The impact of cultivation techniques on bioactive compounds in the aerial parts of Echinacea purpurea

Thomsen, Maria Obel; Frete, Xavier; Christensen, Lars Porskjaer; Grevsen, Kai

Published in:
Book of abstracts of the 28th International Horticultural Congress (IHC)

Publication date:
2010

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Thomsen, M. O., Fretté, X., Christensen, L. P., & Grevsen, K. (2010). The impact of cultivation techniques on bioactive compounds in the aerial parts of Echinacea purpurea. In L. Rallo, R. De la Rosa, A. Monteiro, & P. B. Oliveira (Eds.), Book of abstracts of the 28th International Horticultural Congress (IHC) (Vol. 1, pp. 70). [Sm08.208] IHC.
A New Look at Medicinal and Aromatic Plants

Mathé, Á.
UNIVERSITY OF PEST HUNGARY, FACULTY OF AGRICULTURE AND FOOD INDUSTRY, H-1132, VÁR 2, Veszprém Vármegye, HUNGARY

Herbs, Medicinal and Aromatic Plants (MAPs) have been utilized in various forms, since the very early periods of mankind. Even until recently, these resources were exploited nearly without any major limitations. The initial basic curative role of MAPs has been maintained, since even today 80 % of the world’s population relies primarily on traditional medicines. In the developed parts of the world, however, an opposite trend has emerged, i.e.: To seek natural alternatives to using conventional drugs, food and cosmetics, etc. with lesser side effects.

As a counterpoint to their basic traditional culinary, as well as food industry uses to-date MAPs are intensively consumed in the form of food supplements and food additives. More recently food-additives have gained on popularity. They offer natural alternatives with less side effects to animal and ultimately to human consumption, instead of the synthetic chemicals and production increasing hormones, formerly used in animal husbandry. All these, and farther, here not detailed factors, seem to maintain a varying and ever increasing huge demand on these commodities of already limited availability. A New Look, a different holistic focus and R+D action is needed to improve and sustain a vibrant and socio-economically sound MAPs sector. Main elements of this can be best related to the sources of raw material production; The primary resource for raw materials is wild-crafting with some over nine tenth of MAPs used traditionally gathered in the so called Third World Countries. The huge demand has already lead to the overexploitation of natural resources, thus also endangering valuable incomes for rural households, especially in developing countries.

Consequently, the sustainable use of natural resources has become an inevitable imperative from both environment protection and socio-economical points of view. Further efforts should be made to secure a steady stream of raw material supply of these important species by in situ and/or ex situ production technologies.

In addition to conserving and further improving the germplasm of traditionally cultivated species, the domestication/introduction of farther crops is needed. Sophisticated in vitro micropropagation and breeding (selection) technologies aided by advanced phytochemical and molecular biological analytical techniques can further assist this process. Ultimate goal of these efforts should be to assist the recent upsurge in improving the traceability and safety (reliability) of natural products, through systematic surveys around 800 combinations were evaluated based on many thousands of samples. In the course of the agrotechnical experiments they examined the effect of the supporting system, the type of pruning, and the time of harvesting on the productivity and nutritional value, based on the results they formulated a recommendation for the producers, who were crucial participants of the breeding work.

Selection of Sponge Gourd Genotypes High in Productivity and Identification of Anti-Microbial and Anti-Oxidant Activity Characteristics

Moon, J.¹; Lee, J.²; Boo, H.³; Choi, E.⁴; Son, S.⁵; Lee, W.⁶; Cho, I.⁷
NATIONAL INSTITUTE OF AGRICULTURAL AND HERBAL SCIENCE, BDA, IOS-EKIND, JANGAN-21, 440-705, SUwon, Gyeonggi-do, REPUBLIC OF KOREA

Sponge gourd (Luffa sp.) is a potent material to be an effective health care food due to its natural characteristics of anti-inflammatory activity. As an initial step of breeding new genotypes high in productivity of sap exudates and biomass, total 32 genetic resources collected from local and overseas were screened. Twenty-five of them are included in the species of Luffa cylindrica and five of them are included in the species of Luffa acutangula. There was a high genotypic variation in productivity of sap exudates, which had a negative correlation with productivity of biomass in the genotypes of SG2, SG5 and SG24. Several genotypes introduced from overseas, including SG1, SG11, SG14, SG17, SG19, SG21 and SG26, had higher productivity in sap exudates and biomass than local ones. The worst productivity of sap exudates was observed in the genotypes of SG3, SG8, SG25, SG27 and SG30. The antimicrobial and anti-oxidant activities were analyzed in various plant parts, including sap exudates of stem (basal 50 cm), fresh plant tissues (stem, leaf and root), flowers, fruit flesh, fruit rind, and seed of one local variety. A significantly higher antimicrobial activity against Malassezia furfur was observed in the root tissue and sap exudates, while the activity against Candida albicans was higher in the leaf tissue and sap exudates compared to other parts. When the activities of antioxidant enzymes, including ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase activity (SOD), were compared, significantly lower activities were observed in stem tissue than other parts.

Hybrid Condiment Paprika Breeding and Adaptation of Agrotechnological Methodology in Hungary

Somogyi, N.¹; Somogyi, G.¹; Pauk, J.²; Taborosine Abraham, Z.³; Lantos, C.²; Gemesz Juhasz, A.¹; Marotine Toth, K.¹; García Pomar, M. I.⁴; Somogyi, B.⁵
VIZINHERBPLANTS KUTATÓ-FELELESTŰ NONPROFIT KÖZHASZNÚ KFT., KÜTER 7., HUNGARY
NAGYMARADNÁK NONPROFIT KÖZHASZNÚ KFT., HUNGARY
HUNGARIAN MOTIVATION LTD. 1141 BUDAPEST HU-V, HUNGARY
UNIVERSITY OF PEST HUNGARY, FACULTY OF AGRICULTURE AND FOOD INDUSTRY, H-1132, VÁR 2, Veszprém Vármegye, HUNGARY
CONFINUS UNIVERSITY, FACULTY OF HORTICULTURE, HUNGARY

The authors would resolve the future of the condiment paprika production – at least partly - with the forcing house production of new, Hungarian bred hybrids.

Nitrogen Fertiliser Requirements for South African Medicinal Plant Species Used in Traditional Healing Practices

Prinsloo, G.; Viljoen, J. C.; Du Plooy, C. P.
AGRICULTURAL RESEARCH INSTITUTE, BOERENARBEID VEGETABLE AND ORNAMENTAL PLANT INSTITUTE, PRETORIA 0001, REPUBLIC OF SOUTH AFRICA

The question of whether South African medicinal plants can be cultivated to meet rising demand for medicinal plants in traditional healing practices is a burning
matter. The demand for medicinal plants is related to the great cultural signifi-
cance attached to medicinal plants. The growing demand has not only resulted in
increased hazard for overexploitation of wild populations, but also an increased in-
terest in cultivation. The intensive harvesting of medicinal plants due to increased
use has in many places resulted in overexploitation and forms a serious threat to
biodiversity. This results in acute shortages and price increases for certain plant
species. Very little information is available on growing and cultivation of South
African medicinal plants. The effect of nitrogen fertiliser on the yield, chemical
composition and antibacterial activity have been determined for three medicinal
plant species used in traditional healing practices in South Africa namely Artemisia
afra, Leonotis leonurus and Sutherlandia frutescens. Different sources of nitrogen
(urea, lime ammonium nitrate and ammonium sulphate) and different levels of
fertiliser (0, 180, 240 300 and 360 kg N-ha⁻¹) were applied as treatments. The fresh
plant material was weighed and subjected to chromatographic analysis and
bioassays. The test organisms which were used in the bioassay were Staphylococcus
aureus, Escherichia coli and Enterococcus faecalis. All the species reacted positively
with addition to the three nitrogen sources with most of the treatments showing a
significant increase in the fresh mass yield with the lowest level of fertiliser applied.
Leonotis leonurus and Artemisia afra achieved the highest yield at 180 kg N-ha⁻¹
ammonium sulphate and Sutherlandia frutescens at 180 kg N-ha⁻¹ uream. The
chromatographic analysis confirmed that no major changes occurred in the plant
during the duration of the trials.

Sm08.005

Variability Agronomic, Chemical and Essencial Oil Yield of Cultivars Garlic (Allium sativum L.) of the State of São Paulo, Brazil

Teramoto, J. R. S.; **Pantano, A. P.;** **Trani, P. E.;** **Marques, M. O. M.;** **Haber, L. L.;** **Schamas, E.**¹

¹Instituto Agronômico - IAC/SP, Av. Barão de Itapura, 1481, Cx. Postal 18, Plantas Medicinais e Essenciais, 13013-970, Campinas, São Paulo, Brazil.
Effect of Picking Time on Essential Oil Yield of Ylang-Ylang (Cananga odorata)

Muchjajib, U.; Muchjajib, S.
Ramkhamhaeng University of Technology, 82 Moo 9 Hua Than, 13000, Ayutthaya, Thailand

Ylang-ylang (Cananga odorata) (Lam.) Hook. & Thomson, a member of the Annonaceae Family is a tropical medium-tall tree reaching a height of 10-20 metres. It produces flowers nearly all year round and the peak season is in rainy season during May-September. Ylang-ylang flowers have a fresh, sweet and oriental floral aroma. The essential oil obtained from ylang-ylang flowers has long been used in fragrance and food flavoring industry and today it is a popular component of many legendary perfumes and aroma formula in spa business for health and beauty. The study aimed at finding the optimal harvesting time for ylang-ylang flowers to maximize the essential oil yield. There were 4 experiments: different time of picking and distilling; different stages and sizes of flowers. The results have shown that picking flowers at 8.00 am, 12.00 noon and 4.00 pm gave 0.42, 0.40 and 0.35% v/w while picking flowers at 8.00 am and the hydro-distilling process done at 9:00 am, 1:00 pm and 5:00 pm gave 0.45, 0.44, and 0.44% v/w. Yet when the distilling time done at 9:00 am of the following day, it resulted in high amount of essential oil with 0.67% v/w. It was clearly seen that the stages and sizes of flowers affected the essential oil yield. The percentage of essential oil yield from the immature green stage, the mature greenish-yellow stage and the late yellow stage were 0.25, 0.41 and 0.31% v/w. The large flowers (1.37 x 7.14 cm; 1.91 g/flower) gave the greatest amount of essential oil with 0.74% v/w whereas the medium (1.20s x 5.87 cm; 1.56 g/flower) gave 0.47% v/w. The flowers of small size (1.18 x 5.08 cm; 1.10 g/flower) only gave 0.16% v/w. The main constituents of the extra grade of ylang-ylang oil extracted from hydro-distillation method analyzed by Gas chromatography/Mass spectrometry were as follows: geranyl acetate (18.28%), benzyl benzoate (14.42%), germacrene D (10.92%), trans-caryophyllene (10.71%) and geraniol (8.44%).

Agronomic Production and Essential Oil of Ocimum basilicum L. in Different Systems, Fertilization and Season Cultivation

Resende, R. F.; Luz, J. M. Q.; Camilo, J. S.; Blank, A. F.
Federal University of Uberlandia, Acre St, Campus Umuarama, Agricultural Sciences Institute, 89800-501, Uberlandia, Minas Gerais, Brazil

Evaluations the agronomic production and yield of essential oil of Ocimum basilicum L. produced in different systems (field, greenhouse), different types of fertilizer (mineral and organic) and different seasons the year (spring-summer / autumn-winter). The experiment was conducted at Farm Experiment of the Gloria (FUU), 20/05/2009, when the plants were in full bloom. The variables analyzed were 10 plots each plot with 20 plants. Five plots received organic manure, and the other 5 plots mineral fertilizer. The crops were taken in the morning on 19/11/2008 and on 20/05/2009, when the plants were in full bloom. The variables analyzed were height, length and width of leaves, fresh and dry mass, yield and composition of essential oil. The essential oils were extracted by hydrodistillation with Clevenger type apparatus, for two hours. The data were subjected to analysis of variance joint and means compared by T ukey test (p ≤ 0.05). There was no interaction between cropping systems and two types of fertilizers for the two seasons the cultivation. Approximately 98% of the substances contained in the essential oil of basil were identified. The three most substances produced by cultivar were linalool, acetate linalool and 1,8 cineole. The type of fertilizer did not influence the production and yield of essential oil of basil, the two seasons the cultivation. Cultivation in a protected environment favored the growth of leaves and increased leaf area, and during the two seasons year, favored increased production of essential oil extracted from the biomass of the dry leaves of basil.

Major Aroma Ingredients of Lilium Oriental ‘Siberia’ and its Effect on Human

Pan, H. T.; Sun, M.; Jin, Z. L.; Yang, W. R.; Kong, Y.; Zhang, Q. X.
Beijing Forestry University, National Engineering Research Center for Floriculture, No. 35, Qinghua East Road, 100083, Beijing, China

Flower aroma from lilium oriental hybrids is strong and easily identified. The volatile fragrance compounds released from fresh cut flowers of lilium oriental hybrids ‘Siberia’, were analyzed by dynamic headspace collection and gas chromatography - mass spectrometry (GC-MS). The main aromatic ingredients were Homomenthyl salicylate (25.98%), 1,6-octadien-3-ol,3,7-dimethyl Linalool (10.61%), 1,3-6-octadien, 3-methyl cis-octenol (7.81%) and Hexadecimal acid 1-methylketol (6.54%). As related biological targets had been mensurated, lily aroma made subjects brain boost β wave amplitude and the rate of galvanic skin response (GSR) ascended. That shows that the subjects are caused sympathetic activity, which reacts the Linalool’s effects. Linalool is a kind of monoterpenic alcohols, has obvious stimulus effect on human biological and psychological targets. With the assistant of questionnaires, the study demonstrates that lily scent has a high recognition and most people describe the lily scent as relaxed, excited, enjoyable and other word bonuses.

The Relationships between Lavender Aroma Component and Aromachology Effect

University of Agriculture, Kainai University, Goshikou, 611-0211, Ibaraki, Japan

It is widely accepted that aromas from plant essential oils show some mental and physiological effects that are often called ‘Aromachology’ effects. However, there are few reports exhibiting the clear scientific evidence on aromachology effects of essential oil. In this study, we tested aromachology effects of essential oils from two lavender (Lavandula angustifolia and L. intermedia), Lavender essential oil is believed to have relaxing effects. POMS (Profile of Mood States) test was tried to reveal the mental effects of the oils on human volunteers. Some relaxing effects such as decrease of ‘Fatigue’ feeling were observed by giving aroma of both the lavender essential oils. Power spectral analysis on R-R intervals of heartbeat was used for evaluating the physiological effects of the lavender oils on human autonomic activity. Aroma of the lavender oil from L. angustifolia (called ‘true lavender’) caused an increase of human parasympathetic nerve activity, but the oil from L. intermedia...
didn't show such an effect. To reveal key compounds causing such a difference in the physiological effect, volatile compounds of the essential oils were analyzed by GC and GC-MS. The similar contents of linalool and linalyl acetate were included in both the essential oils, but the content of camphor was higher in the oil of l-
vandine. Since camphor is believed to have the ability increasing sympathetic nerve activity, this compound may offset the relaxing effects of linalool and linalyl acetate.

