Ibuprofen reduces zebrafish PGE2 levels but steroid hormone levels and reproductive parameters are not affected

Morthorst, Jane Ebsen; Lister, Andrea; Bjerregaard, Poul; Van Der Kraak, Glen

Published in:
Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology

DOI:
http://dx.doi.org/10.1016/j.cbpc.2012.12.001

Publication date:
2013

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Ibuprofen reduces zebrafish PGE2 levels but steroid hormone levels and reproductive parameters are not affected

Jane E. Morthorst b,⁎,* 1, Andrea Lister b, Poul Bjerregaard a, Glen Van Der Kraak b

a Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
b Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

1. Introduction

Human pharmaceuticals are excreted and eliminated into wastewater either as the parent compound or as metabolites. Removal rates of pharmaceuticals in sewage treatment plants (STPs) are generally high although not 100%. Hence, persistent or highly consumed pharmaceuticals like analgesics have been detected in aquatic systems that receive water from STPs or untreated wastewater from point sources and consequently fish living in receiving waters are exposed to these chemicals (Ankley et al., 2007). Ibuprofen is a commonly used over-the-counter analgesic and has been detected in freshwater systems at ng/L–μg/L levels. We investigated whether ibuprofen would affect prostaglandin and sex steroid hormone levels in adult zebrafish (Danio rerio) and if expression levels of genes involved in steroidogenesis and prostaglandin synthesis were affected. Zebrafish were exposed to moderate concentrations of ibuprofen (21, 201 or 506 μg/L) for 7 days in a semi-static test system. Ibuprofen concentrations were close to nominal levels and decreased by a maximum of 13% over 7 days. Prostaglandin E2 (PGE2) levels in whole body homogenates of males and ovaries of females decreased in a monotonic dose–response relationship whereas male 11-ketotestosterone levels and ovarian 17α-estradiol levels remained unchanged. Ibuprofen did not have an influence on vitellogenin levels, female gonadosomatic index or cumulative egg production and no dose–response relationship in ovarian and testicular expression levels of the investigated genes was observed. This study shows that ibuprofen reduces PGE2 levels in male and female zebrafish but has no consistent effects on other investigated reproductive parameters.

Most weak analgesics including ibuprofen are non-steroidal anti-inflammatory drugs (NSAIDs) and they exert their effect by inhibiting the activity of enzymes involved in prostaglandin synthesis (Vane, 1971). Prostaglandins and their fatty acid precursor arachidonic acid are involved in several processes related to vertebrate reproduction including oocyte maturation (Surbera et al., 2001) and regulation of gonadal steroidogenesis (Van Der Kraak and Chang, 1990; Wade and Van Der Kraak, 1993) and changes in prostaglandin levels could possibly influence other reproduction related processes. Prostaglandins are synthesized continuously through a multi-step pathway initiated by the conversion of arachidonic acid into prostaglandin H2 (PGH2), which serves as a substrate for a variety of different enzymes involved in the synthesis of other prostaglandins, prostacyclins and thromboxanes. Arachidonic acid is mobilized from the cell membrane by phospholipases A2 (PLA2) and the conversion of arachidonic acid into PGH2 is catalyzed by the bifunctional enzyme prostaglandin H2 synthase (PGHS) also known as cyclooxygenase (COX). PGHS exists in two isoforms called COX-1 (ptgs1) and COX-2 (ptgs2) and these enzymes are the targets of NSAIDs (FitzGerald and Patrono, 2001). Functional genes for both COX-1 and COX-2 have been found in zebrafish and prostaglandin E2 (PGE2) is the predominant prostaglandin in adult zebrafish (Grosser et al., 2002; Ishikawa et al., 2007). Prostaglandin inhibitors like indomethacin reduced the PGE2 concentration in female zebrafish (Lister and Van Der Kraak, 2008) and both prostaglandins and NSAIDs are known to affect steroidogenesis in vitro (Wade and Van Der Kraak,
1993). Arachidonic acid and its derivatives have also been shown to regulate steroidogenic acute regulatory protein (StAR) gene expression (reviewed by Stocco et al. (2005)). StAR is the enzyme regulating cholesterol transport from the outer to the inner mitochondrial membrane where cholesterol is converted to pregnenolone. Steroids are synthesized from cholesterol and the rate-limiting step for steroid synthesis is the transport of cholesterol. Alterations in steroid production could be expected if COX enzymes are inhibited. Prostaglandin inhibitors have been shown to alter steroid hormone levels in rats (Didolkar et al., 1980, 1981) and prenatal exposure to prostaglandin inhibitors blocked masculinization of male fetal mice (Gupta and Goldman, 1986). Given the possible cross talk between prostaglandin and steroidogenic pathways, it was interesting to investigate if an inhibition of prostaglandin synthesis would affect the steroidogenic pathway and reproductive parameters in fish.

