how many individuals live to be postreproductive. Fig. 1 gives a hypothetical example of two populations. In each case, reproductive life span is 10 years, and PrT is 1 year, but fewer individuals in Population B reach reproductive cessation. An individual in Population A would be far more likely to have postreproductive kin and to have a postreproductive period of her own than one in Population B. Some authors (Cohen 2004; Fedigan et al. 2007) address this problem by giving both PrT and an estimate of what proportion of individuals reach reproductive cessation.

Fig. 1. Age-specific survival for populations with identical postreproductive times is shown. Populations A (red line) and B (blue dashed line) both begin reproducing at age = 0, reach reproductive cessation at age = 10, and both experience 50% annual mortality in years 10 and above. Population A experiences no mortality prior to reproduction, while Population B experiences 20% annual mortality; 166% of years lived by Population A are postreproductive, compared to 4.5% of years lived by B. However, PrT for each population is 1 year. For both these populations, the ratio of PrT to fertile life span is 1/10.
For comparisons between populations, this information must be incorporated into a single parameter.

PrT is strongly correlated with overall longevity

It is common to read statements such as ‘humans are unique among primates in that women regularly outlive their reproductive period by decades’ (Kachel, Premo, & Hublin 2010) or that among mammals, only humans and some whales ‘stop reproducing long before they die’ (Johnstone & Cant 2010). These statements would be true regardless of the biological significance of PRLS in these species. Women are unique among primates in having life expectancies of several decades, and few other mammals live as long as humans and whales do. Organisms generally (Kirkwood 1992) and mammals specifically (Carey & Judge 2000) live on widely varying time-scales and PrT scales isometrically with life span. Fig. 2 plots PrT against life expectancy at birth (e₉₀) for 66 captive primate populations, revealing that two-thirds of the variation in PrT is attributable to the overall time-scale on which organisms live. While the PrT of humans and some whales (McAuliffe & Whitehead 2005; Foote 2008; Ward et al. 2009) is in fact disproportionately long compared to overall longevity, one cannot conclude this from PrT alone. Similarly, the short PrT of a mouse or rotifer should not dissuade us from looking for biological or statistical significance. Authors wishing to make quantitative comparisons between populations should have at their disposal a parameter which controls for the time-scale of life histories.

PrT cannot use available data

The standard calculation of PrT requires data on individual life histories. At what age did each individual have each of her parturitions and die? PrT cannot be calculated or reasonably estimated from age-specific rates (population life tables and fecundity tables). Consider two populations with identical age-specific fecundity and mortality schedules. In the first population, all individuals remain fertile up to the age M, but the fecundity rate declines because interbirth interval increases with age. This will lead to relatively short PrT. In the second population, interbirth interval remains constant but many females stop reproducing prior to age M, achieving long postreproductive times. These two populations will differ in PrT values in ways not communicated by their shared age-specific rates.

Age-specific rates are often available for populations where large samples of full individual life histories have not been published (Biodemographic Database 2010). While the full sharing of underlying data is a desirable goal, it has often not been achieved, for reasons of confidentiality, priority, journal space or logistical simplicity. As such, comparisons using individual-based PrT must omit the large number of populations for which only age-specific rates are available.

In a less conventional approach, one can calculate PrT from age-specific rates, as survival past the age when the population is judged to reach reproductive cessation. To do so, one needs to decide how to measure when cohort survival ends (mean life expectancy, maximum longevity or some other measure), as well as when cohort reproduction ends. There is no standard for these decisions. In Fig. 1, we have used e₉₀, (see Box 1) mean life expectancy at an age which is a near end point of cohort fecundity. For human populations, maximum longevity and age 45 years have been used for these purposes (Burton-Jones, Hawkes, & O Connell 2002). This method can be employed successfully if the populations being compared reach reproductive cessation at the same age, the probability of surviving to that age is similar, and sample sizes are comparable. Under these conditions, this calculation will reveal only which population has greater PrT, not how many postreproductive individuals one will find in the populations.