Sm08.013

Estimation of Genetic Parameters in a Linalool-Type Basil Population

Blank, A. F.; Souza, E. M.; Paula, J. W. A.; Carvalho Filho, J. L. S.; Rosa, Y. R. S.; Alves, P. B.; Arrigoni-Blank, M. F.

University Federal de Sergipe, Av. Marechal Rondon s/n, CEP 49100-000, São Cristovão, Sergipe, Brazil

Basil (*Ocimum basilicum L.*) is an aromatic and medicinal plant species of great economical importance, mainly owing to its essential oil content. The available *Ocimum* spp. genotypes vary considerably in the production and active principles of essential oil. This study aimed to estimate genotypic and phenotypic yield-related parameters and genetic gain after selection in three generations of selfing. The ac-
cessions were evaluated and selected based on individual plant selection in the S0 (original population) and S1 and S2 generations of selfing, for essential oil content and linalool content in essential oil. There were significant yield increases for both variables with gains of up to 234% for essential oil content and 71% for linalool content, indicating efficiency in the selection process. The estimates of the genetic variance and heritability, associated to high yield values, suggest the possibility of developing a new basil cultivar.

Sm08.014

Effect of the Different Plant Origin and Climatic Conditions on the Total Phenol Content and Total Antioxidant Capacity of Self-Heal (Prunella vulgaris L.)

Sárosi, S.¹; Bernáth, J.¹; Bertoll, A.²; Pistelli, L.²; Burchi, G.²; Antonetti, M.³; Benvenuti, S.⁴

¹**Department of Medicinal and Aromatic Plants, Comenius University of Bratislava, Šafárikova 6, 840 11, Bratislava, SLOVAKIA**

²**Department of Pharmaceutical Sciences, University of Pisa, Via Bonanno 33, 56126, Pisa, ITALY**

³**Department of Medicinal and Aromatic Plants, University Federal of Sergipe, Av. Marechal Rondon, 49100-000, São Cristovão, Sergipe, Brazil**

The cultivation methods for medicinal plants ought to guarantee higher yields of active constituents in the final products. However, due to the predicted climatic changes, the present agricultural systems have to be modified. According to previous reports, the quality and quantity of active constituents accumulated in medicinal plants are highly affected by climatic conditions. Climatic changes will result in several stress effects on the plants both under cultivation and in their natural habitats. In the last years it was proved that the accumulation of several terpenoids and phenol compounds can increase as a result of stress response reactions. Since phenol compounds can be regarded as “multifunctional” antioxidants due to stress effect, the amount of these chemical substances can raise significantly. Self-Heal (*Prunella vulgaris L.*) populations were evaluated in different habitats of Hungary and Italy in 2007. According to our results, the total phenol content (TPC) as well as the total antioxidant capacity (TAC) of the samples was affected by the sunnier, warmer weather conditions in Italy. In fact, plants coming from Monte Pisani and from the Botanical Garden of Lucca were characterised by significantly higher TPC (0.6±0.05 and 0.7±0.01 mg GAE/ml, respectively) and TAC (9.1±0.19 and 1.1±0.06 mg AAE/ml, respectively) values than the Hungarian originated samples (average values of 0.41 mg GAE/ml and 0.59 mg AAE/ml of seven Hungarian locations). The altered climatic conditions (direct sun instead of half shadow, higher temperature) during the cultivation of the same genotypes resulted in a similar tendency. Comparing to the woodland natural habitats, in the cultivated plants the level of TPC (average values in the natural habitats: 0.30 mg GAE/ml and in the cultivated popu-
lations: 0.53 mg GAE/ml) and TAC (average values in the natural habitats: 0.52 mg AAE/ml and in the cultivated populations: 0.72 mg AAE/ml) increased significantly.

Sm08.015

Chemical Intraspecific Variability and Chemotypes Determination of Rosmarinus officinalis L. in the Region of Murcia

Jordan, M. J.; Lax, V.; Martinez, C.; Aouissat, M.; Quillez, M.; Somotomayor, J. A.

¹**MEXICAN INSTITUTE OF INVESTIGATION AND AGRICULTURAL DEVELOPMENT, CONACR, 9315, LA ALBÉRICA, MÉRIDA, YUCATÁN**

²**DéPARTMENT DE BIOLOGIE (BIOLOGIE) DU CENTRE UNIVERSITAIRE DR. TAHAR MOULAY, BP 138 CAITI KENAR, Saida 20.000, ALGERIE**

Rosmarinus officinalis L. essential oil quantitative chemical composition depends, as it has been reported in several publications, on the geographical origin of this species. Major components previously identified in the essential oil, which define the chemotype of these plants are camphor, 1,8-cineol and α-terpinene. However, the intraspecific variability detected among plants belonging to a reduced geographical area, as it occurs in the Region of Murcia (11,313 Km²) implies the necessity of defining the existence of different chemotypes and their relation to the climatic conditions in the growing area. On these bases, 31 wild rosemary populations (making a total of 152 individual plants) were prospected and analyzed. The chromo-
matographic analysis allowed for the detection of 3 major different chemotypes, including: 1,8-cineol-α-terpinene-camphor (representing a 18.42% of the total plants analyzed) followed by camphor-1,8-cineole-α-terpinene (17.76%) and 1,8-cineol-camphor-α-terpinene (13.82%). Minor chemotypes characterized correspond to: α-terpinene-1,8-cineol-camphor (4.61%); α-terpinene-camphor-1,8-cineol (3.95%) and camphor-terpinene-1,8-cineol (3.95%). It is interesting to remark the existence of some plants with an essential oil rich in components as verbenone (13% of the oil), borneol (11%) and camphene (10%). For these shrubs, the essential oil chemotype is defined by the major components above mentioned plus these minor components. At the same time, the effect was determined by the altitude of the growing area on the essential oil chemotype definition. Regarding this, in areas located from sea level to 1000 m above sea level, the major component identified in the oil was 1,8 cineole (representing 69% of the plants analyzed) followed by camphor (27%). However, this situation changes in areas situated between 1000 and 1500 m a.s.l., since the percentage of shrubs with camphor-1,8-cineol, and 1,8-cineol-camphor chemotypes were similar (40% and 38.5% respectively).

Sm08.016

Antioxidant Properties and Total Phenolics of Anatomical Parts of Hypericum foliosum Alton

Rainha, N.; Rodrigues, C.; Lima, E.; Baptista, J.

¹**University of Azores, Department of Biological, Rua da Sãò de Deus, 9501-801 Ponta Delgada, S. Miguel, Azores, PORTUGAL**

²**University of Azores, Department of Technological Sciences and Development, Rua da Sãò de Deus, 9501-801 Ponta Delgada, S. Miguel, Azores, PORTUGAL**

³**Départment de Biologie (Ecologie) du Centre Universitaire Dr. Tahar Moulay, BP 138 CAITI KENAR, Saida 20.000, ALGERIE**

Hypericum foliosum Alton (aerial parts-AP; flowers-FL; old leafs-OL; young leafs-YL; stems-ST; stem bark-SB; root-RO and seed capsules-SC) were studied to evaluate their pote-
tential antioxidant activity and the basic classes of its bioactive compounds using commonly accepted methodologies. The results reveal that when the antioxidant activity determination is carried out by a single method the antioxidant potential could be underestimated, since significant differences both in phenolic content (TPC) and antioxidant activities were observed. Among all samples assayed, the ST showed the best overall results including a TPC of 386.88 mg of gallic acid equivalents/dry extract which is twice the TPC of the majority of the other samples. On the other hand, the SC showed the lowest overall activity. The AP, SB and RO have higher amounts of phenolics and superior antioxidant properties than OL, YL and FL extracts in the majority of the assays. No encouraging results were obtained regarding to the inhibition of the oxidative damage of proteins with six extracts presenting a pro-oxidant role. A high correlation was found between TPC and antioxidant capacity, indicating an important role of polyphenols. The TPC showed a significant correlation (P < 0.05) with radical scavenging activity (r = 0.756), prevention of lipid oxidation (r = 0.618), superoxide anion activity (r
the reducing power activity ($r = 0.828$). No correlation was found between TPC and both protein oxidative damage and iron-chelating ability which could be related to other substances such as polyphenoloids, proteins or peptides in the extracts. These results reveal a promising plant, particularly the stems and stem bark, containing powerful antioxidants with different modes of action, for a more detailed future investigation of its potential pharmaceutical applications.

Sm08.017
A Comparative Study of Aroma Components of Wild Chrysanthemums in China

Sun, M.A.; Li, P.; Zhang, Q. X.

RESEARCH UNIVERSITY

National Engineering Research Center for Horticulture, No. 35, Qinghua East Road, Beijing; 100083, China

Beijing Qiaoning Landscape Engineering Co., Ltd., China

Most *Compositae* plants have aromatic odor but different kinds of wild chrysanthemum have significant difference among aroma components. A dynamic headspace protocol was used to collect fresh floral scents of six wild chrysanthemums. By using the Thermal desorption Cold Trap Gas Chromatography/Mass Spectrometry (TCT-GC/MS) technique, more than 30 components were identified from the volatiles, including the shared aroma components such as n-hexane, ethyl acetate, n-pinen and cineole. Different chrysanthemums have their own components too. Comparison of the volatile components in the six wild chrysanthemums showed that 8-Phellandrene, nonanala and beta-pinen were special aroma components of *C. chintesi* and 1,3,5-Cycloheptatriene, 2,6,6-trimethyl-bicyclo[3.1.1]hept-2-ene-trans-ocimene, cis-terpineol were characteristic components of *C. indicum*, Acetic acid, hexylidene and D-Germacrene were own components of *C. indicum* var. aromaticum, while *C. vestitum* have six kinds aroma components, such as 1-Octene, Hexanal, Hexenal, 3-Hexen-1-ol, 3-thujene and benzaldehyde. Benzene and 3,5-Heptadien-2-ol, 2,6-dimethyl were characteristic of *C. lavandulifolium*. And *Opisthobapappus taishangensis* had two kinds characteristic aroma components, limonone and farnesene. It is shown that *C. vestitum* and *C. chintesi*, *C. indicum* var. aromaticum and *C. lavandulifolium* were clustered into the same group on the dendrogram because of their similar aroma components, while *C. vestitum* var. aromaticum and 3,5-Heptadien-2-ol, 2,6-dimethyl were characteristic of *C. indicum*. 1-Octene, Hexanal, Hexenal, 3-Hexen-1-ol, 3-thujene and benzaldehyde. Benzene and 3,5-Heptadien-2-ol, 2,6-dimethyl were characteristic of *C. lavandulifolium*. And *Opisthobapappus taishangensis* was clustered into another group for its significant different aroma components from the other five kinds of chrysanthemums.

Sm08.018
Effect of Salinity Stress (NaCl) on Growth and Development and Chicoric Acid of *Echinacea purpurea* cv. Magnus

Baninasab, B.; Yadollahi Zadeh, S.; Ramin, A. A.; Ghaizaskar, S. H.; Kamali, H.

Isfahan University of Technology, College of Agriculture, Department of Horticulture, 8415683111, Isfahan, Iran, Islamic Republic of Iran

Abant Izzet Baysal University, Biology Department, Tr-14280 Bolu, Turkey

Salinity is a growing problem in agricultural soils that affect plant growth, including medical plants, reducing their yield. On the land, the synthesis of active substances is not directly involved with the natural plant growth. Their production is known to be influenced by many factors, both environmental and genetic as a response to particularly stressful situations (high temperature, low water availability, herbicides pressure) or as an information exchange mechanism. Our work is focused on the chemical characterization of rosmarinic essential oil from 30 Spanish wild populations. This bio-prospection has been carried out in Alcarria region, placed in the Centre of the Iberian Peninsula, where plant material was collected at full-flowering time. In this area, rosmarinic is a native species which appears as an attractive crop due to its adaptation to the local climatic and soil conditions. Essential oil was extracted from rosemary leaves and flowers by hydrodistillation and was analyzed by gas chromatography. The first results show an average essential oil yield of 2.05% (± 0.25). Sixty-two different components have been identified, accounting for 95.77% and 96.40% of essential oils, respectively, 17 compounds both in the natural habitat and culture herbage representing 95.77% and 96.40% of essential oils, respectively, were identified. While 8-pinen was the compound with the highest value (17.55%) in the natural area essential oil, 8-cubebene was determined as the highest value (24.94%) component of the culture area essential oil.

Sm08.019
The Composition of Herbage Essential Oils from Natural and Culture of Endemic *Salvia cyanescens* Boiss. et Bal. in Turkey

Cosge, B.; Bingol, U.; Gurbuz, B.; Turker, A.; Ipek, A.; Beyazi, E.; Pour, K. A.

Abant Izzet Baysal University, Vocational School of Higher Education, Muduru, Bolu, Turkey; TB-14140, Bolu, Turkey

Ankara University, Faculty of Applied Science, Biodiversity Department, Ankara, Turkey

Sehir University, Faculty of Agriculture, Field Crop Department, 06100 Duzce, Ankara, Turkey

This research was carried out at Organic Farming Program, Mudurnu S.A. Vocational Higher School, Abant Izzet Baysal University and the Department of Field Crop, Faculty of Agriculture, University of Ankara in 2009. The plantation was established with natural cuttings of *Salvia cyanescens* Boiss. et Bal.; endemic to Turkey, in 2009 year. This year, only one cutting was done and the herbage samples for essential oil compounds were obtained from this cutting. Essential oils obtained by hydrodistillation form natural and culture of herbage were analyzed by GC-MS, Hewlett Packard 6890 N model, for determination of essential oil compounds. Essential oil ratio from natural and culture area was recorded as 0.10% and 0.05%, respectively. 17 compounds both in the natural habitat and culture herbage representing 95.77% and 96.40% of essential oils, respectively, were identified. While 8-pinen was the compound with the highest value (17.55%) in the natural area essential oil, 8-cubebene was determined as the highest value (24.94%) component of the culture area essential oil.