The aim of the present study was to investigate if ibuprofen interfered with steroidogenesis in zebrafish (Danio rerio) by measuring 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels in males and females, respectively, after a 7-day exposure period. Expression levels of genes involved in both prostaglandin synthesis (ptgs1, ptgs2 and cpla2) and steroidogenesis (star, cyp19α, 11β-hsd2, cyp11β and 17β-hsd3) were investigated in order to reveal possible sites of action of ibuprofen in zebrafish (Table 1). PGE2 levels, vitellogenin concentration, spawning success as measured by the numbers of eggs spawned and female gonadosomatic index (GSI) were also determined.

2. Materials and methods

2.1. Animals and experimental design

Zebrafish (D. rerio) were purchased from DAP International (Etobicoke, ON, Canada) and held at the Hagen Aquasal at the University of Guelph in an A-HAB fish containment unit (Aquatic Habitats, Apopka, FL, USA) with re-circulated well water at 26 °C. The photoperiod was 12 h light:12 h dark. Fish were acclimatized for one week in the test aquaria and fed three times daily: twice with commercial salmon fry pellets (Martin Mills, Elmira, ON, Canada) and once with bloodworms (Oregon Desert Brine Shrimp Co., Lakeview, OR, USA).

The exposure was performed as a 7-day semi-static exposure in 20 L glass aquaria each containing 15 L of water. The water was changed every day and water temperature and oxygen saturation were measured every second day. Each aquarium was aerated and the oxygen level was 91% ± 1.04 (mean ± SEM) of the air saturation and the temperature was 25.5 ± 0.8 °C. Egg trays with artificial diets were placed in the tanks and eggs were collected and counted every day after spawning. Egg collection started four days before the exposure. Each exposure was performed in triplicate with 26 fish (12 females and 14 males) in each aquarium.

Ibuprofen (CAS no. 15687-27-1, Sigma-Aldrich Co., St. Louis, MO, USA) was dissolved in methanol and added to the test aquaria every day when water was renewed. The nominal ibuprofen concentrations were 0, 20, 200 and 500 μg/L and the final solvent concentration was < 0.01%.

2.2. Actual water concentrations of ibuprofen

Water samples (2 mL) were collected from each aquarium three times during 24 h (0.5–1, 3–4 and 24 h after water renewal). Water samples were passed through PVDF filters (pore size 0.45 μm, Frisenet, Denmark) before the actual concentrations were determined on a Triple Quad LC/MS (Agilent, Wilmington, DE, USA). Isocratic elution was performed using an Agilent Zorbax Eclipse XDB C-18 Rapid Resolution HT column (50 × 4.6 mm i.d., 1.8 μm particle size) and column temperature was set at 70 °C. Injection volume was 30 μL. The mobile phase consisted of a 40:60 (v/v) mixture of 0.1% formic acid and acetonitrile (pH = 3.0) and a flow rate of 1.0 mL/min (retention time: 1.39 min). Analysis was done using electrospray ionization (ESI) in positive ion mode. Drying gas flow was 11.0 L/min and drying gas temperature was set at 350 °C. The nebulizer pressure was set at 35 psi and capillary voltage at 4000 V. Fragmentor voltage was 90 V and collision energy 15 V. The mass-to-charge-ratio (m/z) of precursor ion and quantifier ion was respectively 224.3 and 161.2. The detection limit (signal-to-noise-ratio > 10) for ibuprofen in sample matrix was 11.7 pg on column (0.39 μg/L).

2.3. Sampling

After seven days of exposure the fish were anesthetized in MS-222 (0.1 g/L), blot dried on KIM™ wipes, and weighed. Individuals used for gene expression had their head and tail separated from the trunk with cuts made right behind the pectoral fins and right behind the dorsal fin, respectively. The head and tail fraction was weighed and immediately put on dry ice and stored at −80 °C until vitellogenin analysis was performed. The ovaries were removed from the trunk and put in RNase-free microcentrifuge tubes, weighed, and frozen in dry ice. The trunks of the males were placed on dry ice with the body cavity opened and intestines removed in order to make the testes easier to locate. The testes were dissected out and placed in RNase-free microcentrifuge tubes. All female fish for gene expression studies were sampled between 10:00 and 11:30 h and all males between 12:00 h and 14:00 h. Male fish for whole body steroid determination were snap frozen in microcentrifuge tubes after the presence of testis had been verified. Ovaries for steroid determination were dissected as described above and GSI was calculated for all female fish by the following equation:

\[
\text{GSI} = \left(\frac{\text{gonad mass (mg)}}{\text{body mass (mg) − gonad mass (mg)}} \right) \times 100
\]