The use of age-specific rates excludes important information relating to individual stochastic events and life-history plasticity. An individual’s reproductive history plays an important role in determining her mortality (Doblhammer 2000), and where the goal is to understand with-population variation, age-specific rates are uninformative. That said, age-specific mortality rates evolve based on the average reproductive output at each age. This implies that even if a woman does not reproduce after age 30, her evolved age-specific mortality risk at age 31 reflects primarily the fact that many of her ancestors did reproduce at later ages, not the fact that she has had her last child. A 31-year-old woman may be individually postreproductive, but her continued survival requires no explanation beyond that offered in the classical evolutionary theory of senescence (Hamilton 1966; Charlesworth 2000; Kirkwood & Shanley 2010). We therefore argue that population averages rather than individual variations around those averages are most useful for understanding postreproductive life span at the population level. Where individual level data are available, and the goal is to compare one individual’s life history to another’s within the same population, PrT may be a sensible measure for some questions; its use in describing or comparing between populations should be avoided.

PrT lacks a robust null

If reproductive senescence exactly parallels falling survivorship, what will PrT be? It cannot be zero. Indeed, even Pacific salmon, a common example of lack of PRLS (Wachter et al. 1997), exhibit short but nonzero PrT (Carlson et al. 2007). Nor can PrT be negative, as fecundity generally cannot occur after death. Every population in which
Box 1: Ages and demographic notation

The demographic notation used here, based on standard life-table methods, are as follows:

- \(x \): represents exact age at the start of an age interval.
- \(L_x \): the number of individual-years lived between ages \(x \) and \(x + 1 \).
- \(m_x \): is age-specific fecundity (as defined by biologists), the total number of offspring of both sexes born to all individuals between the ages of \(x \) and \(x + 1 \) divided by \(L_x \). Note that this is what demographers refer to as fertility (i.e., realized reproduction, strongly influenced by behaviour) and is distinct from the demographic usage of fecundity (the physiological capacity to reproduce).
- \(l_x \): is the number of individuals surviving to exact age \(x \) (life tables are generally presented with an arbitrary initial cohort size or radix. Where radix = 1 and \(l_x \) is the probability that a newborn survives to \(x \)).
- \(e_x \): is the mean remaining life expectancy at \(x \).
- \(T_x = e_x l_x \): is the total individual-years lived after \(x \).

The calculation of these parameters is described in detail in Preston, Heuveline, & Guillot (2001).

\(\text{PrR} \) is calculated based on these functions evaluated at two ages:

- \(B \): the beginning of the reproductive life span or of adulthood. Operationally, we define \(B \) as the first time period of age at which 5% of life-time fecundity has been realized, on average, independent of mortality. That is:
 \[
 \sum_{y=0}^{B} m_y \geq 0.05 \times \sum_{y=0}^{\infty} m_y \quad \text{for } B \text{ an integer.}
 \]

- \(M \): the end of fecund life span. Operationally, we define \(M \) as the first time period of age at which 95% of life-time fecundity has been realized, on average, independent of mortality. That is:
 \[
 \sum_{x=0}^{M} m_x \geq 0.95 \sum_{y=0}^{\infty} m_y \quad \text{for } M \text{ an integer.}
 \]

Our calculations of \(M \) for human natural fertility populations are similar to published estimates of mean maternal age at last parturition for natural fertility populations (Bongaarts 1982). \(B \) and \(M \) each exclude 5% of the area under one tail of the fecundity curve. For that reason and because they are cumulative measures, these parameters are resistant to demographic outliers (e.g., human females who have babies in their late fifties or later). They are useful in determining near-end points on the population level, not extreme individuals.

- \(F \): is the last age of peak fecundity: \(F \) is the largest integer value of \(x \) satisfying the condition that \(m_F = \max (m_x) \).

Reproduction and death are not simultaneous has \(\text{PrT} > 0 \) (Kirkwood & Shanley 2010).

Biologists have approached this problem by testing whether \(\text{PrT} \) for individuals exceeds the mean plus two standard deviations of interbirth interval \(\overline{IBI} + 2SD \) (IBI) (Caro et al. 1995). The thinking is that if an individual has not reproduced for significantly longer than the mean of her interbirth intervals, she can confidently be labelled as postreproductive. A similar approach is to ask whether the individual’s final, open birth interval is significantly greater than 95% of the distribution of her closed birth intervals (Reznick, Bryant, & Holmes 2006). However, because interbirth interval increases markedly with age (Koyama et al. 1992; Bronikowski et al. 2002), these approaches may greatly exaggerate the incidence of PRLS in populations in which older individuals have greatly increased birth spacing. Further, by selectively excluding those individuals whose \(\text{PrT} \) is small, and those with no second parturition, authors greatly increase the risk of false positives. Determining whether PRLS is extensive enough to carry biological or statistical significance requires a measure other than \(\text{PrT} \).