Sm08.020
Chemical Characterization of *Rosmarinus officinalis* Wild Populations Essential Oil from Alcarria Region (Spain)

C.I.A. Albaladejo (JCCLM), Ctra. Cuenca-Toledo, Km 174, 16194, Cuenca, Spain

Abant Izzet Baysal University, Mudurnu S.A. Vocational School of Higher Education, Muduru, Bolu, Turkey

Erciyes University, Faculty of Development Agriculture, Field Crops Department, Kayseri, Turkey

Ordu University, Faculty of Agriculture, Field Crops Department, Ordu, Turkey

University of Technology, Faculty of Dried Agriculture, Field Crop Department, Kahve, Turkey

The quality and commercial value of an aromatic or medicinal plant is fairly related with its chemical composition. Secondary metabolites are compounds which are not directly involved with the natural plant growth. Their production is known to be influenced by many factors, both environmental and genetic as a response to particularly stressful situations (high temperature, low water availability). The present work was focused on the chemical characterization of rosmarinic essential oil from 30 Spanish wild populations. This bio-prospection has been carried out in Alcarria region, placed in the Centre of the Iberian Peninsula, where plant material was collected at full-flowering time. In this area, rosmarinic is a native species which appears as an attractive crop due to its adaptation to the local climatic and soil conditions. Essential oil was extracted from rosemary leaves and flowers by hydrodistillation and was analyzed by gas chromatography. The first results show an average essential oil yield of 2.05% (± 0.25). Sixty-two different components have been identified, accounting for 95.77% and 96.40% of the total oils. Terpene hydrocarbons alpha-pinene (8.01-16.75%), camphene (5.00-8.73%) and beta-pinene hydrocarbons alpha-pinene (8.01-16.75%) camphene (5.00-8.73%) and oxygen terpene derivatives 1,8-cineole (13.28-32.36%) and camphor (13.74-34.61%) are the most representative ones. The aim of this research is to obtain as much information as possible about natural and biochemical available resources to start with breeding programmes of wild growing populations in order to provide an appropriate plant material necessary for an adequate cultivation technology.
Sm08.021

Phenolic Fraction Composition (Phenolic Acids and Flavanoids) of *Salvia lavandulifolia* Wild Populations from Alcaria Region (Spain)

Universidad de Salamanca, Departamento de Farmacognosia, Apdo. de Correos 370, 37080 Salamanca, Spain

Spanish sage (*Salvia lavandulifolia* Vahl.) is a perennial undershrub native from Iberian Peninsula. It mainly grows in dry areas where there is a limestone formation with little deep soil. These low water and soil requirements would make them an attractive species for local farmers as an alternative to traditional crops in marginal lands. It needs an appropriate plant material to achieve homogeneous productions. Our study involved the collection, chemical characterization and conservation of 30 Spanish sage wild populations from Alcaria Region (Spain), in order to get data about their chemical composition, which will be used in future breeding and selection programmes. All the samples have been collected in full-bloom time. They have been hydro distilled to extract their essential oil. After that, the methanolic extract of the distillation residues has been analyzed with HPLC method to determine their phenolic fraction composition. The antioxidant capacity of phenolic acids and flavonoids is well known. This biological activity has a preventive effect against cardiovascular diseases and cancer, making the plants with high contents on them very interesting for phytopharmacy, cosmetic and food industry. First HPLC analysis results show an average flavonoids concentration on Spanish sage distillation residues of 120.87 mg/Kg (57.69-228.62 mg/kg) being Kaempferol (29.95-158.50 mg/kg) and Quercitrin (12.59-75.37 mg/kg) the majority ones. Regarding phenolic acids, the average concentration of all the samples is 11.66 mg/Kg, going from 6.11 to 25.76 mg/kg. Rosmarinic acid is the main one (5.75-20.81 mg/kg). Finally, Carnosic acid and Carnosol have been measured separately as they are described on bibliography as the most representative phenolic compounds in Spanish sage, in our study, they have been found in an average concentration of 6.14 mg/kg (2.75-14.40 mg/kg).

Sm08.022

Temulawak (*Curcuma xanthorrhiza* Roxb.): Standardization Activity and Chemical Profile

Darusman, L. K.1;2; Purwakusumah, E. D.1;2; Priosoeryanto, B. P.1;2; Hasanah, M.4; Rahardjo, M.4; Nurcholis, W.1,2

1Bioinformatics Research Center, Bogor Agricultural University, Kawung Kuning Kencana, Jl. Taman Kencana No. 5, 16118, Bogor, West Java, Indonesia
2Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Indonesia
3Faculty of Veterinary Medicine, Bogor Agricultural University, Indonesia

Yogyakarta, Indonesia

The research is aimed to develop the standardised *Curcuma xanthorrhiza* Roxb., as raw material for the herbal medicine. The research consists of two steps. The first step is standardization of *C. xanthorrhiza* material production through variety selection and modification of growth environment. The second step is the separating of temulawak bioactive compound from the matrix through separation methods selection. The parameters of these activities are active compound content (curcuminoid and xanthorchilin), Brine Shrimp lethality test (BSSLT), and antioxidant test. The result showed that the promising line of *C. xanthorrhiza* A is the best promising line of temulawak because it has high xanthorrhizol and curcuminoiod productivity. Moreover, Curcumin is the most appropriate growth environment for *C. xanthorrhiza* cultivation with high bioactive productivity. The inorganic cultivation technique produced an enhanced xanthorrhizol and curcuminoiod productivity. Maseration with ethanol 96% is the best extraction method in separating bioactive from the *C. xanthorrhiza* matrix. The chemical profile and the activity of the extract also will be explored in this paper.

Sm08.023

Networking on Conservation and Use of Medicinal, Aromatic and Culinary Plants Genetic Resources in Portugal

Barata, A. M.1; Rocha, F. A.1; Lopes, V. M.1; Morgado, J.2; Malia, J.2; Bettencourt, E.3; Dias, S.4; Delgado, F.5; Costa, M.6; Farinha, N.7; Povoà, O.8; Salgueiro, L.8; Figueiredo, A. C.9

1Instituto Nacional de Recursos Biológicos, 1.2; Banco Português de Germoplasma Vegetal, Quinta de S. Jóão, s. Pedro de Menebral, 4700-415, Braga, Portugal
2Instituto Para a Ciência, Tecnologia e Núcleo de Pesquisa (INTEPI), 4700-415, Braga, Portugal
3Sintra, Rua de Santo António nº 15, 2850-461, Castro d’Ozo, Sintra, Portugal
4Universidade de Aveiro, Av. Dr. Mário Gomes, 3810-193, Aveiro, Portugal
5Instituto Nacional de Recursos Biológicos, 1.2; Quinta do Marques, 3786-001, Oeiras, Portugal
6Instituto de Conservação e Recuperação de Recursos, 4000-017, Joinville, Portugal
7Instituto de Conservação e Recuperação de Recursos, 4000-017, Joinville, Portugal
8Universidade do Algarve, Centro de Ciências da Saúde, 8001-912, Faro, Portugal
9Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal

Genetic Resources are crucial to support humankind wellbeing by contributing to increase the income of the rural populations and, thus, their general welfare, by maintaining the sustainable traditional agricultural systems. However, their importance goes far beyond the immediate economical value, as it has also drawn considerable interest at scientific and political levels as important elements contributing to local and global food security and quality. Being a repository of unforeseen potentialities, MAP GR should be studied and preserved for the benefit of present and future generations. In the past decades, research programmes on MAP GR have basically been focusing on biochemical evaluation of wild material. Nonetheless, in the last decade, efforts have been done to preserve this genetic material in situ and ex situ. Since the year 2000, several researchers have pulled synergies and joined efforts and have proposed collaborative networks on MAP GR. It was possible to define a first MAP Programme for the in situ and ex situ conservation, ethnobotany, characterisation, evaluation in support of the promotion of their sustainable utilisation. In Portugal, the MAP collection preserved in ex situ conditions field and seed collections) and in vitro, adds to a total of 1,224 accessions belonging, inter alia, to the families Lilaceae (3%), Apiaceae (2%) and Lamiacae (0.7%). So far, twenty-seven species belonging to these families were characterized, evaluated and multiplied, and a total of 1,500 ethnobotanical questionnaires were elaborated at national level based on 1,800 interviews. Through these established networks it was possible to increase the amount and effectiveness of the knowledge about this important pool of genetic material and engage in systematic morphological characterisation and biochemical evaluation. The acquired integrated and complementary knowledge will allow for and the support of MAP future actions, associating the understanding and management of biodiversity and genetic resources conservation and utilisation.

Sm08.024

Friends or Foes? Ornaments - Medicinal Plants - Poisonous Plants

Farkas, A.

University of Pécs, Institute of Pharmacognosy, Rókus u. 2.; H-7624, Pécs, Hungary

Although some people are not aware of it, we constantly come across medicinal plants and poisonous plants alike, often in the form of ornamentals - inside or in the surroundings of our homes, schools and working places. Often it is difficult to clearly distinguish between medicinal / poisonous / ornamental plants. In case of several species, such as lavender, oreganos and sages, a large number of taxa are available for the surroundings of our homes, schools and working places. Often it is difficult to clearly distinguish between medicinal / poisonous / ornamental plants. In case of several species, such as lavender, oreganos and sages, a large number of taxa are available for the surroundings of our homes, schools and working places. Often it is difficult to clearly distinguish between medicinal / poisonous / ornamental plants. In case of several species, such as lavender, oreganos and sages, a large number of taxa are available for the
Cultivars of *Daucus* species are used in treatment of cardiac failure, but the plants are poisonous if consumed or used as tea drugs. The tropane alkaloids of *Datura* species, often planted for the decorative value of the flowers, are applied in medicine, but consumption of the plant, either intentionally or accidentally, may lead to intoxication. In our experience not only the various organs of *Datura* sp.; but also the floral nectar contains the alkaloids. Attractive as they are, some of our most popular indoor ornamentals, e.g. *Anthurium*, *Dieffenbachia*, *Philodendron* and *Spaethiphyllum* species are poisonous, being especially dangerous for children, who are inclined to taste various plant parts. According to our survey conducted in Hungarian nurseries and kindergartens, the little ones are exposed to the danger of intoxication by touching or consuming poisonous plants like *Laburnum anagyroides*, *Tussac buccata* and *Thuja* spp.; often planted as ornamentals in the playing grounds.

Sm08.025
Experiences Improvement the Herbal Crops Farming Practices and Empowerment the Framer’s Institution in Some Production Centers of Indonesia

Bachar, Y. H.

Directorate General of Horticulture, J1. A01, No. 1, Paramese, 11520, Jakarta Selatan, Indonesia

Some location in Indonesia have the good condition and potential enough for herbal crops farming because of the suitable and favorable agro-ecosystem, availability of land and water resources, and low competition with other crops. Many local social culture of the people and also the community life style have been used the herbal crops as material for medicinal, refrigerant, beverage and cosmetic purposes since long time ago. Moreover, jamu was declared as Indonesia heritage for traditional herbal which have been popularly consumed by the people for alternative and traditional medicinal, cosmetic, body refresher, etc. These conditions have supported to develop the herbal crops farming in Indonesia. Mostly the herbal crops which have been developed in some production centers in Indonesia is the rhizomes, such as: ginger, galanga, Indian galanga, turmeric, aromatic wild ginger, java turmeric, black turmeric, and Chinese key. As raw material for medicinal and jamu industries, the quality and characteristic of the product should be maintained properly in order to be conformed to the need and standard of the industry. Supporting to this matter, some actions have been carried out for farming practice improvement are: 1) formulation the GAP/SOP; 2) utilization good variety and selected seed based on the requirement of the industry; 3) selection of suitable location by considering the technical and environmental aspects (herbal crops belt development/Kawasan Tanaman Obat); 4) application of the integrated farming system approach, 4) application and promotion of organic farming and sustainable development, 5) improvement and practicing good post harvest handling, 6) primer processing on the selected product. By conducting that efforts and actions have been resulted in increasing the herbal crops production to meet the requirement of the industries, as well as improving the capabilities and capacities of the farmer's institution to produce the good quality product.

Sm08.027
In vitro Flowering in Cultures of *Daucus carota* subsp. *Halophilus*, a Portuguese Endemic Carrot

Tavares, C.1; Salgueiro, L.2; Canhoto, J.1

1 Center of Pharmaceutical Studies, Department of Life Sciences, University of Coimbra, Apartado 504, 3001-456, Coimbra, Portugal
2 Universidade de Aveiro, Center for Pharmaceutical Studies, Aveiro, Portugal

Daucus carota subsp. *halophilus* is a carrot wild-relative growing in some regions of Portugal as an endemic species. As other members of the Apiaceae family, it produces essential oils that have been characterized in a previous work. Antifungal and cytotoxicity tests showed that the oil with the highest amounts of elemicin displayed the strongest antifungal activity without side effects on mous skin dendritic cells. Protocols for the *in vitro* propagation of this species were also established by our group through axillary shoot proliferation and somatic embryogenesis. In this work the conditions for *in vitro* flowering are described. Shoots were established from axillary shoots of field-growing plants on a MS medium containing 1.5 mg/L of N6-benzyladine and 0.5 mg/L of indol-3-acetic acid and proliferating in the same culture medium start to develop inflorescences after 6 months of culture under a 16h light/8h dark photoperiod (25 ºC). Repeated subcultures using the basal parts of the proliferating shoots, in the same culture medium, results in new cycles of shoot and flower formation each four weeks. These cultures have been maintained for 18 months without loss of the flowering potential. Apart from the dimensions, inflorescences produced in *in vitro* closely resemble those formed in natural conditions. Ovules and anthers produced in *in vitro* have also the same morphological characteristics that those occurring in vivo. Moreover, acetoacarnine squashes of the anthers and fluorescence microscopy analysis using DAPI showed that the *in vivo* and *in vitro* anthers produced pollen grains quite similar. However, in some cases, supernumerary divisions of the pollen cells have been observed. Attempts to achieve seed formation and to complete the life cycle of *Daucus carota* subsp. *halophilus* in laboratory conditions are being pursued. This would be very useful for plant conservation, to improve conditions for the propagation of this taxon and for essential oil production.

Sm08.028
In vitro Cultures of *Pogostemon cablin*

Jaafar Siddik, N.; Awal, A.; Baba, A. R.; Raduan, R. S.; Setamam, N.

Universiti Teknologi MARA, Faculty of Applied Science, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia

Pogostemon cablin or patchouli is a native to tropical regions of Asia. It is a perennial aromatic herb belongs to *Lamiaceae* family. The plant has been cultivated for its essential oil which has been used in perfumery and food industries. The herb can also be used to treat pharynx pain, asthma, cough and fever. This study was conducted in order to determine the effect of various hormones combination (NAA and BAP) on leaf, stem and lateral bud explants of *Pogostemon cablin* using tissue culture technique. Result shows there was a significant difference in microshoots development and callus formation using stem and lateral bud as the explants in various combinations of hormones. For the microshoots growth, the optimum hormone combination was 0.5 - 1.0 mg/L NAA with 0.5 - 1.0 mg/L BAP. On the other hand, for callus (unorganized and undifferentiated tissues) formation, the optimum hormone combination was 2.0 mg/L NAA and 0.1 - 1.0 mg/L BAP. A friable and whitish callus was obtained from MS (Murashige and Skoog) medium supplemented with higher auxin (NAA) concentration. By comparison, sucrose concentration at 40 g/L in MS basal medium gave the optimum microshoots development whereas sucrose concentration at 20 g/L gave the optimum callus formation. The *Pogostemon cablin* microshoots and callus obtained from this experiment can be used to analyze the phytochemicals and biological activities.

