Influence of Perfusion Defects on Survival after Coronary Revascularization

Simonsen, Jane Angel; Gerke, Oke; Tamadoni, Mohammad; Rask, Charlotte Krogh; Thomassen, Anders; Hess, Søren; Johansen, Allan; Mickley, Hans; Jensen, Lisette Okkels; Hallas, Jesper; Høilund-Carlsen, Poul Flemming

Published in:
European Journal of Nuclear Medicine and Molecular Imaging

Publication date:
2012

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
within 60 days; 4 patients who underwent revascularization or had had any cardiovascular events between PET and ICA were excluded. Myocardial blood flow at rest (rMBF), at stress with adenosine (sMBF) and myocardial flow reserve (MFR=sMBF/rMBF) were estimated using the 1-compartment Lortie model (Flows) and/or a binary arterial tree model (QCA) using computer-based automated edge detection (QCA). MFR was divided in 3 groups: G1:MFR<1.5, G2:1.5≤MFR<2 and G3: MFR≥2. MFR was graded as non-significant (<50% or FFR 0.8), intermediate (50%≤stenosis<70%) and severe (≥70%). Correlation between MFR and percentage of stenosis were assessed using a non-parametric Spearman test. Results: In G1 (44 vessels), 17 vessels (39%) had a severe stenosis, 11 (25%) an intermediate one, and 16 (36%) no significant stenosis. In G2 (13 vessels), 2 (15%) vessels presented a severe stenosis, 7 (54%) an intermediate one, and 4 (31%) no significant stenosis. In G3 (9 vessels), 0 vessel presented a severe stenosis, 1 (11%) an intermediate one, and 8 (89%) no significant stenosis. The median FFR was 0.85 – 0.89; among 11 patients, 5 with diabetes, 1 with hypertension, and 1 with renal insufficiency, diabetes, smoking, age > 63 years, known IHD, inability to perform ergometer bicycle stress, and hypercholesterolemia. Median follow-up time was 980 days. End points were myocardial infarction or need for revascularisation of significant stenosis (ischemic events or death). Results: CAD was present in 256 patients (81%) and ≥ 400 in 62 patients. The annualized event rate of ischemic events or death was higher in the group of patients with CACS ≥ 400 (6.6%) compared to patients with CACS 0-399 (1.5%). When comparing ischemic events only the event rate was 4.6% and 0.9% in patients with CACS ≥ 400 and CACS 0-399 respectively. Cox regression analysis showed that CACS ≥ 400 (RR 3.4, p = 0.011, CI 1.3 to 9.0) and inability to perform ergometer bicycle stress (RR 4.8, p = 0.036, CI 1.1 to 21.4) were the most powerful predictors of ischemic events or death, whereas CACS ≥ 400 (RR 4.0, p = 0.034, CI 1.1 to 14.2), diabetes (RR 5.1, p = 0.016, CI 1.4 to 19.0), and male gender (RR 3.8, p = 0.059, CI 0.95 to 15.1) were the most powerful predictors of ischemic events only. Conclusion: CACS ≥ 400 is an important risk factor for ischemic events and death or ischemic events only in patients despite normal MPl and LVEF. CACS should subsequently be considered performed alongside MPl procedure.

OP144
High Dosage Nicorandil Administration on PCI in initial ST Elevated AMI Patients Can Bring Beneficial Effects.

Purpose/Methods: Nicorandil administration in AMI patients was reported to reduce infarcted myocardium and prevent left ventricular (LV) remodeling. In addition, high dosage (HD) NCR administration was reported to be effective to CHF. To clarify whether HD nicorandil administration in AMI patients was more effective to salvage myocardium than low dosage (LD) nicorandil administration, 34 patients (age=62+/-10y,M/F=26/4) with initial AMI with ST segment elevation undergoing successful percutaneous coronary intervention (PCI) were enrolled. Patients were divided to HD group (15patients) and LD group (15patients) at random. HD nicorandil administration was intravenous (0.2 mg/kg/minute, intracoronary (2mg), and continuous (0.2mg/kg/h for 24hours) administration. LD nicorandil administration was intravenous (4mg), intracoronary (2mg), and continuous (4mg/h for 24hours) administration. Tc-99m MIIB QGS was done on subacute and chronic period (6 to 9 months). LV ejection fraction (LVEF), end diastolic volume (EDV) and end systolic volume (ESV) using Tc99m MIIB QGS were calculated. Total myocardial perfusion score (TPS) was calculated by the summation of 5-point grading defect score (0=normal perfusion to 4=severe perfusion defect) of 17 SPECT segments. Extent score (ES) was calculated by the number of hyperperfusion and perfusion defect segments. Exercise tolerance was estimated by anaerobic threshold oxygen consumption (AT-VO2) and peak oxygen consumption (Peak-VO2) using cardiopulmonary exercise test (CPX). Result: There were no significant differences between HD group and LD group in CPK, BNP, AT-VO2 and subacute and chronic EF, EDV and ESV. Some results of HD group were significantly better than LD group in subacute TDS (HD: 8.6+/-6.7 vs. LD: 16.4+/-10.4; p=0.01), chronic TDS (HD: 7.2+/-6.6 vs. LD: 13.7+/-11.7; p=0.04) and chronic Peak-VO2 (HD: 23.5+/-4.8 ml/min/kg vs. LD:17.8+/-4.5 ml/min/kg; p=0.004). Conclusion: High dosage nicorandil administration in AMI patients was effective to reduce myocardial infarction and improve exercise tolerance in comparison with low dosage nicorandil administration.