THE NEW METHOD

We therefore seek a measure of PRLS that can be calculated consistently and without bias, using age-specific rates to compare between demographically diverse populations. This method should allow for statistical comparison to a null hypothesis. We propose \(\text{PrR} \), postreproductive representation, as such a measure. We will first describe the calculation of \(\text{PrR} \) and its characteristics, before discussing significance testing.

Deriving \(\text{PrR} \)

The simplest population measure of survival beyond reproductive cessation is \(e_M \), remaining life expectancy of those individuals who have survived to age \(M \). This parameter is a measure of \(\text{PrT} \) in that it is given as a length of time after reproductive cessation. By multiplying \(e_M \), we account for both how many individuals become postreproductive and for how long they survive postreproductively. \(T_M \) represents the mean expectation of a newborn individual for life beyond age \(M \). \(T_M \) is still of limited utility in comparing between populations with different scales of longevity or different levels of prereproductive \((x < B) \) mortality.

These drawbacks can be overcome by taking the ratio of \(T_M/T_B \). \(T_B \) gives the number of years an average newborn can expect to live as an adult, while \(T_M \) gives the number of years an average newborn can expect to live as a postreproductive adult. We therefore calculate

\[
\text{PrR} = \frac{T_M}{T_B} = \frac{\frac{1}{l_B} e_M}{\frac{1}{l_B} e_B}
\]

\(\text{PrR} \) is particularly useful in comparisons between populations. As with a Charnovian invariant (Charnov 1993), it is unitless, and therefore independent of time-scale and the size of the organism. It is independent of infant and juvenile mortality but dependent upon survival through the reproductive and postreproductive periods. It provides an intuitive measure of postreproductive survival. In a stationary population (where rates and population size are constant), \(\text{PrR} \) tells us what proportion of the adults are postreproductive. For example, if \(\text{PrR} \) for the females in a stationary human population is 0.66, 66% of women in that population are postreproductive. Girls in a stable population (one in which rates remain constant through time, but population size may change), with \(\text{PrR} = 0.66 \), can expect to spend an average of two-thirds of their adult lives older than age \(M \).

Using this demographic notation, a variety of measures (e.g., \(l_M/l_B \), \(e_M/e_B \)) can be derived to suit particular questions regarding postreproductive life span; the usage of demographic methods by biologist studying demographic traits is encouraged.

Significance testing

As with \(\text{PrT} \), \(\text{PrR} \) generally cannot be zero or negative. However, using demographic simulations and an explicit null hypothesis, a null distribution for \(\text{PrR} \) can be calculated for each population.
Our null hypothesis is that cohort mortality and cohort fecundity loss should occur in parallel once reproductive senescence sets in. More formally, \(\frac{\lambda_x}{mx} = \frac{\lambda_0}{mx_0} \) for \(x > F \), the age of maximum fecundity.

A null distribution of PrR values can be generated using repeated demographic simulation. Annotated code for these simulations, written in the statistical programming language R (RCDT 2010), is given online in Appendix S3. Age-specific rates consistent with the null hypothesis are estimated by altering the population’s \(lx \) series after age \(F \) such that the proportional decline in \(lx \) at each age is equal to the proportional decline in a smoothed \(mx \) series (Fig. 3). Smoothing is necessary to ensure a monotonic decline; \(mx \) can meander downward, but \(lx \) can only decrease with age. Individuals are then simulated using the observed \(mx \) series and the altered \(lx \) series. One thousand populations, each with the same number of female individuals as the original data, are simulated in this way, generating 1000 estimates of PrR consistent with the null hypothesis. This is taken as the null distribution and compared to the PrR calculated for the real population. The probability of obtaining a value at least as high as the real PrR if the null hypothesis is correct is equal to the number of simulated populations with higher values, divided by 1000. For example, a population PrR value which is lower than or equal to only 25 of the 1000 simulations would be significant at the 0.05 level for a two-tailed test. All \(P \)-values given below are based on this two-tailed test. PrR significantly above the null distribution implies that actuarial senescence is delayed when compared to reproductive senescence.

APPLICATION OF THE METHODS

To demonstrate the use of PrR and examine the properties of both PrR and PrT, we employ age-specific vital rates for the females of each of several human and nonhuman primate populations. We asked three questions of these data: what is the false-positive rate when using standard methods to test the significance of PrT?; how do humans compare to nonhuman primates in PrR?; and what effect does artificial protection and improving environment have on PrR?