Sm08.029
A New Protocol for Propagation and Development of the Greek Endemic Species *Origanum dictumns* L.

Grigoriadou, K.; Papanastasi, K.; Maloupa, E.

National Agricultural Research Foundation, Laboratory of Conservation and Evaluation of Native and Agricultural Species, P.O. Box 511, GR - 710 03, Thessaloniki, Greece

Asexual propagation and cultivation in hydroponical system and in a pilot field were studied, in the frame of a research project aiming at the sustainable utilization of the Greek endemic species *Origanum dictumns* L. Rooting of softwood cuttings was tested using two different substrates and three concentrations of IBA (0, 1000, 2000, 4000 ppm). The rooting percentage, the number of roots and the root length were measured. Best results (90-95% rooting) were observed in the substrate perlite: peat (1:3) at 1000 ppm IBA. Developed plants were planted in a pilot field where four different organic fertilizations treatments were applied. Height, diameter, fresh and dry flower weight per plant and per hectare were measured. The highest dry flower production was achieved by the addition of Agroboos, an organic fertilizer consisting of organic matter (80-90%), total N (6-8%), P2O5 (0.5-1.5%) and K2O (1-3%) (first year's production was 1170/ha while the second was...
increased at 2238 kg/he). Plants were also cultivated using hydroponical systems. The effect of three different substrates (perlite, peat:perlite, zeolite:perlite) and two irrigation levels on the growth of the plants were studied. Height, diameter, fresh and dry flower weight were measured. Best results were noticed at the perlite:perlite substrate (first year 77 g dry flower weight/plant and second year 121.86 g).

Sm08.030

Callus Induction of Kind of Parasitic Plants of Herbal Medicine

Yue, X.; Chen, G. L.

College of Life Sciences, Inner Mongolia University, No.135, University Street, Hohhot, 010022, Inner Mongolia, China

Gynniamon songaricum Rupe, a kind of parasitic plants parasite to the root of Nitrarias, is an extensively used herbal medicine. The study proposed to induce *callus* from the seed of *C. songaricum*. The seed of *C. songaricum*, collected from Ordos (longitude 108.7º, latitude 39.83º), were treated with thermal shock processing temperatures of 30 to 70 ºC using incubation time from 20 to 100 min. Then surface- sterilized seeds removed testa were used as explants to initiate *callus* on B5 medium supplemented with different contents of 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin (KT) and Gibberellic Acid (GA3). *Callus* appeared after 25 days cultivating in dark at 23 ºC. *Callus* was fast-growing and pure white, which volumes were as three times big as seeds in the first five days. But *callus* turned to brown and grew slowly in the next five days, eventually to death about 25 days. Experiment set up to repeat three times, each time repeating handle up to 100 seeds. The induction frequency was about 10% to 20%. The seed of *C. songaricum* suffers deep dormancy for several reasons. Firstly, it is nut of hard seed coating preventing absorption of water and breath of air. Secondly, it has a component of high contents inhibiting germination as ABA. Last but not the least, embryo of the seed is immature which could process a long time of after-mature to germinate. Thermal shock may accelerate metabolism to break dormancy of the seed by inducing hormone-relate enzyme. Furthermore the use of GA3 helps to overcome the dependence of seed to host. This study established a method of seed *callus* induction for the first time, from which may form haustori- um of *C. songaricum*. It may do some help to investigate parasitism of *C. songaricum*.

Sm08.031

Temulawak, Challenge and Development to Phytopharmacca Status in Indonesia

Latu, R.

PT SOHO GROUP, Jl. Pulau Gabus No. 6 KAWASAN INDUSTRI, JAKARTA 13210, PELOSANGAN, INDONESIA

The cooperation between A+B+C+G (Academia, Business, Government, and Community) to develop herbal products of Indonesian origin has been developed recently. The aim is to have the quality, efficacy and safety issue for Indonesian origin products which is controlled from seed to clinical trial. The collaboration of cooperation including in Agricultural, Phytochemistry-Pharmacology, and Pre Clinical - Clinical Trial. The team should be committed and focused in their role of working area. SOHO Group, one of the best local pharma company in Indonesia, is committed to creating and developing herals of Indonesian origin. Currently we are focusing on Temulawak or Cusumua xanthorrhiza development not only for the Indonesia market but also for developed countries. With the support from the team from local government, including Agricultural Ministry and Balittro (Indonesian Medicinal and Aromatic Crops Institute), from Academicals (Bogor Agricultural University), and Community such as the farmer thus will be good model of development to have such a quality, efficacy and safety herbal product from Temulawak. It was known that Indonesia as a tropical country enriched with its mega biodiversity, have a great number of plant and some of them known as medicinal herbs. Temulawak, one of the ancient Indonesian herbal origin has been used by ancient Indonesian people as their herbs remedies to keep their health, prevent and recovery from disease. It is become a challenge for Soho to develop more for Temulawak and have standardized quality from ‘seed to patient’. Therefore Soho is building some good model of development involving the A+B+C+G concept. The aim is not only to achieve good quality, efficacy and safety products but also to improve the agro-economy within the farmers around the Temulawak plantation.

Soho aim is not only for local Indonesia market but also for international market. In order to bridging Indonesia product within international market, Soho is willing to put huge effort in the development of both in the agricultural seed development and also in research & development thus including clinical trial. Soho is also having partner- nship with institution in developed countries on research and analysis. Beside Soho already got some cooperation with some company in developed countries to market for the product. After the indication and photochemistry already settled, we can move forward to clinical trial process and get marketing approval within the indication. In the future, Soho is willing to build herbal centre and research development of Temulawak. This aim is to have a good role model of herbal development in Indonesia. This project will involve all team from government, academicals and community. Hopefully, Temulawak can be Indonesia ginseng in worldwide and well known internationally as good quality, efficacy, and safety herbal product.

Sm08.200

Assessment of Achillea cartillageana Introduced from Wild to Field Collection

Radusiene, J.; Gudaityte, O.; Benetis, R.²

INSTITUTE OF BOTANIC, NATURE RESEARCH CENTRE, ZALIJU EZERU 49, LT-08406, VILNIUS, LITHUANIA

Achillea cartillageana Ledeb. ex Rchb. introduced into field collection and to select valuable accessions for further cultivation. The essential oils from flowers and leaves were isolated by hydro distillation and then were analysed with Fison 8261 gas chromatograph with flame ionisation detector (FID) on a fused silica capillary column, (25 m x 0.2 mm x 0.5 μm). Qualitative analysis was based on the comparison of retention indices and mass spectra. The fraction of oxygenated monoterpene was dominant in essential oils. The flower oils according to the dominant compounds were attributed to camphor, 1,8-cineole and β-pinene+ chrysanthene chemotypes. The leaf essential oils demonstrated great variation in dominating compounds. The study provides information about the composition of phenolics in ethanolic extracts of *A. cartillageana*.

Phenolic compounds were performed using a liquid chromatographic Waters 2690 Alliance HPLC system equipped with a polymeric 5µm Ascentis®TM RP-Amide analytical column (150 x 4.6 mm). Compounds were identified comparing eluting retention times and UV spectra with those of authentic standards. The total content of identified compounds varied from 9.56 to 15.05 μg/ml in flowers, from 24.49 to 64.05 μg/ml in leaves and from 4.67 to 13.10 μg/ml in stems. Chlorogenic acid and five flavonoids, namely luteolin-7-O-glucoside, rutin, apigenin-7-O-glucoside, lute- olin and apigenin, were identified in plant material. The flowers accumulated higher amounts of luteolin-7-O-glucoside, apigenin-7-O-glucoside, luteolin and apigenin while leaves were found to be superior with regard to chlorogenic acid and rutin. *A. cartillageana* accessions have potential value as a primary source for further selection.

Sm08.201

Fennel Botanical Characteristics, Chemical Composition and Antibacterial Potential of Essential Oils Extracted from Seeds of Two Varieties of Tunisian Fennel (Foeniculum vulgare)

Ennigrou, A.¹; Hassan, I. E.²; Yaakoubi, T. M.³

1 FACULTE DES SCIENCES DE TUNIS, DAR RADHIAL, BESIDES LES CHAMPES 2439 BELAOUC: D. 1015, LA SOURSA, ALEPO, TUNISIA

2 MNPF POLITECHNIQUE DE SIDI THABET, 2032, SIDI THABET, TUNIS

3 FACULTE DES SCIENCES DE TUNIS CAMPUS UNIVERSITAI TUNIS BECHÉD, 1000, TUNIS

Besides his first feature food, fennel (*Foeniculum vulgare*), has been known since antiquity for its many healing properties and its relative wealth in essential oil, two features that make this plant an interesting case study. While the second is generally preferred in rural areas. Based on the results of a preliminary literature review, we found that fennel used for therapeutic purposes in Tunisia comes in two varieties:
Sm08.202
The Influence of Chitin on Growth and Chlorophyll Content of Two Herb Plants, Anethum graveolens L. and Eruca sativa L.

Liopta-Tsakalidi, A.; Chaliakopoulos, D.; Barouchas, P.; Panagiotopoulos, L.

In Institute of Botany, Nature Research Centre, Zaliuju Ezeru 49, LT-08406, Vilnius, Lithuania

The effect of chitin soil amendment was studied in the characteristics of organic glasshouse cultivation of Anethum graveolens L. and Eruca sativa L. plants. The seeds were sown in potting soil, covered with vermiculite and remained in the growth chamber until the first real leaves appeared. The seedlings were transplanted in pots filled with the following substrates: peat, peat and chitin (2g/l), peat-sand (2:1v/v), peat-sand and chitin (2:1v/v+2 g/l chitin). Chitin in the peat substrate did not affect the length and weight of the leaves and shoot, as well as of the entire lemon balm plant, while at the peat-sand substrate it increased the corresponding sizes. It also did not affect the weight and height of the rocket plant, while it increased the fresh and dry weight of the leaves and shoot, as well as of the entire lemon balm plant, while at the peat-sand substrate it increased the corresponding sizes. As well as the length of the leaves and the plant height. The peat and chitin substrate increased the total chlorophyll content in the rocket plant’s leaves by 73%, and in the peat and sand substrate by 39%, in comparison to the corresponding non-chitin substrates. This total chlorophyll increase in the presence of chitin in both substrates is due to both a and b chlorophylls. In the peat substrate chitin increased the fresh and dry weight of the leaves, shoots, root and of the whole plant, as well as the length of the leaves and the plant height. The peat and chitin substrate increased the total chlorophyll content in the rocket plant’s leaves by 73%, and in the peat and sand substrate by 39%, in comparison to the corresponding non-chitin substrates. This total chlorophyll increase in the presence of chitin in both substrates is mostly due to chlorophyll a.

Sm08.203
Investigation of Volatiles from Saffron Flower and the Antioxidant Effectiveness

Saffron (Crocus sativus) has a flower with three characteristic reddish colored stigmas and yellow stamens, and brilliantly hued in lilac or mauve. The dried stigmas are used as an additive for foods, beverages, and as a coloring agent in cooking, as well as for medicine to treat a wide range of ailments, including stomach upsets, bulbar plaque, and smallpox. The aroma of the stigma is distinguished by a hay-like or medicinal odour, which is from the constituent safranal, while stigma extracts exhibit high antioxidant and free radical scavenging activities. A number of reports have been presented regarding the constituents and effects of the Saffron stigma, whereas investigations of the whole Saffron flower are limited. In the present study, we investigated the aroma and effects of the Saffron flower as a whole. In autumn, purple buds appear and the Saffron flower develops a brilliant pastel shade of blue with a touch of purple-red, along with an enchanting scent that resembles that of roses, without a medicinal aspect. Using head-space techniques as well as solvent extraction analyses of the scent of Saffron flowers, we identified 2-phenylethyl alcohol as the main constituent, along with other newly identified components that conjure up the image of the scent of roses. In addition, extracts from the flower revealed highly antioxidant activities. To assess the antioxidant properties of aroma extracts from Saffron flowers, we evaluated the constituents using a DPPH method and the results showed some active components, including safranal. Furthermore, we used a contingent negative variation method to determine the psycho-physiological effects, which indicated that the Saffron scent has a relaxing effect.

Sm08.204
Quantitative Effects of Temperature and Light Intensity on Accumulation of Bioactive Compounds in St. John's Wort

Raduiceni, J.; Stanis, Z.; Cirk, C.; Odabas, M. S.

Institute of Botany, Nature Research Centre, Zaliuju Ezeru 49, LT-08406, Vilnius, Lithuania

The quantitative effects of temperature and light intensity on accumulation of naphthodianthrones, phloroglucinol derivatives and phenolics were examined on greenhouse-grown St. John’s Wort (Hypericum perforatum L.). Plants were grown in greenhouse separated into two parts: shaded by 50% transparent polyester cover and un-shaded. Temperature and light intensity were measured daily using a Sato Keiyoki MFG R-740 thermo hydrograph and a Delta-T Sun Scan Canopy light analyzer. During experiment plants were harvested weekly and assayed for the chemical compounds concentrations by HPLC method. According to the results, increase in temperature from 24 °C to 32 °C and light intensity from 803.4 μmol·m⁻²·s⁻¹ to 1618.6 μmol·m⁻²·s⁻¹ determine continuous increase in contents of bioactive compounds. Multi regression analyses were performed to describe the quantitative effects of temperature and light intensity on accumulation of analyzed compounds. The relationship between temperature & light intensity and accumulation of phytochemicals was exposed by following regression equation: SMC= [a + (b1 x t) + (b2 x l) + (b3 x t²) + (b4 x l²)], where SMC– secondary metabolite content, t - temperature (°C), l - light intensity (μmol·m⁻²·s⁻¹), and a, b1, b2, b3 and b4 - coefficients of the produced equations. The simple equations were developed for predicting the contents of hyperforine, hypericine, pseudohypericine, amentoflavone, apigenin-7-glucoside, hyperoside, kempferol, rutin, quercetin, quercitrin, and chlorogenic acid in plant material of St. John’s Wort. Our results suggested that temperature and light are important environmental factors to optimize the raw material production of St. John’s Wort. The mathematical models produced in the present study could be applied as useful tools for prediction of content of phytochemicals and standardization of plant materials.

Sm08.205
Chemical Variability of Wild Rosmarinus officinalis L. from Algeria

Jordan, M. J.; Aouissat, M.; Lax, V.; Martinez, C.; Sotomayor, J. A.