OP145
Influence of Perfusion Defects on Survival After Coronary Revascularization
J. A. Simonsen, O. Gerke, M. Tamadoni, C. Rask, A. Thomassen, S. Hess, A. Johansen, H. Mickley, L. O. Jensen, J. Hallas, P. F. Hallund-Carlson; Odense University Hospital, Odense C, DENMARK, 1University of Southern Denmark, Odense C, DENMARK.

Aim: To test the hypothesis that with reversible ischemia by myocardial perfusion scintigraphy (MPS) the prognosis in terms of survival is more favourable following revascularization. Materials and Methods: We conducted a review of 6 years’ MPS performed in 1517 patients referred for suspected obstructive coronary artery disease. Perfusion defects were graded using the summed stress score (SSS) and a 20-
segment model: 0normal and 1, 2, 3, and 4 = slightly, moderately, severely and completely compromised perfusion. Data from up to ten years’ follow-up were derived from national registers. Results: One fourth (N=527) had either reversible (N=324) or mixed perfusion defects (N=203). Of these, 184 underwent coronary revascularisation within 180 days following MPS (group 1), whereas 65% received medical therapy (group 2). Mean follow-up was 5.0 years (range 0.2 - 9.4). Groups 1 and 2 were comparable regarding sex, age, history and ejection fraction (N=255), but differed by SSS (12.8±0.9 vs. 9.5±0.4, p=0.001, N=341), defect size (more large defects in group 1, p=0.0001), and reversibility (higher degree of reversibility in group 1, p=0.0001). All-cause death incidence rates were 3.5% and 4.3%, respectively. A total of 105 (20%) died: 34 (19%) in group 1 and 71 (21%) in group 2 (NS). Perfusion defects were small (SSS 4-8) in 235 (45%), moderate (SSS 9-13) in 131 (25%), and large (SSS >13) in 161 (31%). Of these, 20%, 37%, and 55%, respectively, were in group 1. The Hazard Ratios (HRs) for patients in group 2 having three defects sizes were 1.7 (p=0.31), 2.1 (p=0.11), and 1.9 (p=0.04), respectively. Mild, moderate or marked reversibility (reductions in SSS of ≤55%, 6-9%, or ≥10% of the maximum value) was found in 267 (51%), 135 (26%), and 125 (24%) of the 527 patients with 19%, 40% and 63%, respectively, in group 1. HRs in the corresponding subgroups in group 2 were 2.3 (p=0.07), 0.8 (p=0.59), and 2.7 (p=0.008), respectively. In 101 patients (19%) with limited reversibility, HR for medical therapy was 1.5 (p=0.31) compared to 1.7 (p=0.31), 2.2 (p=0.22), and 2.7 (p=0.01) in the 426 patients (81%) who had either i) a small defect, ii) a moderate defect with moderate or marked reversibility, or iii) a large defect with marked reversibility. Conclusion: For patients with large perfusion defects and defects with marked reversibility, the benefit of revascularization versus medical therapy was evident, as opposed to patients with smaller defects or defects with less extensive reversibility.

OP146
Ischemia but not necrosis is a predictor of post-stress LVEF drop 6 months after myocardial infarction: a gated myocardial perfusion SPECT study.
C. Guennancia1, A. Cochev1, L. Lorgis1, K. Stamboul1, O. Humbert2, M. Zieley Hospital3, L. Cottin4, Y. Cottin4, University Hospital, Dijon, France, 2Centre Georges-François Leclerc, Dijon, France.

Background: Gated myocardial perfusion SPECT (gSPECT) is able to detect restenosis or progression of coronary artery disease in the early systematic follow-up of myocardial infarction (MI). Although post-stress left ventricular ejection fraction (LVEF) decrease is often associated with ischemia, its explanatory factors after MI remain unclear. Aim: To identify the clinical and gSPECT characteristics associated with a 5% or more post-stress LVEF decrease in patients with earlier MI.