2.4. RNA extractions

Ovarian tissue from 6 females and testis tissue from 7 to 8 males per aquarium were used for gene expression studies. Gonad tissue was homogenized with a handheld homogenizer and RNA was extracted from the tissue with Trizol® (Invitrogen, Carlsbad, CA, USA) according to manufacturer's instructions. Chloroform and isopropanol were purchased from Sigma-Aldrich Co. During extraction of testes 3.75 μL of a 10 times diluted glycogen solution (Roche, 20 mg/mL) was added to the aqueous phase to aid in RNA precipitation. The RNA pellets from ovary extractions were re-suspended in 30–50 μL GIBCO™ water (Invitrogen) whereas the volume used for testes was 10 μL.

RNA concentrations were quantified on a NanoDrop-8000 spectrophotometer (Agilent Technologies, Mississauga, ON, Canada) and diluted to 1000 ng/μL (females) or 800 ng/μL (males). RNA quality of each sample was determined by the ratio of absorbance at 260 nm and 280 nm. Further, RNA integrity of a subset of RNA samples was assessed using an Agilent 2100 Bioanalyzer and a RNA 6000 Nano LabChip kit (Agilent Technologies). Before reverse transcription (RT) the samples were quantified again with the NanoDrop-8000 spectrophotometer and DNase treated by mixing each sample with 2 μL DNase I (AMP-D1: Sigma-Aldrich) according to manufacturer’s instructions. Primers were designed according to Ings and Van Der Kraak (2006) and the sequences are shown in Table 2. In order to prevent genomic DNA amplification primers were designed to span an exon–exon boundary in the miRNA sequence.

2.5. Reverse transcription and real-time PCR (RT-PCR)

For the reverse transcription (RT) reaction a total of 2 and 1.6 μg RNA for each sample was used for females and males, respectively. RT water controls were prepared by adding 2 μL of GIBCO™ water instead of sample. The samples were incubated for 5 min at 70 °C with 2 μL (0.1 μg) random primer (Promega, Madison, WI, USA) per tube and immediately transferred to ice. The total reaction volume was
Table 1
List of investigated genes and their abbreviations. The pathway in which the genes are active is also listed as well as the tissue they were measured in. (AA: arachidonic acid).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Abbreviation</th>
<th>Pathway</th>
<th>Investigated tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation factor-1 α</td>
<td>ef1a</td>
<td>Reference gene</td>
<td>Ovaries and testes</td>
</tr>
<tr>
<td>Cytoxic phospholipase A2</td>
<td>cpl2</td>
<td>AA cascade</td>
<td>Ovaries</td>
</tr>
<tr>
<td>Prostaglandin endoperoxide synthase 1</td>
<td>pgs1</td>
<td>AA cascade</td>
<td>Ovaries</td>
</tr>
<tr>
<td>Prostaglandin endoperoxide synthase 2</td>
<td>pgs2</td>
<td>AA cascade</td>
<td>Ovaries</td>
</tr>
<tr>
<td>Aromatase cyp19a</td>
<td>cyp19a</td>
<td>Steroidogenesis</td>
<td>Ovaries</td>
</tr>
<tr>
<td>Steroidogenic acute regulatory protein</td>
<td>star</td>
<td>Steroidogenesis</td>
<td>Ovaries and testes</td>
</tr>
<tr>
<td>17β-hydroxysteroid dehydrogenase type 2</td>
<td>17β-hsd2</td>
<td>Steroidogenesis</td>
<td>Testes</td>
</tr>
<tr>
<td>17β-hydroxysteroid dehydrogenase type 3</td>
<td>17β-hsd3</td>
<td>Steroidogenesis</td>
<td>Testes</td>
</tr>
<tr>
<td>Cytochrome P450 family 11 β</td>
<td>cyp11β</td>
<td>Steroidogenesis</td>
<td>Testes</td>
</tr>
</tbody>
</table>

2.6. Determination of steroid hormones and PGE2

Six females and six males from each aquarium were used for steroid and PGE2 measurements. Extraction of steroids was performed on dissected ovaries and whole body homogenates of males. The ovary tissue was sonicated after addition of 100 μL of a 0.1 M PBS buffer (Na2HPO4, NaH2PO4 and NaCl; pH 7.4) with 1 mM EDTA and 10 μM indomethacin. Whole body male fish were pulverized in a chilled ceramic mortar filled with liquid nitrogen and the homogenate was mixed with 4× homogenate weight (v/v) of PBS buffer and then sonicated.