IEMI, C/ MADRE 607, 31015, LA ALBERCA, MURCIA, SPAIN

Département de Biologie (Ecologie) du Centre Universitaire de Tahar Moulay, BP 135 CIT, ZONE RAID, 59000, ALGERIA

Rosemary (R. officinalis L.) is a Mediterranean shrub belonging to the Lamiaceae family. Wild rosemary, due to its bioactive properties, has been cultivated by local farmers, with no previous selection, for a long time. Specifically in Algeria, it occupies 100,000 ha of the territory; however in spite of that, there is an important lack
of knowledge about the chemical variability of this wild rosemary. On the bases of these statements, a total of 15 wild Algerian rosemary populations have been analyzed considering their essential oil yields (EO) and polyphenolic extract antioxidant activities (AA). Samples were harvested from natural populations located at 30 km from the South-west of Saida. Statistically significant differences were detected among the EO yield of the different populations and as well as between their antioxidant activities. Essential oil yield (v/w) ranged from 1.36% to 2.16%. To describe the antioxidant properties the free radical scavenging activity using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) test, and the Ferric Reducing Antioxidant Power (FRAP), were assayed. From the two methods applied, only FRAP showed a linear correlation (p<0.001; r: 0.817) with respect to the total phenolic content of the extracts. However, the test which highlights the biggest differences among the polyphenolic extracts was the DPPH• assay. These results will allow pre-selecting the best populations regarding the EO yield and the highest AA. Related to this matter, populations 1 (2.16% EO yield; 11.12 mg gallic acid/g dry extract; 9.84 mM Fe+2/mg dry extract; 38.78 μg dry extract/mL MeOH); IV (1.64% EO yield; 27.63 mg gallic acid/g dry extract; 11.51 mM Fe+2/mg dry extract; 61.52 μg dry extract/mL MeOH); and VII (1.57% EO yield; 11.43 mg gallic acid/g dry extract; 9.98 mM Fe+2/mg dry extract; 30.74 μg dry extract/mL MeOH) will undergo vegetative propagations for their subsequent establishment as a commercial crop.

Sm08.206
Chemical Characterization of Plant Genetic Resources of Gentian (Gentiana lutea L) in the Counties of Laclana and Babia (Spain)

Hernán, G.1; Varela, F.1; Navarrete, P.1; Pérez-Mao, D.1; López-Cepero, P.1; Marcos, M. F.2; Lorenzana, A.2; Campelo, P.2; Casquero, P. A.2; Calvo, R.2; Sánchez de Ron, D.2; Cases, A.2

1Dpto. Medio Ambiente - INSA, Av. E. de la Zarza 11, 28040 Madrid, Spain
2Instituto de Química Agraria, E.T.S. Ingenieros de la Universidad de León, Avda. de la Universidad, s/n, 24071 León, Spain

The objective of this study was to evaluate some morphological traits of the selected caraway genotypes. In the experiments done in 2008 and 2009, 25 selected caraway genotypes originated from: European botanical gardens (18), two cultivars: ‘Rekord’ and ‘Konzewicki’ and our own breeding strains were tested. The obtained results showed that the objects in caraway collection varied in terms of all tested morphological traits. The plant height ranged from 71.5cm (Rekjaywik) to 107.8cm (cv. ’Konzewicki’). Number of branches on the main stem was from 5.3 (Rekjaywik) to 10.0 (Jena). The number of lateral shoots ranged from 9.8 (Rekjaywik) to 21.5 (strain 9/10). Leaf length was from 11.9 cm (Lozanna) to 29.1 cm (cv. ’Konzewicki’). The number of umbels per plant was from 91.4 (Rekjaywik) to 251.9 (strain 9/10). The fruit yield ranged from 14.2 g (Rekjawik) to 48.5 g (cv. ’Konzewicki’). The weight of 1000 seeds was from 1.81 g (Salzburg) to 3.31 g (strain 9/1).

Sm08.207
Evaluation of Variability of Morphological Traits of the Selected Caraway (Carum carvi L) Genotypes

Seidler-Lozykowska, K.1; Bocianowski, J.2

1Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71, 60-630, Poznan, Poland
2University of Life Sciences, Poland

Caraway (Carum carvi L.) is one of the most important medicinal plants cultivated in Poland on area 8000 ha. The morphological traits, such as the number of branches and lateral shoots, the number of umbel per plant or seed size have a great influence on fruit yield. The aim of the study was to evaluate some morphological traits of the selected caraway genotypes. In the experiments done in 2008 and 2009, 25 selected caraway genotypes originated from: European botanical gardens (18), two cultivars: ’Rekord’ and ’Konzewicki’ and our own breeding strains were tested. The obtained results showed that the objects in caraway collection varied in terms of all tested morphological traits. The plant height ranged from 71.5cm (Rekjaywik) to 107.8cm (cv. ’Konzewicki’). Number of branches on the main stem was from 5.3 (Rekjaywik) to 10.0 (Jena). The number of lateral shoots ranged from 9.8 (Rekjaywik) to 21.5 (strain 9/10). Leaf length was from 11.9 cm (Lozanna) to 29.1 cm (cv. ’Konzewicki’). The number of umbels per plant was from 91.4 (Rekjaywik) to 251.9 (strain 9/10). The fruit yield ranged from 14.2 g (Rekjawik) to 48.5 g (cv. ’Konzewicki’). The weight of 1000 seeds was from 1.81 g (Salzburg) to 3.31 g (strain 9/1).

Sm08.208
The Impact of Cultivation Techniques on Bioactive Compounds in the Aerial Parts of Echinacea purpurea

Thomsen, M. Q.1; Frette, X. C.2; Christensen, L. P.2; Grevens, K.1

1Faculty of Agricultural Sciences, Institute of Horticulture, Aarhus University, Kirstinebjergvej 10, DK-8534 MÅLEST, Denmark
2Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, DK-5230 ODENSE, Denmark

Echinacea purpurea is an important medicinal plant and is used to treat infections, to aid in wound healing and to enhance the immune system. The active principles of E. purpurea include secondary metabolites such as alkaloids and phenolic acids. Many secondary metabolites make up the defence system of plants and hence the contents of bioactive secondary metabolites in plants may change as a reaction to stress. As a result a part of this study was to investigate how nutrient deficiency affects the content of alkaloids and phenolic acids in the aerial parts of E. purpurea. Other factors, which may affect the content of bioactive compounds is the time of harvesting the plant material. Therefore another part of this investigation was to determine how different harvest times around flowering affects the content of alkaloids and phenolic acids in the plants. Echinacea purpurea was cultivated in 2008 and 2009. The 2008 plants were exposed to 0, 100 or 200 kg N/ha and a second treatment was harvested in August whereas the aerial parts of the 2009 plants were harvested at three different development stages during the growing season (July to late August). Alkaloids and phenolic acids were extracted from fresh frozen aerial parts with methanol–water (90:10) and identified by liquid chromatography electrospray ionization ion-trap mass spectrometry (LC–ESI–IT–MS/MS) combined with photodiode array detection (PAD) and quantified in extracts by reverse phase HPLC–PAD. Major alkaloids were identified as undeaca-2E,4Z-diene-8,10-diyionic acid isobutyramide, dodeca-2E,4Z,8Z-10Z-tetronic acid isobutyramide and dodeca-2E,4E,8Z,10E-tetronic acid isobutyramide whereas cichoric acid was the dominant phenolic acid. Preliminary analyses shows, that the contents of alkaloids and phenolic acids increases due to higher concentration of nitrogen and that the different harvest stage affect their content of potential bioactive alkaloids and phenolic acids. Conclusive results will be presented and discussed at the IHC.

Sm08.209
Chemical Variability of Great Burnet (Sanguisorba officinalis L) Growing Wild in Poland

Pelc, M.1; Przybyszewska, E.1; Przybyl, J. L.1; Capecka, E.2; Baczek, K.3; Weglarz, Z.1

1Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71, 60-630, Poznan, Poland
2University of Life Sciences, Poland

Great burnet (Sanguisorba officinalis L.) is a medicinal plant that is used as a source of essential oil, which is used in the pharmaceutical and cosmetic industries. In Poland, the number of plants used for essential oil production is low. The aim of this study was to investigate the chemical variability of the essential oil of S. officinalis L. The essential oil was extracted by hydrodistillation from aerial parts of plants harvested in different locations in Poland. The essential oil yield ranged from 0.16% to 1.25%. The essential oil composition was determined by gas chromatography–mass spectrometry (GC–MS). The main components of the essential oil were 1,8-cineole, α-pinene, γ-terpinene, β-pinene, and borneol. The chemical variability of the essential oil was assessed using multivariate statistical analysis. The results showed that the essential oil composition of S. officinalis L. harvested in different locations in Poland is not significantly different.
Great burnet (Sanguisorba officinalis L.) is a perennial belonging to Rosaceae family. In Poland it usually occurs on the wet piedmont meadows. In the people medicine the herb and underground organs of these plants were used as hemostatic in gastrointestinal disorders. Nowadays the extracts from the great burnet are applied in the treatment of hemorrhage and in diarrhoea. The main active compounds of the great burnet are tannins and phenolic acids. The aim of investigation was to compare ten populations of great burnet wild growing in different areas of Poland in respect of phenolic compounds accumulation. Quantitative and qualitative analysis was performed by HPLC. The investigated populations differed distinctly in the content of particular phenolic compounds. Differences between underground and aboveground organs also were found. Catechin, epigallocatechin, epicatechin, epigallocatechin gallate, gallic and ellagic acid were found in the roots whereas rosmarinic, caffeic, chlorogenic, elagic and gallic acids in aboveground organs.

Sm08.210

Poppy Cultivation in the Slovak Republic

Salamon, I.; Fejér, J.

Department of Botany, Pécs University, 7625, Pécs, Hungary.

Poppy (Papaver somniferum L.) is a traditional crop in Slovak Republic and its cultivation has long-standing history. The recent conditions of poppy cultivation modify the Law 139 from 1998 about narcotic and psychotropic components and products. In order to this rule is it possible to cultivate of poppy on land more than 100 m² on a base of permission from the Slovak Ministry of Health. The large-scale cultivation of this special crop is concentrated in the West Slovakia, in nearness of the pharmaceutical company Zentiva, Co. in Hlohovec. Farmers prefer a combination method of poppy production: seeds for food purposes and dry capsules for pharmaceutical industry. Poppy production areas were from 386 to 2,714 hectares during last 10 years. Yield of seed are usually from 0.28 to 0.73 ton per hectare. Good agricultural practice and own Slovakian poppy varieties are very suitable background for a high yield potential of seeds (about 2 tons per hectare). Poppy capsules are as a secondary product, which is very important raw-material to our pharmaceutical industry. Their yields fluctuate according to the season and customer requests from 300 to 500 kg per hectare. Purchases of poppy straw material were from 55.3 to 1,191.5 tons annually during years 1990 and 2006. The processing capacity of the Slovakian pharmaceutical industry is much higher, about 4,000 tons, and the miss raw materials are imported from Czech Republic. The cultivate varieties of poppy are suitable accumulate from 0.4 to 0.6% of morphine. However the purchase straw material contents in average only 0.3% of morphine, statistics from 1970 to 2005 years. The influence of the vegetation season and harvest technology is affected on these results.

Sm08.211

Phytochemical Characterization of Essential Oils from Laurus nobilis from Brazil and Turkey

Morais, L. A. S.; Gonçalves, G. G.; Castanha, R. F.; Mattos, L. P. V.

Departamento de Ambiente, Escola de Medicina, USP, 05418-900, São Paulo, Brazil.

The aim of this work was to evaluate the yield and chemical composition of essential oil of laurel (Laurus nobilis L.) from Turkey and Brazil. Laurel leaves were collected at four properties in Paty do Alferes district (Rio de Janeiro State) in winter (07/26/2008), and dried at room temperature (25 °C) at shade conditions. Samples from Turkey were donated by a private company. Essential oils were obtained by hydrodistillation in a Clevenger-type apparatus for 4h and analyzed by GC-MS (Shimadzu, QP 5050, with DB-5 capillary column - 30 m × 0.25 mm × 0.25 μm). Carrier gas was Helium (1.7 mL/min); split ratio: 1:20. Temperature program: 60 ºC, rising to 240 ºC at 3 °C/ min. Injector temperature: 240 ºC and detector temperature: 260 ºC. Identifications of chemical compounds were made by matching their mass spectra and Kov’ti’s indices (IK) values with known compounds reported in the literature. The average of essential oil yield obtained was 1.4% (Paty A and D samples), 1.5% and 1.1% (Paty B and C samples, respectively) and 2% (Turkey sample). Lower yield of Brazilian essential oils may have occurred because the leaves were harvested in winter. Further studies will be conducted to verify the seasonal variation of laurel. Even smaller, they are within the acceptable market standard. Analysis by GC-MS of the essential oils has identified 16 compounds. The essential oil from Turkey presented a slightly higher content of 1,8 cineole (major compound), but it doesn’t presented linalool, methyl eugenol and myrcene, compounds founded in Brazilian essential oils. These results showed the high quality of Brazilian essential oils’ tested that indicates marketing potential to the consumer industry, without the onus of an import process. Brazilian and Turkey essential oils’ presented similar quality and the first can supply the needs of internal Brazilian marketing, reducing costs of raw material and logistics.

Sm08.212

Eucalyptus from Mata Experimental do Escarouipim (Portugal): Evaluation of the Essential Oil Composition from Sixteen Species

Universidade de Lisboa, ESCV, 164, CENTRO DE BIOTECNOLOGIA VEGETAL, Cx. Piso 1, CAMPO GRANDE, 1749-015, LISBOA, PORTUGAL.

The introduction of eucalyptus in Portugal seems to have been part of a general movement, by the mid-nineteenth century, of ordering exotic plants to beautify parks and gardens. Nevertheless, given the favourable edaphoclimatic conditions and Eucalyptus globulus particular characteristics, this species was fast in becoming an unavoidable element of the Portuguese forest [1]. The Mata Experimental do Escarouipim (Salvadora de Magos, Portugal), is an area of protected forest tutored by Autoridade Florestal Nacional, which includes an arboretum with an identified, and documented, collection of 125 different eucalyptus species, considered to be the most complete in Europe [2]. In the present work, the essential oils isolated from the aerial parts of sixteen Eucalyptus species of this arboretum were studied. The essential oils were isolated and analyzed by GC and GC-MS as in [3], and the percentage composition of the volatiles was used to determine the oils relationship by cluster analysis [4]. Despite the monoterpene fraction being dominant in all oils (62-97%), major differences were found in essential oils composition. Essential oil cluster analysis showed only a high correlation (Scorr≥0.78) among eleven species (E. cinerea, E. cordieri, E. bosinaeana, E. botryoides, E. camaldulensis, E. globulus, E. pohuechense, E. radiata, E. saligna, E. smithii and E. eucarpa), mainly due to their richness in 1,8-cineole (27-83%). The remaining five species were dominated by citronellal (36%, E. citriodora), piperitone (40%, E. dives), limonene and α-pinene (41% and 44%, respectively, E. ficifolia), α-pinene (82%, E. pachypoda) and α-phellandrene (45%, E. umbrifolia).

Sm08.213

Seed Germination and Dormancy Breaking Techniques for (Echinacea purpurea L. Moench)

Karimian, Z.; Azizi, M.; Naseri, M.

Herbert University of Mashhad, 7th Street Motahab (street, Vakilabad Roudaki-Mashhad-iran, 9118544467; Mashhad, Khorasan, IRAN, REPUBLIC OF IRAN.