Data employed: Details on data sources and methods are given in online Appendix S1. For each population, we entered into the data set a yearly \(lx \) and \(mx \) series and a sample size (equal to the number of individuals alive at age zero). Fifteen human populations were grouped according to level of development. These groups are hunter-gatherer, historical Sweden in 1751, and (using United Nations designations) least developed countries, less developed countries and more developed countries. In addition, we included in our analysis the plantation slaves of Trinidad (1813–1816). We include this population because ‘the plight of the plantation slaves in Trinidad may be the most dismal known for any reliably reported population, save in time of natural disaster’ (John 1988, xv). Among other inhumane practices, slave-owners in this period often avoided caring for or housing elderly slaves by freeing them and expelling them from the plantations when they became too sick or old to care for themselves. If human PRLS is an artefact of benevolent conditions or social protection, this population, which experienced unnaturally harsh conditions, will lack it.

We employ data on 69 populations of nonhuman primates, 66 in zoos, one free-ranging provisioned population and two wild populations. Similarly to our human populations, these three groups of primate populations vary according to the degree of protection from mortality risk. Zoo populations, and to a lesser extent, semi-wild primates receive care and protection from, e.g. predation, medical problems, malnutrition, and aggression from conspecifics.
Values for each population for each of the following parameters are given in online Appendix S2. Observed PrR and its level of significance simulated (as described above) PrR, simulated PrT and the null expectation for PrT.

All calculations were performed in R, using the annotated code available online as Appendix S3.

PrT's Type I error rate

The same simulations used to generate a null distribution for PrR allow us to examine the behaviour of the measurement PrT when the same null hypothesis holds. Few significant values should be found, as we have ensured that the null hypothesis is correct. For each simulated population, we calculated PrT for each individual living past age \(M \) and giving birth more than once. The most standard null hypothesis for PrT is that PrT < \(\overline{IBI} + 2SD (IBI) \) (mean plus two standard deviations of interbirth interval). For each individual, we therefore also calculated whether PrT fell above this limit. Eighty-one per cent of 83 populations included individuals who did. This is not surprising, as each sample included many more than 20 individuals, so some false positives are expected; however, it is a reminder that a population should not be described as having meaningful PRLS simply because a subset of individuals greatly outlives their fecundity. More troubling, for 39 of 83 populations (47%) so examined, the mean individual PrT was greater than the mean individual’s \(\overline{IBI} + 2SD (IBI) \).

Using a conservative form of this standard test, the null hypothesis can be confidently but falsely rejected in close to half of populations. No test with so high a Type I error rate can be considered valid, and any conclusions that have been reached based on this test must be re-examined. These false positives arise both because of the selective inclusion of long-lived individuals and because of the increase in interbirth interval with age.

By comparison, for every population simulated under the null hypothesis, the ‘true’ value of PrT fell near the middle of the null distribution, and no false positives were detected. This is so because our simulations assume that the input demographic rates are the true values, accounting for demographic stochasticity and population size, but not uncertainty or bias in the measured demography. Methods for estimating the uncertainty in life-table data exist (e.g., Steinbals & Orzack 2011) but must be applied with care to each case and are not implemented here. Accounting for this uncertainty would tend to make fewer populations seem to have significant PRLS.

Environment and PrR

The effect of protected environments is evident (Fig. 4). In the two species of nonhumans for which we have both wild and captive data, PrR increases more than tenfold in captivity (PrR = 0.23 for captive chimpanzees, \(Pr \) of Pan troglodytes, but PrR = 0.018 for wild chimpanzees. In baboons, Papio hamadryas, PrR = 0.08 and PrR = 0.005, for captive and wild populations, respectively.) Humans at higher levels of socio-economic development and primates experiencing higher levels of care experience greater PrR. This effect is owing to both greater longevity and an earlier reproductive cessation under better conditions. PrR varies little between hunter-gatherers (PrR = 0.42–0.48), historical Sweden (PrR = 0.48) and least developed countries (PrR = 0.46–0.49), perhaps indicating that a threshold level of development must be reached to expand PRLS. However, it is clear when comparing among UN member nations that PRLS expands rapidly as one examines increasingly developed nations (less developed countries PrR = 0.61–0.64, more developed countries PrR < 0.68). Japan is the extreme case, with PrR = 0.76.