Ovaries and whole body homogenates were extracted with 400 μL methanol and the incubation time reduced to 30 min. The three methanol phases were combined and dried down under a stream of nitrogen or in a TurboVap® (Caliper Life Sciences, Hopkinton, MA, USA). The extract was reconstituted in 300 μL (ovaries) or 4× homogenate weight (males) of a 50 mM acetate buffer (glacial acetic acid and sodium acetate; pH 4.0). The ovary sample extract was passed through 100 mg/mL Amprep C-18 octadecyl mini-columns (Amersham Biosciences, Little Chalfont, England) according to the manufacturer’s instructions for non-polar analytes whereas a fraction (250 μL) of all sample extract from the males was passed through 30 mg/mL Strata™-X columns (Phenomenex, Denmark) according to manufacturer’s instructions for reversed phase solid phase extraction of neutral compounds. Ethyl acetate (1% methanol) was used to collect the final elute from ovaries and 50:50 methanol/acetonitrile (1% acetic acid) was used to elute the male samples. This fraction was dried down under a stream of nitrogen or in a TurboVap®. Ovary samples were reconstituted in 300 μL EIA buffer whereas males were reconstituted in 1000 μL E2, 11-KT and PGE2 levels were analyzed by enzyme immuno assays (EIA; Cayman Chemical, Ann Arbor, MI, USA) as per manufacturer’s instructions. Plate development times for E2, 11-KT and PGE2 were 120, 30 and 90–120 min respectively.

2.7. Vitellogenin by ELISA

Homogenization and preparation of the samples for vitellogenin analysis was performed according to Kinngberg et al. (2007). Direct non-competitive sandwich ELISA was used to quantify vitellogenin concentrations in the supernatant of the sample homogenate according to Holbech et al. (2001) with the modifications described in Morthorst et al. (2010).

2.8. Data analysis and statistics

Prior to analyses all data sets were screened for homogeneity of variance and normality and if necessary data were log transformed. To make sure the replicates in each exposure group did not differ from each other a one-way ANOVA was performed before values from the replicates were pooled. A Bonferroni–Holm corrected one-way ANOVA was performed to compare the exposure groups with the control. The software package SigmaStat® Statistical Software version 2.0 was used in all statistical analyses and statistical differences were considered significant if p<0.05.

3. Results

3.1. Chemical analysis of ibuprofen concentrations in water

The measured concentrations of ibuprofen during the 24-hour period between water renewals are shown in Table 3. The variation between the replicates within a treatment was minimal. Ibuprofen concentrations were constant throughout the experiment and the
drop in ibuprofen concentration over a 24-h period was 12–13% in all exposure groups.

3.2. Steroid and PGE₂ concentrations

Whole body male and ovarian PGE₂ levels in the control groups were in the range 25–85 and 11 to 45 pg/mg tissue, respectively. PGE₂ levels in both males and females decreased in a monotonic dose–response relationship in response to ibuprofen (Fig. 1A and B). The male PGE₂ levels were significantly different from the control at all exposure concentrations whereas ovarian PGE₂ levels were only significantly different at 506 µg ibuprofen/L. Whole body 11-KT levels in control males ranged from 0.34 to 5.77 pg/mg tissue and ovarian E₂ levels in both males and females decreased in a monotonic dose

3.3. Ovarian and testicular gene expressions

A significant decrease in ovarian expression levels of cpla2 was found in the intermediate exposure group (201 µg/L) (Fig. S2). The expression levels of ef1a among the different groups were not significantly different; however, the median expression level in the intermediate group was higher compared to the other groups (Fig. S2).

No effect was observed on the expression levels of the remaining investigated genes in ovariies (ptgs1, ptgs2, star and cyp19a) and testes (cyp11f, 11β-hsd2, 17β-hsd3, star and ef1a) (Figs. S2 and S3).

3.4. Vitellogenin analysis

Body weights of males and females were similar between the exposure groups (Fig. S1). A few males with high levels of vitellogenin were present in all groups except the high exposure group. Those four outlying values were removed from the dataset prior to performance of the statistical tests. Outlying values were defined as values more than 10 times higher than the highest remaining value in the dataset. Vitellogenin levels in exposed males and females were not significantly different from the control (Fig. 3A and B).