Echinacea purpurea (E. purpurea) is an important medicinal plant known as a disinfectant. Its germination percentage and germination rate is generally low due to dormancy. Dormancy and germination requirements were investigated in this plant. Seeds of Echinacea purpurea were subjected to different treatments including various levels of GA3 (100, 200 and 300 ppm) and KNO3 (0.5, 1 and 1.5 percentage) for 2 hours and prechilling (50°C) for 1, 2, 3 and 4 weeks. The germination percentage and germination rate significantly increased in all of treatments. The highest germination and germination rate were obtained in prechilling treatment that induced over 90% germination. The mean germination time also improved in all of treatments and shortest mean germination time also was observed in prechilling treatment.
Accumulation of Biologically Active Compounds in Above - And Underground Organs of Common Avens (Geum urbanum L.)

Warsaw University of Life Sciences, SGGW, Faculty of Horticulture and Landscape Architecture, Department of Vegetable and Medicinal Plants, Nowoursynowska 119, 02-778, Warsaw, Poland.

Common avens is a perennial belonging to Rosaceae family. This species grows in Poland in deciduous and mixed forests on moderately humid and rich soils. Both above - and underground parts of this plant are rich in phenolic compounds, especially tannins. Underground organs contain also volatile oil with eugenol as a dominant compound. Raw materials of common avens reveal antidiarrheal, antihemorrhagic, antiprotozoal and antiseptic activity. Taking into consideration the high diversity of species the results of our cultivation have been done. The aim of undertaken study was to investigate the influence of the age of plants and harvest time on the quality of above- and underground organs of common avens (Geum urbanum L.). In the raw materials the content of phenolic compounds (tannins and polyphenolic acids) and the content of eugenol and nothinone in essential oil from the roots were determined. In aboveground organs the content of tannins and polyphenolic acids was the highest in rosette leaves, lower in shoot leaves and the lowest in spring root leaves. Rosette leaves were characterized by high content of elagic acid and epicatechin gallate. The content of tannins in underground organs was the highest in one-year old plants collected in late autumn. Two-year old underground organs were characterized by high content of catechin. Accumulation of eugenol and nothinone in essential oil from the roots was not related to the age of plants.

Diversity of Wormwood (Artemisia absinthium L.) Growing Wild in Poland in Respect of the Content and Composition of Essential Oil and Phenolic Compounds

Geszpzych, A.; Przybyl, J. L.; Kuczerenko, A.; Weglarz, Z.

Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences - SGGW, Nowoursynowska 166, 02-778 Warsaw, Poland.

Wormwood herb is regarded as a medicinal raw material rich in bitter principles. However, its biological activity is also affected by the presence of essential oil and phenolic compounds. In Poland wormwood herb is collected mainly from wild growing plants. The aim of the study was to compare the content and composition of essential oil and phenolic compounds in the raw materials obtained from eighteen populations of wormwood from central and north-eastern area of Poland. Herb was collected at the stage of plant blooming and dried naturally. Content of essential oil in the raw materials was determined by hydrodistillation method, and its composition by GC. Methanolic extracts obtained by continuous exhaustive extraction of raw materials were used for qualitative and quantitative analysis of phenolic compounds by HPLC. The content of essential oil in the investigated raw materials ranged from 0.40 to 0.88%. In six populations the dominant constituent of essential oil was sabinyl acetate, in three - chrysanthemyl acetate, in two - sabi nene, and in one - beta-thujone. Other populations were characterised by comparable content of two or three main compounds in essential oil, e.g. sabine and beta-myrcene, beta-myrcene and cineol, chrysanthemyl acetate and beta-myrcene, sabinyl acetate, chrysanthemyl acetate and beta-thujone. In the investigated raw materials eleven phenolic substances were identified: five phenolic acids (caffeic, p-coumaric, ferulic, chlorogenic, and rosmarinic one), five flavonoids (apigenin, diosmetin, orientin, quercetin, and hyperoside), and (-)-epigallocatechin gallate. In the raw materials obtained from all the investigated populations the dominant phenolic compound was ferulic acid but its content was diverse (396-1118 mg/100 g of dry herb). Remarkable level of chlorogenic and rosmarinic acids was also found (159-477 and 178-446 mg/100 g, respectively).

Yield and Phytochemical Characterization of Essential Oil from Ocimum selloi B. submitted to Hydrodistillation and Supercritical Fluid Extraction

Morais, L. A. S.; Ming, L. C.; Marques, M. O. M.; Meireles, M. A. A.

Embrapa Meio Ambiente, Laboratório de Produtos Nativos, Rodovia SP 140, km 127, 5% s/n., CR. Ponta do, BA, Brazil.

The yield and chemical composition of essential oils from leaves of Ocimum selloi B. were determined. Three morphotypes were identified. The essential oil yield from these species ranged from 0.2% to 1.6% of the dry weight. The content of eugenol and nothinone in essential oil from the roots was not related to the age of plants.

The Effects of Postharvest Treatments on the Quality Parameters of Crude Drugs of Thymus vulgaris and Origanum vulgare subsp. hirtum

Szabó, K.; Novák, I.; Sárosi, S.; Pluhár, Z.; Bányai, L.; Mándoki, E.

Eötvös University of Science, Department of Medicinal and Aromatic Plants, Pfändl u. 8., 1083, Budapest, Hungary.

The quantity and quality of the biologically active agents could be influenced significantly by the postharvest treatments. We aimed to compare the effect of natural drying, drying on 30°C, on 40°C, freeze drying (lyophilization) and refrigeration on the quality of crude drugs of garden thyme (Thymus vulgaris) and Greek oregano (Origanum vulgare subsp. hirtum). The essential oil (EO) content and composition, the total antioxidant capacity (TAC) and the total phenol content (TPC) of samples were measured. The EO content of the thyme samples occurred between 0.68 and 1.85 ml/100 g d.w. The oregano samples contained EO within the range of 3.28 and 6.80 ml/100g d.w. The freeze drying significantly decreased the amount of EO in samples of both species. In the EO of Thymus samples thymol was found
in the highest ratio (58.7-71.8%), while in the essential oil of oregano carvacrol was the main compound (91.2-95.7%). The EO compositions were not influenced by postharvest treatments. Considering the TAC of the samples, the only water extract proved to be effective, while the alcoholic extracts had no TAC. Oregano has several times stronger TAC and TPC than garden thyme. Fresh and dried-frozen samples have not shown antioxidant capacity (0.00-0.21 mg ASE/ml). The strongest TAC was measured in case of natural-drying (1.25 and 1.41 mg ASE/ml) and of 40 °C drying (1.03-1.42 mg ASE/ml) in the samples of both species. The TPC showed a little bit different character: In case of oregano naturally dried samples showed the highest values, while in case of thyme the freeze dried samples gave the highest values. Summarizing the results, deep freezing seems to have the worst effect on the quality parameters of the crude drugs.

Sm08.218
The Populations of Melissa officinalis L. (Lemon Balm) in Armenia and its Conservation through Introduction into Agricultural Production System

Abrahamyan, A.
ARMENIAN STATE AGRICULTURAL UNIVERSITY, TERAN 74, 009, YEREVAN, ARMENIA

It has been implemented field trips research work on the populations of Melissa officinalis L. in different regions of Armenia during 2008 - 2009 vegetation periods. Also, it has been surveyed its growing and biological characteristics in different populations. The selection of researching territories has been realized by taking into account the existing data (The Botanic Garden of RA) and theoretically possible existence of new population. These territories vary with their geographical location, elevation, soil types, climatic conditions etc. Though, we have found out new population, but the current condition of lemon balm's populations is alarming, due to many different anthropogenic threats. In fact, 4 populations from 11 are extinct. The map (with GPS data) shows the distributions of plant's populations is created. Also, it has been observed the factors, which have negative effect on the conservation of populations. Realized different multiple observations over the populations have exposed the fixed times of each fenophases, plant growing characteristics. We have estimated the growing sizes of each population, its abundance and the number of ripened plants etc. We have found out its certain biological characteristics in Armenia. Melissa is drought-resistant, but grows well in soils with enough moisture. It is susceptible towards early spring frosts and abrupt weather change. Chemical analyses have been done to value the essential volatile oils in plant, growing different populations. In order to contribute to the conservation of this plant, we suggest to introduce it into the agricultural production system. Created data could be served as indispensable materials for the appropriate approaches of domestication experiments of wild Melissa. This would foster the improvement of its use and the development of traditional medicine as well. In addition, created data could be basic material to assess the sustainability of Melissa populations in respect with The Red Book Criteria of IUCN.

Sm08.219
Morphological and Chemical Variability Assessment from Portuguese Mentha pulegium L. (Pennryyallow) Accessions

Lopes, V. R.1; Barata, A. M.1; Rocha, F.1; Pedro, L. M.2; Barroso, J. M.2; Figueiredo, A. C.2
1INSTITUTO NACIONAL DE RECURSOS BIOLÓGICOS, 1º ANDAR PORTICADO DE CERESFOLIA VEGETAL, QUINTA S. JOÃO, L. PISOS DE MEBELE, 4700-833 BRAGA, PORTUGAL
2UNIVERSIDADE DE LÍMBA, FACULDADE DE CÍNCIA DE LÍMBA, DVI, INSTITUTO DE BIOTECNOLOGIA E BIOECONOMIA, CENTRO DE BIOTECNOLOGIA VEGETAL, 21, CAMPO GRANDE, 1749-316 LISBOA, PORTUGAL

Mint species have been used, for centuries, for medicinal and culinary purposes due to their astringic and cooling properties. Mentha pulegium L.; commonly known in Portugal as pojo, has local medicinal and seasoning use, namely in the preparation of typical fish dishes, and liquors. Accessions of M. pulegium consisting of wild collected material and seed progeny were assessed for diversity through a combined morphochemical evaluation. Morphological characters from ten, phenolic constituents from eight, and essential oil yield and components from eighteen accessions were evaluated. The morphological characterization, used the Mentha descriptors, elaborated by Portuguese National Gene bank (BNGV), integrated in the ECPGR MAP WG (European Cooperative programme for Plant Genetic Resources Working Group on Medicinal and Aromatic Plants). Phenolics were identified and quantified by HPLC coupled with diode-array detection. The essential oils were isolated by hydrodistillation and analysed by GC and GC-MS, and the relationship between the different oil samples was assessed by cluster analysis. Morphological characters clustered the ten accessions in five groups, with six of them located in the main group, which was identified by low number of flowers in basal and terminal inflorescence and low pubescence in calyx. Phenolic characters clustered the eight accessions in four groups. The phenol profile was the same in all accessions evaluated, but interpopulational variability as observed, as well as with the morphological characters. The essential oil yield from the eighteen samples analysed ranged between 0.25-0.44% (v/w.). Oxygen-containing monoterpens dominated all samples (96-97%), pulegone (65-87%), menthone (6-20%) and isomenthone (0.4-17%), being the main components. Cluster analysis confirmed a high chemical correlation among all accessions (Scorr0.97%) which is in agreement with previous studies on this species grown in Portugal, during the flowering phase and data from other countries.

Sm08.220
Dropwort (Filipendula vulgaris L) Seeds Germinability as Affected by their Ripeness and One-Year Storage

DEPARTMENT OF VEGETABLES AND MEDICINAL PLANTS, WARSAW UNIVERSITY OF LIFE SCIENCES - SGGW, NOWOWYSZOSKOPA 156, 02-797, WARSAW, POLAND

Dropwort is a perennial, naturally occurring in Poland on sunny, semi-dry meadows and neglected fields. Above- and underground organs of this plant are used for ages in people medicine as a diuretic, antirheumatic and anti-inflammatory agents. In Department of Vegetable and Medicinal Plants of Warsaw University of Life Sciences – SGGW the cultivation trials of dropwort have been done. The aim of undertaken investigation was to study the influence of seeds ripeness and its short term storage on the germination ability. The seeds were collected in the dough and complete mature stage from two-years old plants. The germinability was assessed directly after harvest and after one-year storage, according to The International Seed Testing Association (2000). The accumulation of phenolic compounds in the seeds was performed as well. Directly after seed harvest there were no distinct differences in germination ability between the seeds collected in dough and complete maturity. After one-year storage the germination ability of seeds collected in dough stage did not exceed 40 per cent whereas fully ripe seeds germination ability was higher than 90 per cent. In the seeds six phenolic compounds were identified: rutinoside, hyperoside, astragalin, spireoside, gallic and elagic acids. The distinctly higher germination ability of full ripe seeds after one-year storage may result in the decrease of the content of phenolic compounds, especially of gallic and elagic acids.

Sm08.221
Intraspecific Variability of Southern Sweet-Grass (Hierochloë australis (Roem. & Schult.) Wild Growing in Poland

Przybyl J. L.; Paczesna E.; Angielczyk M.; Baczek K.; Weglarz Z.
DEPARTMENT OF VEGETABLES AND MEDICINAL PLANTS, WARSAW UNIVERSITY OF LIFE SCIENCES - SGGW, NOWOWYSZOSKOPA 156, 02-797, WARSAW, POLAND

Southern sweet-grass is naturally occurring in Poland tuft-grass. The leaves of this plant are comarrin raw material used in medicine as well as in food and tobacco industry. The content of comarrin in the leaves is the most important quality discriminant of the raw material. This species being under partial legal protection is seriously endangered because of excessive, uncontrolled collecting. Taking into
A field experiment has been carried out in Iran to study the spacing study, which were several years old, averaged 171 g upon harvest. In the second season to 78 g by the third season. Mature rhizomes from plants in full sun had significantly more cimiracemoside A (641 ppm) compared with those under 40% or 80% shade. For 23-epi-26-deoxyacteine, rhizomes grown under 40% shade had a higher concentration (3,109 ppm) compared with 0% or 80% shade. In the shading study, concentration of cimiracemoside A was not affected by shading, but was significantly lower with 0.5 m spacing (427 ppm) compared with 1 m spacing; whereas concentration of 23-epi-26-deoxyacteine was not influenced by spacing, but was significantly higher under 0% and 40% shade (2,842 and 2,779, respectively) compared with 80% shade. The varying responses of the phytochemicals in this study suggest that production of each compound may be independently influenced by a variety of horticultural and environmental factors.