Humanity and PrR

At the other extreme for humans, the Trinidadian slaves experienced PrR = 0.3, very low for a human population, but still higher than any nonhumans. This suggests an interaction between the inhumanity of their conditions and the strong predisposition for PRLS in human biology. PrR for all human populations under a wide range of circumstances is greater than for any nonhuman primates in the wild or in captivity. These differences are particularly striking when comparing populations in their natural habitats. PrR values for hunter-gatherers range from 0.42 to 0.48, while PrR values for the wild primates in our sample are below 0.02. PrR is highly significant for all human populations; no simulation generated a PrR as high as that of any human population (i.e. all P-values are less than 0.001). In contrast, wild and semi-wild primates and 15 of 66 populations of captive nonhuman primates lack significant PRLS (P > 0.05).

Lessons from example analysis

Analyses based on PrT, with its extraordinary Type I Error rate, give the impression that significant PRLS is ubiquitous. However, the wild primates in our sample experience actuarial senescence that is in no way delayed compared to their reproductive senescence. Those few individuals who greatly survive their last parturition are exceptional, not representative. While environment has a strong influence on PRLS, and most species of primates have at least the capacity to experience significant PrR, there is little evidence that it is realized in non-human primates in their natural environments. Humans are unusual primates in experiencing highly significant PrR > 0.3 under all conditions for which reasonable data exist.

Discussion

Our understanding of postreproductive life span as a population trait has been hindered by the use of an inappropriate measure. PrT arose as an attempt to extend individual-level measures of PRLS to the population level. However, as a population measure, it is inconsistently calculated, biased, primarily conveys differences in overall longevity and cannot make use of demographic data in their most frequently available form. It reveals little regarding how much time the average individual will spend in a postreproductive state. The test that has been used to examine the significance of measures of PrT is highly prone to Type I errors, giving the false (and currently widespread) impression that significant PRLS is a trait found in most organisms. We advocate the total abandonment of PrT as a population measure and extreme care in its use as an individual measure. Any test of significance or comparative analysis using PrT values should now be re-examined.

PrR is a population-level trait and cannot meaningfully be applied to the individual. As such, it is not directly acted on by selection, but rather is an outcome of selection at the individual level and of the population’s current environment. It provides an intuitive and statistically valid measure which is comparable across populations, regardless of differences in prereproductive mortality or the time-scale on which the population lives. Further, it comes with a meaningful null hypothesis, allowing for straightforward examination of significance. A significant PrR in a population in its natural environment requires evolutionary explanation, as most evolutionary theory does not predict this. Significant PrR in an unnaturally safe environment may also be informative, showing that maximum age at death is not an inflexible genetically determined trait.

We have not in this paper addressed the problem of asking if the PrR of two species can statistically be shown to be significantly different. For example, are the range of PrR values calculated for humans (0.31 through 0.76) significantly different than that calculated for short-finned pilot whales Globicephala macrorhynchus (0.28, P < 0.001), using the data of Kasuya & Marsh (1984), given the uncertainties inherent in the data, and the lack of replication? As PrR depends upon both species and environment, which population of humans may be considered to live in an environment comparable to that of wild, hunted, marsh (1984), given the uncertainties inherent in the data, and for some hundreds of species. Work is actively proceeding to compile biodemographic data for easy comparative analysis between species (Biodemographic Database 2010). The intra-specific differences in PrR documented here suggest its usefulness in exploring how society and environment influence PRLS. The use of postreproductive representation as a measure will allow rapid progress in our understanding of the evolution of postreproductive life span.

Acknowledgements

We thank Ronald Lee and his lab, D. Reznick, C. Moritz, E. Lacey, W. Koenig, O. Jones, I. Levitis and two anonymous reviewers for suggestions and encouragement. We thank ISIS and its members, N. Blurton-Jones and K. Hawkes, for providing us with data. DL’s research was supported by the Max Planck Society, the Ruth L. Kirschstein National Research Service Award (NIH grant T32-AG008246), by Ronald Lee’s subproject in P01 AG022500 and by the Museum of Vertebrate Zoology.

References

Received 16 November 2010; accepted 5 February 2011
Handling Editor: Robert Freckleton

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Data Sources.

Appendix S2. Table of Species Parameters.

Appendix S3. Code in R for calculations and simulations.

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.