3.5. Egg production and GSI

Egg production was not affected at any of the exposure concentrations (Fig. 4).

GSI of the females was not affected in a significant way but a slight increase in GSI was observed in the high exposure group (Fig. 5).

4. Discussion

Due to high consumption rates and insufficient removal in STPs human and veterinary pharmaceuticals have been detected in aquatic ecosystems and aquatic organisms might therefore be continuously exposed to highly consumed pharmaceuticals like analgesics (Ankley et al., 2007). However, only few experiments have investigated the possible effects of analgesics on aquatic vertebrates. Mild analgesics inhibit the enzymes responsible for prostaglandin synthesis, cyclooxygenase-1 and -2 (COX-1 and COX-2). Prostaglandins and their precursor arachidonic acid play key roles in vertebrate reproduction for example oocyte maturation, ovulation and regulation of gonadal steroidogenesis (Van Der Kraak and Chang, 1990; Wade and Van Der Kraak, 1993; Sorbera et al., 2001; Patino et al., 2003). Both steroid- and prostaglandin-derived sex pheromones have been identified in fish (Stacey, 2003), and exposure to prostaglandin F₂α (PGF₂α) increases goldfish testoster-

one levels (Mennigen et al., 2010) suggesting that alterations in prostaglandin levels could influence fish reproduction. This experiment clearly demonstrates that PGE₂ levels were significantly reduced in male whole body homogenate at all exposure concentrations (21–506 µg/L) and in ovaries a similar pattern was observed (Fig. 1). Prostaglandins are involved in induction of both male and female sexual behavior in fish (reviewed by Sorensen and Goetz (1993)) suggesting that prostaglandin inhibitors could affect spawning and fertilization. Despite significantly reduced prostaglandin levels the cumulative egg production (Fig. 4), female GSI (Fig. 5) and number of spawning events (data not shown) were not affected. In a
long-term study (132 days) ibuprofen did also not affect GSI in medaka (Han et al., 2010) but reduced spawning events and increased number of eggs was observed which is in accordance with another study (Flippin et al., 2007). The effect of ibuprofen on spawning in the medaka could be due to a longer exposure period but also zebrafish egg production can be difficult to assess, as the daily egg production is variable and affected by temperature, age, spawning strategy etc. (Paull et al., 2008). Indomethacin caused reduced egg production and reduced PGE2 levels in female zebra after 16 days of exposure (Lister and Van Der Kraak, 2008), but it remains unclear whether reduced egg production was caused by changes in male reproductive behavior or oocyte maturation and ovulation.

Analgesics impair testosterone synthesis in male rats (Didolkar et al., 1980; Kristensen et al., 2011, 2012) and Fernandes et al. (2011) recently showed, that ibuprofen inhibits enzymes involved in androgen synthesis in gonads of male carp in vitro. On the other hand ibuprofen did not influence testosterone levels in male mice (Martini et al., 2008) and generally mammalian studies have provided conflicting results regarding effects of analgesics on steroid production, which could be explained by the fact that analgesics have different mechanisms of action even though acting on the same enzyme and in addition test species, timing and duration of exposure may also play a role (Didolkar et al., 1981; Gupta and Goldman, 1986; Wise et al., 1991). Altered steroid production could influence steroid metabolism and subsequent reproductive processes related to hormone levels was beyond the scope of this experiment.

Alteration in levels of the estrogen-dependent yolk precursor vitellogenin is a well-known biomarker for exposure to endocrine disrupters in fish (Tyler et al., 1999; Holbech et al., 2012). Ibuprofen did not affect male or female vitellogenin levels (Fig. 3), which suggests that ibuprofen does not affect steroidogenesis through the estrogen receptor pathway. This is in accordance with results from the yeast estrogen screen assay (YES assay) in our lab where ibuprofen and other analgesics failed to induce a response by binding to the human estrogen receptor (data not published).

Steroids are synthesized through multiple steps and numerous enzymes are involved and changes in expression levels of involved enzymes and substrate levels can influence hormone levels. C17, 20-lyase (also called P450c17 and CYP17) and 11β-hydroxylase (CYP11β) are involved in androgen synthesis. In an in vitro system with male carp gonads analgesics impaired the activity of CYP11β and CYP17 (Fernandes et al., 2011) but ibuprofen did not influence adult male 11-KT levels in our study. Enzymes like CYP11β were demonstrated mainly to be active during early spermatogenesis in sex bass (Fernandes et al., 2007) and hence exposure to ibuprofen during juvenile life stages could influence androgen production. Expression levels of the following genes directly or indirectly involved in androgen synthesis were investigated in testes: 11β-hsd2, 17β-hsd3, cyp11β and star but expression of these genes was not affected.

