Impact of CYP2C8*3 on paclitaxel clearance in ovarian cancer patients

Bergmann, Troels Korshøj; Vach, Werner; Gréen, Henrik; Karlsson, Mats; Friberg, Lena; Nielsen, Flemming; Pedersen, Rasmus Steen; Mirza, Mansoor Raza; Brasch-Andersen, Charlotte; Brøsen, Kim

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 22. apr., 2018
Impact of CYP2C8*3 on paclitaxel clearance in ovarian cancer patients

TK Bergmann1, W Vach2, H Gréen3, MO Karlsson4, L Friberg4, F Nielsen1, RS Pedersen1, MR Mirza5, C Brasch-Andersen1, K Brosen1

1Clinical Pharmacology, Inst of Public Health, University of Southern Denmark, 2Inst of Language and Communication, University of Southern Denmark, 3Clinical Pharmacology, Dept of Medical and Health Sciences, Linkoping University, Sweden, 4Dept of Pharmaceutical Biosciences, Uppsala University, Sweden, 5Dept of Oncology, Odense University Hospital, Denmark

Introduction
Toxicity and therapeutic effects of paclitaxel vary greatly between patients and remain clinically relevant problems with implications on survival and quality of life. Paclitaxel is metabolized to inactive compounds mainly by CYP2C8 in the liver and is a substrate for P-glycoprotein encoded by the ABCB1 gene (MDR-1). We investigated the notion that single nucleotide polymorphisms (SNPs) in CYP2C8 and ABCB1 could be partly responsible for this variation through impact on the elimination.

Hypothesis and Aim
The inter-individual variability in the clearance of paclitaxel is caused by CYP2C8*3 or ABCB1 SNPs: C1236T, G2677T/A or C3435T. The aim of this study was to test the hypothesis in prospectively recruited patients with ovarian cancer treated with paclitaxel+carboplatin.

Results
In 93 patients: the 19 patients carrying the CYP2C8*3 genotype had 11 % lower clearance of unbound paclitaxel than wild-type patients. The 11 % decrease in clearance is unlikely as sole explanation for the observed inter-individual variability in toxicity and therapeutic effects. The results are nevertheless important because:
1) an impact of CYP2C8*3 has not been demonstrated before in similar studies
2) it fits well with the understanding of how a genotype can impact on a phenotype
3) it adds to the knowledge of factors that contribute to the variability of paclitaxel pharmacokinetics.

Discussion
An 11 % decrease in clearance is unlikely as sole explanation for the observed inter-individual variability in toxicity and therapeutic effects. The results are nevertheless important because: 1) an impact of CYP2C8*3 has not been demonstrated before in similar studies 2) it fits well with the understanding of how a genotype can impact on a phenotype 3) it adds to the knowledge of factors that contribute to the variability of paclitaxel pharmacokinetics.

Conclusion
The genetic variant CYP2C8*3 is associated with approximately 11 % lower clearance of unbound paclitaxel than wild-type patients.

Methods
Patients: Eligibility criteria included patients with primary ovarian cancer scheduled for therapy with paclitaxel (175mg/m²)+carboplatin (AUC5-6) every third week. Patients were recruited from four oncology departments in Denmark and one in Sweden from 2007 to 2009.

Blood sampling and paclitaxel and Cremophor EL analyses
Three consecutive samples were collected from one cycle from each patient. Sampling times were approximately 3 hours, 5-8 hours and 18-24 hours after start of paclitaxel infusion. The total paclitaxel concentration was determined by HPLC. Cremophor EL was determined using a Coomasie blue assay.

Pharmakokinetic analysis
Empirical Bayes’ estimates of clearance of unbound paclitaxel were achieved from total paclitaxel and cremophor EL concentrations in a non-linear mixed effects analysis carried out using the software NONMEM. A basic two compartment structure was used with constants and covariates from a model described by Henningsson et al(1). The covariates include age, performance status (PS) and body surface area (BSA).

Genotyping was carried out using Pyrosequencing on DNA extracted from whole blood.

Statistical considerations
Log transformed clearance of unbound paclitaxel seemed to be normal distributed (visually assessed). Hypothesis testing was thus carried out using multiple regression (test for trend) with control for age, BSA and PS. Analyses were carried out using STATA10. Empirical Bayes´ estimates of clearance of unbound paclitaxel were achieved from total paclitaxel and cremophor EL concentrations in a non-linear mixed effects analysis carried out using the software NONMEM. A basic two compartment structure was used with constants and covariates from a model described by Henningsson et al(1). The covariates include age, performance status (PS) and body surface area (BSA).

Taxane pathway. Copyright 2009 PharmGKB reproduced with permission(2).