Sm08.222
Accumulation of Phenolic Compounds in Leaves and Underground Organs of Dropwort (Filipendula vulgaris L)

Baczek K.; Przybył J. L; Angelczyk M.; Kuczerenko A.; Pelc M.; Weglarz Z.
Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences - SGGU, Nowouremska 166, 02-787, Warsaw, Poland

Dropwort is an Euro-Asian perennial belonging to Rosaceae family. The plant with shoots up to 80 cm height and pinkish-white flowers occurs rarely on sunny grass- or neglectedlands. The raw materials (above- and underground organs) rich in phenolic compounds reveal anti-inflammatory, antirheumatic and diuretic activity. The effect of flowering shoots removal on the yield of basal leaves and underground organs (rhizomes with tuberous roots) and accumulation of phenolic compounds was investigated. The flowering shoots removal increased the yield of both above- and underground organs. In the plant materials six phenolic compounds [(+)-epigallocatechin, (+)-catechin, (-)-epicatechin, (-)-epigallocatechin galate, ellagic and gallic acids] were determined by HPLC. In the leaves dominant compounds were gallic acid and (-)-epicatechin whereas in underground organs – catechin derivatives [(+)-catechin, (+)-epicatechin]. The summer removing of flowering shoots changed the content and composition of determined phenolic compounds. The storage organs (rhizomes and tubers) from the plants after flowering shoots removal were characterized by distinctly lower content of these compounds in comparison to raw materials from cut plants. The content of phenolic compounds in the leaves and roots of cut plants was higher than the plants after flowering shoots removal.

Sm08.223
Black Cohosh Rhizome and Phytochemical Production in Response to Shading, Spacing, and Age

Thomas, A. L.; Applequist, W. L.; Rottinghaus, G. E.; Miller, J. S.

University of Missouri, Southwest Research Center, 14148 Highway B, 65731, Mount Vernon, Missouri, United States
Tennessee Botanical Gardens, St. Louis, Missouri, United States
University of Missouri, Veterinary Medical Diagnostic Laboratory, Columbia, Missouri, United States
New York Botanical Garden, Bronx, New York, United States

Black cohosh [Actaea racemosa L.; Cimicifuga racemosa (L.) Nutt.] is a perennial woodland herb native to the eastern and midwestern United States. Interest in cultivating black cohosh has increased as it is commonly used as a dietary supplement to treat menopausal symptoms. Two studies were conducted in a shadehouse in Missouri, USA from 2000 to 2004. The first study quantified the development of rhizome and root tissues of known age, and of four phytochemicals therein in response to plant spacing and three shading treatments. The second study evaluated rhizome and root tissues of known age, and of four phytochemicals therein in response to three shading treatments. In the second study, which were several years old, averaged 171 g upon harvest. In the age study, black cohosh rhizomes increased in size from 46 g (fresh weight) at the end of their second season to 78 g by the third season. Mature rhizomes from the spacing study, which were several years old, averaged 171 g upon harvest. In

Sm08.224
The Organic Cultivation of German Chamomile (Matricaria chamomilla L)

Salehi, A.; Ghalavand, A.; Sephidkon, F.; Asgharzadeh, A.; Khalesro, S.

Yarbat Momayez University, Department of Agronomy, Faculty of Agriculture, Yarbat Momayez University, Tehran, Iran, 14111-336 J. R. IRAN, Tehran, Islamic Republic of Iran
Department of Agronomy, Faculty of Agriculture, Yarbat Momayez University, Tehran, Islamic Republic of Iran
Department of Soil, Biology, Soil and Water Research Institute, Tehran, Islamic Republic of Iran

To study the effect of organic and bio fertilizers on the growth, yield and essential oil of Matricaria chamomilla L., a field experiment has been carried out in Iran during 2008. The factors were PGPR inoculation (inoculated and no inoculated), zeolite (0 and 9 ton/ha) and vermicompost (0, 5, 10 ton/ha). Studied characteristics were plant height, dry flower yield, essential oil content and yield. The results showed that vermicompost levels had significant effects on all studies parameters. With increasing vermicompost levels, plant height, dry flower yield, essential oil content and yield were increased. The highest (0.73 %) and the lowest (0.52 %) of essential oil content were observed in 10 and 0 ton/ha vermicompost levels, respectively. Also there were positive and synergistic interactions between factors vermicompost combined with PGPR and vermicompost combined with zeolite on dry flower yield. Zeolite also showed significant effects on mentioned traits as with increasing zeolite amount, essential oil yield increased and there was significant difference between 0 and 9 ton/ha zeolite. Also, PGPR enhanced plant height, dry flower yield, essential oil content and yield. The highest (358/13 kg/ha) and the lowest (321/33) of dry flower yield were obtained in inoculums and no inoculums PGPR. Consequently, it seems that the organic cultivation of German chamomile can consider as an alternative system for conventional system in chamomile production.
entific references, statistical and ethnobotanical data sources. The experience of neighbours, particularly the Nordic countries was taken into account as well. The analysis of different data sources and our own experience suggested grouping MAP species into three tentative priority groups based mainly on their socio-economic and cultural values, resource abundance, biological and habitat preferences. The socio-economic and cultural values of MAPs were estimated by their consumption rates and scale over the last period as well as species popularity and knowledge on it in different ethnographic parts of the country. The resource abundance and habitat preferences were estimated reviewing the various case studies as well as using inventory data of useful plants carried out by the Institute of Botany. The highest priority group includes MAP species which are (or could be) very important for the consumption, but their resources are very scarce due to specific habitat preferences and other conditions. The collecting of most of them is limited by the law. A good example of this group is Arnica montana. Lower priority group includes species of high utilitarian value with more abundant, but still limited resources. An example is Arctostaphylos uva-ursi. And the biggest part of MAP species which resources are not under the threat would fall into the lowest priority groups.

Sm08.226
Cholinesterase Inhibitory Capacity and Antioxidant Activity of Quercus suber L. Extracts

Costa, P.; Gonçalves, S.; Grevenstuk, T.; Romano, A.

University of Algarve and Institute for Biotechnology and Biomedical Engineering (IBB/CIB-UTAD), Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, 8005-139, Faro, Portugal.

Medicinal plant drug discovery continues to offer new and important leads against a variety of pharmacological targets including Alzheimer’s disease (AD), which have a great impact on modern society. Currently, the effective treatment for AD has been aimed at the cholinergic system, via acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition. Moreover, it has been suggested that oxidative stress is an important event to the development of multiple diseases including AD, and therefore, it seems reasonable that antioxidants can play an important role in their improvement. In this study, aqueous and methanol extracts from leaves of *Quercus suber* L.; a common tree of the Mediterranean region, were evaluated for their cholinesterase inhibitory capacity and antioxidant activity. The ability of the extracts to inhibit AChE and BuChE activity was determined by Ellman’s colorimetric method. Antioxidant activity was evaluated by trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC) assays, and the phenolic content was evaluated by Folin-Ciocalteu assay. Results showed that the methanol extract of *Q. suber* was the most active inhibitor of AChE (37.31 - 89.05 %) and BuChE (30.20 - 68.75 %) enzymes *in vitro*. Both extracts demonstrated high antioxidant properties *in vivo* (3576.08 ± 106.75 and 1892.48 ± 59.57 μmolTE∙gext. respectively) and antioxidant activity, which are in accordance with previous studies. This work describes the development of an alternative and sustainable method for the production of plumbagin from micropropagated *Drosera intermedia* (Hayne) plants. For the purpose of this work *D. intermedia* plants were produced using a recently developed micropropagation protocol. The biomass increment of *D. intermedia* cultures was monitored to determine the optimum subculture period and a growth curve was obtained. Several extraction techniques (maceration, ultrasound assisted, soxhlet and supercritical fluid extraction) were employed to recover plumbagin from the obtained plant material and extraction yields were compared. The crude extracts were then subjected to a purification step using a Solid Phase Extraction column. The results show that, except for maceration, good extraction yields were obtained and the purification process yielded a nearly pure sample. Furthermore, the use of supercritical fluids proved to be an efficient technique for the extraction of plumbagin, bypassing the need to use hazardous organic solvents. In conclusion, this work describes an ecologically and environmentally friendly method for the production of plumbagin.

Sm08.227
Development of a Sustainable Method for the Bioprospection of Plumbagin from *D. intermedia*

Grevenstuk, T.; Gonçalves, S.; Romano, A.

University of Algarve and Institute for Biotechnology and Biomedical Engineering (IBB/CIB-UTAD), Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, 8005-139, Faro, Portugal.

Plumbagin is a naphthoquinone produced by plants of the Plumbaginaceae, Drosophyllaceae and Drosophyllaceae families, which has been known for long for its broad range of biological activities (antimicrobial, antiatherosclerotic, anticarcinogenic, etc) and continues to be an effective agent against new pharmacological targets. The most exploited source of plumbagin is the roots of *Plumbago spp.* (Plumbaginaceae), however these plants grow slowly and the roots suitable for extraction take years to grow. On the other hand, most species of the *Drosera* genus (Droseraceae) and the monotypic species *Drosophyllum lusitanicum* (*Drosophyllum*) exist in confined habitats and are protected by law. Taking these limitations into account, this work describes the development of an alternative and sustainable method for the production of plumbagin from micropropagated *Drosena intermedia* (Hayne) plants. For the purpose of this work *D. intermedia* plants were produced using a recently developed micropropagation protocol. The biomass increment of *D. intermedia* cultures was monitored to determine the optimum subculture period and a growth curve was obtained. Several extraction techniques (maceration, ultrasound assisted, soxhlet and supercritical fluid extraction) were employed to recover plumbagin from the obtained plant material and extraction yields were compared. The crude extracts were then subjected to a purification step using a Solid Phase Extraction column. The results show that, except for maceration, good extraction yields were obtained and the purification process yielded a nearly pure sample. Furthermore, the use of supercritical fluids proved to be an efficient technique for the extraction of plumbagin, bypassing the need to use hazardous organic solvents. In conclusion, this work describes an ecologically and environmentally friendly method for the production of plumbagin.

Sm08.228
Sustainable Production of Basil Using Recycled Household Compost: Impact on Flavour and Quality

Cruickshank, B. J.; Graham, L. E.; Prestwich, M.; Daymond, A.; Wagstaff, C.

University of Reading, Whiteknights, P.O. Box 217, Reading, RG6 6RA, United Kingdom

Bac fresh herbs, Lucas Green Road, Wootton Widcombe, Bath, BA2 5UQ, United Kingdom

Basil (*Ocimum basilicum L.*) is a commercially significant crop both in the UK and throughout the World. Since flavour properties of this herb are the primary factor determining its quality, our objective is to improve the sensory characteristics of the product, whilst improving sustainability by reducing energy and chemical inputs. Past research has shown significant phytochemical fluctuations in response to environmental stimuli, such as light, temperature and water. We hypothesised that the growth physiology and phytochemical content of basil is also influenced by nutrient levels and soil quality. We investigated the use of recycled household compost (RHC) as an alternative commercial substrate to soil-based media with the addition of chemical fertiliser. RHC is a widely-available waste by-product from domestic properties which may be beneficial to growers, the consumer and environment. Physiological measurements have been made and have shown that the use of RHC can result in a product with the required aesthetic qualities and yield for commercial use. We have established how the use of RHC substrate during cultivation affects the flavour characteristics of the plant, both via GC-MS analysis and human sensory evaluation.

Sm08.229
Water Extractable Phytochemicals from *Lavandula viridis* and *Thymus lotocephalus* Exhibit Antioxidant Properties

Gonçalves, S.; Gomes, D.; Romano, A.

University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, 8005-139, Faro, Portugal.

It is well-known that most species of the *Lamiaceae* family possess a wide range of biological and pharmacological activities. *Lavandula viridis* and *Thymus lotocephalus* (*Lamiaceae*) are endemic species from the Algarve region (Portugal) that are little studied in terms of their pharmacological potential. Thus, and considering the increasing interest in the health properties of natural antioxidants, this study was conducted to ascertain whether the antioxidant activity and total phenolic content of extracts is affected by steeping the plant material in hot or cold water. The aqueous extracts were prepared by homogenizing aerial parts in cold water for 2 h or in hot water for 5 min (1:20 w/v). Both cold and hot infusions were then centrifuged at 3000 rpm for 10 min, the supernatant was filtered and used in subsequent assays. Antioxidant activity was evaluated by Fe³⁺ chelation, degradation of deoxyribose,
reducing of FeCl$_3$ and DPPH assays, and total phenol content was determined by using Folin-Ciocalteu reagent. Extracts from both species have similar iron chelating capacity and ability to inhibit Fe (II)/H$_2$O$_2$-induced decomposition of deoxyribose as an index for hydroxyl radical. However, L. _viridis_ extracts had higher reducing power than _T. lanceolatus_ ones. Moreover, results obtained with DPPH and Folin assays also showed that extracts from _L. viridis_ had superior antiradical properties and much greater phenolic contents than those from _T. lanceolatus_. In general, extracts obtained with hot water displayed higher antioxidant activity in all the as-yays and larger amounts of phenols, nevertheless, this was more pronounced in _L. viridis_. In conclusion, this work demonstrated the significant antioxidant properties of extracts from _L. viridis_ and _T. lanceolatus_ by employing several in vitro methods, however best results were observed with _L. viridis_ extracts obtained with hot water.

Sm08.230

Introduction and Conservation of Mint Germplasm (_Mentha_ spp) in Brazil

Vieira, R. F.; Silva, D. B.; Alves, R. B. N.

The genus _Mentha_ (Lamiaceae) consists of nineteen species distributed in the Old and New World. The aromatic leaves of mint are used fresh and dried as flavorings or spices in a wide variety of foods. They contain biologically active constituents and are also used in traditional ceremonial rituals and as medicines. Volatile oils of mint species are used to flavor foods, in dental and oral products, and in fragrances. The objective of this work was to establish a germplasm bank of mint. The following species (Accessions) were included in this collection: _Mentha aquatica_ L. (5); _Mentha arvensis_ L. (6); _Mentha camporum_ Schur. (1); _Mentha canadensis_ L. (2); _Mentha _×_ xerographica _Sole_ (1); _Mentha _cl. _spicata_ _L_. (6); _Mentha longifolia_ L. (2); _Mentha spicata_ L. (12); _Mentha spicata _subsp. _citriodora_ Ehrl. (2); _Mentha _×_ xixoi _Hudson_ (4); _Mentha _extundulata_ Hudson. (L) Hudson. (2); _Mentha _sp. _(19)_; _Mentha suaveolens_ Ehrh. (3); _Mentha suaveolens _Ehrh. _×_ M. _aquatica_ L. (1); and _Mentha _xynimbriae_ L. (1). Sixty seven mint accessions, representing 14 species, were collected and deposited at the Embrao Genetic Resources and Biotechnology, Brasilia, DF, Brazil. The total germplasm collection is maintained at field and greenhouse conditions, as well as in _in vitro_ collection. Most of the collection has been chemically characterized. Voucher of all the accessions have been collected and deposited at the Embrao Genetic Resources and Biotechnology herbarium (CEN).

Sm08.231

Effect of Freezing and Drying on the Yield and Chemical Composition of Essential Oil of Rosemary (_Rosmarinus officinalis_ L.)

Goncalves, G. G.; Mancinelli, R. C.; Castanha, R. F.; Morais, L. A. S.