Methods: Two-hundred and thirty six consecutive patients admitted in intensive care unit for acute MI were prospectively included. Six months after discharge, a post-stress/rest gSPECT procedure was performed according to a one day protocol. Post exercise-induced stress gSPECT images were acquired 10 to 15 minutes after intravenous injection of 3.7 MBq/Kg of 99mTc-sestamibi. Rest gSPECT images were acquired 30 minutes after injection of 11.1 MBq/Kg of 99mTc-sestamibi and at least 4 hours after post-stress injection. End-diastolic volume, end-systolic volume and LVEF were determined using QGS® software. LVEF drop was considered significant if post-stress LVEF was ≤55% compared with LVEF at rest. Summed Stress Score (SSS), Summed Rest Score (SRS), and Summed Diffusion Score (SDS) were visually evaluated using a 17 segments model. Results: Post-stress LVEF drop was observed in 56 (24%) patients (group A). Demographic and infarct characteristics were similar when compared with patients with unaltered post-stress LVEF (group B). Patients with LVEF drop had significantly higher SDS when compared with patients with unaltered LVEF (median (IQR): 2 (0-5) vs 0 (0-3) p=0.016); they also had more often significant ischemia (i.e. SDS=2) (48% vs 27% p=0.006) and severe ischemia (i.e. SDS=7) (14% vs 4% p=0.024). Moreover, rest LVEF was higher in group A than in group B (62% (56-69) vs 56% (49-63) p=0.001). Multivariate logistic regression analysis identified significant ischemia (OR: 1.70, 95% CI: 1.85-7.38) and rest LVEF (OR: 1.07, 95% CI: 1.04-1.11) as independent associated factors of LVEF drop.

Conclusion: In patients with previous myocardial infarction, a post-stress LVEF decrease ≥5% is associated with higher incidence of reversible perfusion defects. These results are in accordance with the myocardial stunning model and exclude the potential influence of an extended myocardial necrosis or left ventricular remodeling on post stress LVEF fall following MI.

OP147
Estimation of myocardium at risk and saved myocardium using myocardial perfusion gated-SPECT practiced one month after infarction
L. M. G. Sanchez, Santiago Aguadé-Bruix, Guillermo Romero-Farina, Nazarena Pizzi, Gemma Cuberas, Gustavo de León.; Hospital Universitari Vall Hebron, Barcelona, Spain.

Objective: To estimate myocardium at risk (MR) and salvaged myocardium (SM) following percutaneous coronary revascularization (PCR) in patients with a first acute myocardial infarction (AMI), using myocardial perfusion gated-SPECT (gSPECT). Method: Forty patients (mean age 61.5 years, 8 women) with AMI and primary PCR were prospectively included. They underwent two gSPECT: the first one consisted in the injection of 800 MBq of 99mTc-tetrofosmin prior to the PCR. The second study (gSPECT-1) was performed when patient was considered stable immediately after PCR procedure. The second study (gSPECT-2) was performed between the fourth and fifth week following AMI. The area of real MR was quantified by assessing the perfusion defect in gSPECT-1, while the SM was measured by the difference between the MR area and the area of necrosis in gSPECT-2. The MR area in gSPECT-2 was calculated by analysing the discordance between the extension of the perfusion defect and the left ventricular motility defect. Quantification of left ventricular perfusion defects, wall motion, wall thickening, ejection fraction and ventricular volumes were assessed using the QGS software. Results: A significant improvement in perfusion, wall motion, thickening and left ventricular ejection fraction (p<0.001) was observed between gSPECT-1 and gSPECT-2. In gSPECT-2, significant discordance was observed (p=0.007) in cm2 between areas of wall motion and perfusion (extension of perfusion defect < extension of motility defect), making it possible to construct a model to estimate the extent of MR area that correlated well with real areas of MR and SM (Pearson correlation coefficient: 0.78). The degree of concordance for correct classification of patients with SM >50% was 83% (kappa: 0.6). Conclusions: Gated myocardial perfusion SPECT performed one month after early PCR in a first AMI can be used to establish an estimate of MR and SM areas.

OP148
Introduction
G. Janetschek, Austria

OP148a
PET/CT in Patients with Biochemical Recurrence after Primary Therapy
B. Krause, Germany

OP148b
Salvage Therapy Options: Urology
B. Tombal, Belgium

OP149
Salvage Therapy Options: Radiation Oncology
V. Khoo, United Kingdom

410 — Sunday, October 28, 2012, 14:30 — 16:00, Brown 2
Neurosciences: Dopamine Imaging

OP151
Quantification and Whole-Body Distribution of a Novel Dopamine D2/D3 Receptor Agonist, [123I]MCL-524, in Monkeys: A Prediction for Application in Human Subjects
S. J. Finnema1, V. Stepanov1, R. Nakao2, N. Amini1, A. W. Sromek2, J. L. Neumeyer2, P. Seeman1, M. G. Stabin1, L. Farde3, C. Hallidin1; Karolinska Institutet, Stockholm, Sweden, 2McLean Hospital/Harvard Medical School, Belmont, MA, United States, 3University of Toronto, Toronto, ON, Canada, 2VanDyke University, Nashville, TN, United States.

Aim: A fluorine-18 radiolabeled dopamine D2/D3 receptors agonist PET radioligand may be the optimal tool for investigation of the interaction between radioligand binding, endogenous dopamine and receptor trafficking in man. We recently reported the initial radiochemistry development of the promising agonist [123I]MCL-524 [1]. In the current study we performed a quantitative analysis of [123I]MCL-524 binding to central D2/D3 receptors and a whole body distribution study in nonhuman primates. Materials and Methods: A total of eight PET measurements were performed on six experimental days in four cynomolgus monkeys. Two monkeys were studied on two experimental days each using a HRRT PET system. On the first day two baseline PET measurements were performed after iv. injection of respectively [123I]MNPA [2] and [123I]MCL-524. Arterial blood was obtained for...