Fig. 2. Male and female 11-KT and E2 concentrations. (A) 11-KT concentrations in male whole body homogenate and (B) E2 concentrations in ovaries. Data represent mean±SEM. The number of male and female fish in each exposure group is indicated in the bottom of the figure.

Fig. 3. Male and female vitellogenin concentrations. Vitellogenin concentrations in (A) males and (B) females. Four outlying male values were removed. Data represent mean±SEM. The number of male or female fish in each exposure group is indicated in the bottom of the figure.
Both cpla2 and ptgs2 are involved in prostaglandin synthesis and ovarian expression levels of those genes fluctuate during the ovulatory cycle of spawning zebrafish whereas expression of ptgs1 remains fairly stable (Lister and Van Der Kraak, 2009). In this experiment ovarian expression of cpla2 in the intermediate exposure group (201 µg/L) was significantly different from the control (Fig. S2). Zebrafish ovarian development is asynchronous with follicles in different stages. The proportions of follicles in different stages vary between individuals and could explain the significant difference of cpla2 expression even though sampling occurred at the same time every day. Ibuprofen inhibits the COX enzymes by substrate competition and a response to overcome this inhibition could be increased COX enzyme synthesis. However, expression of ptgs1 and -2 was not affected by ibuprofen in the present experiment which supports the finding of Lister and Van Der Kraak (2008) who showed that reduced PGE2 levels did not affect COX enzyme activity levels. Together these results suggest that a reduction in prostaglandin levels is not necessarily linked to a reduced COX activity or that ibuprofen is unable to inhibit COX activity in zebrafish and may reduce prostaglandin levels through other yet unknown pathways. The role of the prostaglandin pathway in testosterone production has recently been investigated by Kristensen et al. (2012) in a fetal rat culture system and they suggest that the anti-androgenic effects of analgesics might not result from a direct inhibition of prostaglandin synthesis.

Prostaglandins are involved in many pathways and processes and their synthesis is regulated through different signaling pathways (Su et al., 2007) and COX-inhibitors also affect the activity of the aromatase (Komar, 2005) which is the enzyme catalyzing the conversion of androgens to estrogens. Arachidonic acid and its metabolites are involved in regulation of StAR, the enzyme responsible for transport of cholesterol from the outer to the inner mitochondrial membrane (Wang et al., 2003) and hence changes in prostaglandin levels could also influence cholesterol transport and thereby steroid synthesis. However, ibuprofen did not influence female star and cyp19a or male star gene expression (Fig. S2) and also not 11-KT and E2 levels. Ibuprofen significantly increased both E2 production and aromatase activity by up-regulation of mRNA transcription in H295R cells (Han et al., 2010) and a tendency to decreased testosterone production was also observed, which could be due to increased aromatase activity. Those abovementioned equivocal results suggest that NSAIDs may influence vertebrate species differently and illustrate that further investigations are needed to understand the impact of NSAIDs on aquatic wildlife.

Prostaglandins are involved in different signaling pathways and their synthesis is regulated through different pathways. In the present experiment we observed a significant effect of ibuprofen on PGE2 levels at concentrations also detected in effluent from STPs (Metcalfe et al., 2003; Camacho-Munoz et al., 2010) but no consistent effects on other reproductive endpoints were found. Prostaglandins have been shown to affect several sperm parameters in mammals and a prolonged reduction of prostaglandin levels could lead to more severe effects due to changes in fertilization success. More research is needed in the field of secondary effects of prostaglandin disruption in fish, as wild fish populations are exposed to numerous pharmaceuticals including several NSAIDs in concentrations able to affect endogenous prostaglandin levels.

Acknowledgments

We thank Jacquie Matsumoto and Kyle Alkema, University of Guelph, for their help during sampling of the fish and we also thank Bente Frost Holbech and Brian Olsen, University of Southern Denmark, for technical assistance in the laboratory. Also we acknowledge Henrik Holbech, University of Southern Denmark, for his advice relating to statistical analyses. This project was supported by grants from the Danish Natural Science Research Council and the Natural Sciences and Engineering Research Council of Canada.
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cbpc.2012.12.001.

References

