An Hfq-binding sRNA in *Listeria monocytogenes* regulates a virulence adhesin in an Hfq-independent manner

Sievers, Susanne; Jacobsen, Kirstine; Lillebæk, Eva Maria Sternkopf; Nielsen, Pia Kiil; Lund, Anja; Kallipolitis, Birgitte H.

Publication date:
2012

Document version
Early version, also known as pre-print

Citation for published version (APA):
An Hfq-binding sRNA in *Listeria monocytogenes* regulates a virulence adhesin in an Hfq-independent manner

Susanne Sievers, Kirstine Jacobsen, Eva Marie S. Lillebæk, Pia K. Nielsen, Anja Lund, Birgitte H. Kallipolitis

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark

Introduction

The small non-coding RNA *LhrC* is conserved among all *Listeria* species, was shown to bind to the RNA-binding protein Hfq, and is present in five sequentially almost identical copies which vary from 111 to 114 nt in size (Christiansen et al. 2006).

In 2009 *LhrC* was found to be highly expressed in blood (Toledo-Ortiz et al. 2009), and recently, Mtcheil et al. (2011) demonstrated that the sRNA is also expressed when *L. monocytogenes* resides within a macrophage cell. It can therefore be assumed that *LhrC* is very important for the pathogen when dealing with the harsh conditions within a host and thus relevant for a successful infection from the pathogen point of view.

LhrC is induced during cell surface stress

LhrC is induced by a whole range of cell surface acting agents (cefuroxime, bile salts, ethanol, etc.) as seen from Northern Blot analysis (right). Notably, there is no *LhrC* signal in cells lacking the response regulator of the two-component-system *LisRK*, indicating an imperative of *LisRK* for *LhrC* expression.

Growth experiments revealed a growth defect of *LisRK* indicating an imperative of *LisRK* for *LhrC* expression.

All five *lhrC* promoters are active

In order to determine the promoter activity of the single *lhrC* copies each of the five promoters was transcriptionally fused to the reporter gene *lacZ*. The activity of all five promoters increases dramatically after cell surface stress as shown for cefuroxime stress.

Promoters *lhrC1* and the sequentially encoded *lhrC* promoter are being strongest induced after cell surface stress.

However, induction of all five promoters is entirely lost in a *lhrC* mutant background.

Summary

- *LhrC* is induced and important for growth during cell surface stress
- *LisRK* is mandatory for *LhrC* expression
- All five *lhrC* promoters are active with *lhrC1* and *lhrC5* being most active
- *lapB* mRNA is stabilized and translated at a higher rate in *ΔlhrC1-5* after cefuroxime stress indicating a direct interaction between *LhrC* and *lapB*
- *LhrC* binds Hfq, but its interaction to *lapB* is not enhanced by the protein

LapB (*lmo1666*) - direct target of *LhrC*

The top hits of a bioinformatics search for putative targets of *LhrC* (RNApredator, Eggenhofer et al. 2011) were analyzed via RT-qPCR comparing mRNA levels of WT and *ΔlhrC1-5* after cefuroxime stress. The most pronounced difference was obtained for *lapB* mRNA (upper figure) encoding a cell wall protein recently identified as a virulence determinant (Bres et al. 2010).

According to RNApredator *LhrC* binds to the ribosome binding site (RBS) of *lapB* indicating that *LhrC* mRNA is involved in target recognition and the translational fusion of *lapB* to *lacZ* revealed a more than three-fold higher expression in *ΔlhrC1-5* compared to WT after cefuroxime stress (lower figure).

Hfq does not facilitate binding of *LhrC* to *lapB*

Binding of *LhrC* to *lapB* is shown in vitro in gel shift experiments. Even though *LhrC* binds to Hfq, the protein does not enhance the interaction of the two RNAs (upper figure). The investigated sequence of the *lapB* RNA does not bind Hfq and appears in two bands in the gel, both of which are shifted with increasing *LhrC* concentration (lower figure).

Perspectives

- *In vivo* experiments are currently undertaken to substantiate the direct interaction of *LhrC* and *lapB*
- *LapB* upregulation in *ΔlhrC1-5* will be demonstrated on protein level
- Global transcriptomics and proteomics techniques will be used to further unravel the regulatory role of the sRNA

Contact: bhk@bmb.sdu.dk, ssievers@bmb.sdu.dk