This work aimed to evaluate three post-harvest processes on chemical composition and yield of rosemary (_Rosmarinus officinalis_ L.) essential oil. Leaves were collected at 8h30min in Jaguariúna-São Paulo State-Brazil. They were divided into three batches. The first batch was immediately submitted to hydrodistillation in order to know its initial volatile composition. The remaining batches were submitted into two different treatments. At one of these batches, the leaves were dried in a forced-air drier (35 °C/3 days). At the last treatment, leaves were placed in sealed, air-tight plastic bags and stored at 20±0.5 °C for two weeks. Essential oils were obtained by hydrodistillation in a Cleve-type apparatus for 2h30min and analyzed by GC-MS (Shimadzu, QP-5050, with DB-5-capillary column: 30 m x 0.25 mm x 0.25 μm). Carrier gas was Helium (1.7mL/min); split ratio: 1:20. Temperature program: 60 °C, rising to 240 °C at 3 °C/min. Injector temperature: 240 °C and detector temperature: 260 °C. Identifications of chemical compounds were made by matching their mass spectra and Kovat's indices (IK) values with known compounds reported in the literature. The data of yield and chemical composition were submitted to ANOVA, followed of Tukey's test. The highest essential oil concentration were observed in frozen samples (0.94%-a), followed by dried samples (0.92%-b). Essential oil from fresh-material presented smaller yield (0.81%-c).

Sm08.232

Effect of Vermicompost, PGPR and Zeolite Application on Yield and Essential Oil Content of Anise (_Pimpinella anisum_ L.)

Khalero, S.; Ghalehd, A.; Sefidkon, F.; Asgharzadeh, A.; Salehi, A.

In this research, the effects of bio-organic fertilizers and zeolite on seed yield, essential oil content and composition of _Pimpinella anisum_ L., as aromatic and medicinal plant, was investigated. Field experiment was conducted in the Agriculture Research Station at Sanandaj, Iran, in 2008. Experimental Factors were three levels of vermicompost (0, 5 and 10 t ha$^{-1}$), two amount of zeolite (0 and 4.5 t ha$^{-1}$) and mixture of Azotobacter, Azospirillum and Pseudomonas (inoculation and non-inoculation). The results showed that vermicompost levels highly increased the quantitative characters including plant height, umbel no/plant and seed yield. The application of 10 t ha$^{-1}$ vermicompost gave the highest value of those characters. These values were 18.3%, 25.9% and 43.1% higher than the first level of Vermi-compost, for plant height, umbel no/plant and seed yield, respectively. Quantitative characters were also significantly increased by PGPR inoculation and zeolite application. Applying the third level of vermicompost caused the highest value of essential oil and anethol percentage. Zeolite application had a significant effect on essential oil content, but no significant effect on anethol percentage. Generally the most favorable interaction treatment for umbel no/plant and seed yield was the PGPR inoculation combined with the highest level of vermicompost.

Sm08.233

Comparison between Different Techniques for Volatiles Analyses in Coriander (_Coriandrum sativum_ L.)

Carrubba, A.; Millitello, M.; Salano, F.; Pagan Domenecch, A. T.

Although many papers have been devoted to the study of Coriander fruits aromatic pattern, many differences show up according not only to the provenience of seeds, but also to the analytical methods chosen. In our work, samples from one Corian-der small-seeded biotype have been analysed, verifying the differences between (1) the oil extracted by means of a Soxhlet apparatus (2) the same oil sampled by means of HS-SPE and (3) the HS-SPE on the roughly ground seeds, all analysed by direct injection in the GC-MS. The volatile composition detected by means of HS-SPE on oil resembles tightly that performed on Soxhlet extract. With respect to the direct injection, the HS-SPE shows a higher sensitivity towards the less heavy and therefore more volatile compounds. The HS-SPE on roughly ground seeds is able to highlight the more volatile compound as limonene, gamma-terpinene and in particular the E-2-decanal that in hot extraction is irretrievably lost.
Sm08.234

Cultivation Trials of Dill (Anethum graveolens L) with Different Row Arrangements

Carrubba, A.; Catalano, C.; Bontempo, R.

DIAM, UNIVERSITÀ DI PALERMO, VIALE DELLE SCIENCE, 18118, PALERMO, PA, ITALY

Dill (Anethum graveolens L.) is an annual plant from Umbelliferae. Although in cookery also sprouts and tender leaves are used, the drug from Dill is represented by the scented fruits (“seeds”), largely used for flavouring conserved foods and liqueurs, but also by herbal and cosmetic industry. In this work, we present the results of a trial performed in Sicily, putting under comparison four different row arrangements: CR30 (continuous rows 30 cm apart); CR60 (continuous rows 60 cm apart), CR90 (continuous rows 90 cm apart) and TR (twins rows with a distance of 30 cm inside and 60 cm between twin rows. Being constant the plant population on row (12 plants-m⁻²), the plant density per unit area changed consequently to 40, 20, 13.3 and 26.6 plants-m⁻², respectively. Seeds yield, ranging from more than 2 to less than 0.8 t ha⁻¹, seemed to vary according to plant population, but between treatments many differences showed up in yield components and plant geometry.

Sm08.235

Effects of Nutrients on Growth and Active Substances of Lemon Balm (Melissa officinalis L.)

Sharafzadeh, S.¹; Khosh Khui, M.²; Javidnia, K.³

ISLAMIC AZAD UNIVERSITY, Zabol Branch, IRAN, UNIVERSITY TOWN, P.O. BOX 74911-317, AGRICULTURE DEPARTMENT, 74911-317, FAHAB, ISLAMIC REPUBLIC OF IRAN

NURCULTURE DEPARTMENT, ISRAEL UNIVERSITY, ISRAEL UNIVERSITY, ISLAMIC REPUBLIC OF IRAN

MEDICINE, PLANT RESEARCH CENTER, MEDICAL UNIVERSITY, ISRAEL UNIVERSITY, ISLAMIC REPUBLIC OF IRAN

A greenhouse experiment was conducted to evaluate the effects of nitrogen, phosphorous, potassium and a complete fertilizer (Agrihansa) on growth and active substances of seedlings of lemon balm (Melissa officinalis L.). The plants were transplanted in pots containing 1/3 soil, 1/3 sand and 1/3 peat (v/v) at 4-6 leaf stage and kept in a greenhouse. The treatments were using N, P, K, NP, NK, PK, NPK and Agrihansa and comparing them to control (without using fertilizers). N, P, O, and K were applied at a concentration of 50 mg/kg of soil pot. The results indicated that maximum shoot fresh (141.57 g/plant) and dry (37.21 g/plant) weights were observed in NP treatment. The maximum shoot height (41.85 cm) was achieved on PK treatment which was not significantly different when compared to NP; NK and Agrihansa. The highest green herb (109.07 g/plant) and drug herb (27.34 g/plant) weights were obtained in NP treatment. Drug leaves weight (16.28 g/plant) had the highest amount in NP treatment. The maximum essential oil percentage (34.1%) were observed in NP and N treatments, respectively.

Sm08.236

Aromatic Plants and their Bioactive Products to Control Postharvest ‘Rocha’ Pear Diseases

Matos, O.; Santos, M.; Vasilenko, P. R.; Barreiro, M. Graca

UNIÓPERE (INSTITUTO NACIONAL DE INVESTIGAÇÃO AGRÁRIA, QUINTA DO MARQUês, AV. DA REPÚBLICA, TOÇA OMEL, 1785-015, SINES, PORTUGAL

Aromatic plants can play a determinant role in several domains of agriculture being recognized as useful for food preservation, preventing moulds and pest attacks that affect the quality of fresh foods. Post harvest deterioration of fruits due to water loss, senescence and development of physiological disorders and fungal attacks cause decay in quality and economic losses. In present work the extracts of a set of aromatic plants were assayed for their capability to control fungi affecting cold stored fruits. Assays were performed in vitro and in vivo using the ‘Rocha’ pear variety kept under cold chambers. Botrytis cinerea and Penicillium expansum, two main pathogens responsible for postharvest rots, were used as biological targets. Although the low concentrations used promising results were achieved, from the in vitro tests performed with extracts or oils of eight aromatic plants. Significant mycelia growth reduction of both fungi was obtained mainly with O. vulgare, Coriandrum sativum and Mentha pulegium. Successful in vivo assays were performed with O. vulgare either for preventing or to treat fungal infections. From tests performed with standard compounds corresponding to the main constituents of such aromatic plants, positive results were also obtained mainly with caprylic acid, benzoic acid and pulegone. Present work is a positive contribute to the knowledge on biological potentialities of aromatic plants and their helpfulness to the development of harmless strategies to post-harvest control of fruit rots.

Sm08.237

Agronomic and Chemical Characterization of Vetiver Accessions

Arrigoni-Blank, M. F.; Santos, R. B.; Rosa, Y. R. S.; Oliveira Neta, P. M.; Alves, P. B.; Blank, A. F.

UNIVERSIDADE FEDERAL DE SERGIPE, AV. MARCELO BARBIUSO S/ N, CEP 49100-000, SAO CRISTOVAO, SERGIPE, BRAZIL

Vetiver (Chrysopogon zizanioides) (L) Rottb syn Vetiveria zizanioides (L) Nash) is a perennial plant of the family Poaceae whose essential oil extracted from its roots have jobs defined in the perfume industry because its known natural features such as fixation of volatile formulations. The aim of this study was to realize agronomic and chemical characterization of the vetiver accessions of the Active Germplasm Bank of the Federal University of Sergipe for identification of highly productive clones for essential oil content, yield and chemical composition. We tested six clones (UFS-VET001, UFS-VET002, UFS-VET003, UFS-VET004, UFS-VET005 and UFS-VET006) in a randomized block design with three replications and each part consisted of three vessels of 30 dm⁻³ with one plant. After six months of culture the following variables were evaluated: plant height, number of tillers and airs, dry weight of shoot and root, essential oil content and yield, and chemical composition of the essential oil. The increased production of root biomass (1016.80 g) was obtained by accession UFS-VET003. The accessions UFS-VET002 and UFS-VET003 showed the highest percentage of khusimol (24.21% and 22.25%, respectively), the principal chemical constituent for the commercial value of vetiver essential oil.

Sm08.238

Genotype - Age Interaction in Pepper-Rosmarin

Blank, A. F.; Oliveira, T. C. ²; Santos, R. B.; Nicoleau, E. S.; Alves, P. B.; Arrigoni-Blank, M. F.

UNIVERSIDADE FEDERAL DE SERGIPE, AV. MARCELO BARBIUSO S/ N, CEP 49100-000, SAO CRISTOVAO, SERGIPE, BRAZIL

TERRITÓRIO TAUROMÉRICO COSTEIRO, AV. RIBEIRA DO DIABO, 15 292, 15 292-230, MARESIAS, SÃO PAULO, BRAZIL

This work was aimed to study the behaviour of pepper-romarin (Lippia sidoides (Cham) accessions of the Active Germplasm Bank of the UFS. The randomized block design was used in a split plot in time scheme. We tested ten pepper-romarin accessions and we realized harvests in the rainy seasons of 2005 and 2006. We analyzed the following variables: plant height (cm), fresh and dry weight of leaves (g/plant), content (%) and yield (ml/plant) of essential oil, and content (%) of the chemical constituents of the essential oil. We observed highest content and yield of essential oil for accession Lsid-105 with 7.68% in 2005 and for accession Lsid-102 with 56.46 ml/plant in 2006. The highest thymol and carvacrol means were found by accession Lsid-003 with 90.82% and accession Lsid-104 with 56.05%, respectively, both in 2006. The accession Lsid-104 collected in the Sergipe State, presented carvacrol as its major chemical constituent. The other accessions had thymol as their major chemical constituent. In both years of cultivation the accessions presented phenotypic variability for all the analyzed variables, except for terpin-4-ol content in the essential oil.
New Aromatic Citrus Resources in Okinawa

Teramoto-Inafuku, S.1,2; Kawamitsu, Y.; Yamamoto, M.3

1 THE UNITED GRADUATE SCHOOL OF AGRICULTURAL SCIENCES, KAGOSHIMA UNIVERSITY, KOROMOTO 1, KAGOSHIMA, 890-0065 JAPAN
2 UNIVERSITY OF THE Ryukus, SUGARUMI 1, NISHIAIRA, NAKAGUSHI-GUN, OKINAWA, 903-0211 JAPAN
3 KAGOSHIMA UNIVERSITY, KOROMOTO 1, KAGOSHIMA, 890-0065 JAPAN

Okinawa Islands (Japan), which lie between 24° and 27°N, have long been an important trading zone connecting East and Southeast Asia. Their subtropical climate differs from those of other citrus production areas in Japan, and is more like that of Taiwan or the northern Philippines. The islands grow many kinds of subtropical and tropical plants, including Citrus varieties that are commonly used for medicinal purposes in Okinawa, China, India, and Southeast Asia. We have explored these Citrus genetic resources and analyzed their functional possibilities, including those of their aromatic components, since 2008. Most Citrus in the Okinawa Islands are categorized into the mandarin group. The biggest species group, C. depressa Hayata, produces small mandarins with a strong, fresh aroma that are used as sour or sweet citrus. This group has many varieties, and fruits contain high amounts of flavonoids. We have identified several Citrus species in the Okinawa Islands that have unique aromatic profiles that could find use in aromatherapy, cosmetics, and other applications. Four unique Citrus profiles are introduced here. 1) Citrus depressa Hayata (local name Shiikuwasha): A small mandarin with a high content of the monoterpene hydrocarbons γ-terpinene and p- cymene. Fruit weight 30–40 g. Fruit shape index (FSI)* = 137. Peel is vivid orange yellow and 1.5–2.0 mm thick, and contains polymethoxyflavones (nobiletin, tangeretin) and a flavanone (hesperidin). The essential oil could be used in cosmetics, aromatherapy, and foods. 2) Citrus kusagi Hort. ex Tanaka var. kusagi (local name Keraji): High percentages of esters (geranyl acetate and neryl acetate), similar to bergamot, make it potentially good for relaxation in aromatherapy. This species could become a new Japanese bergamot adapted to high humidity. Fruit weight 75–85 g. FSI = 127. Peel is bright yellowish-green and 3–5 mm thick. The essential oil yield is higher than that of C. depressa. 3) Citrus kusagi Hort. ex Tanaka (local name Keraji): High percentages of esters (geranyl acetate and neryl acetate), similar to bergamot, make it potentially good for relaxation in aromatherapy. This species could become a new Japanese bergamot adapted to high humidity. Fruit weight 75–85 g. FSI = 113. Peel is vivid orange yellow and 1.5–2.0 mm thick, and contains polymethoxyflavones (nobiletin, tangeretin) and a flavanone (hesperidin). The essential oil could be used in aromatherapy, cosmetics, and foods. 3) Citrus kusagi Hort. ex Tanaka var. kusagi (local name Keraji): High percentages of esters (geranyl acetate and neryl acetate), similar to bergamot, make it potentially good for relaxation in aromatherapy. This species could become a new Japanese bergamot adapted to high humidity. Fruit weight 75–85 g. FSI = 113. Peel is vivid orange yellow and 1.5–2.0 mm thick, and contains polymethoxyflavones (nobiletin, tangeretin) and a flavanone (hesperidin). The essential oil could be used in aromatherapy, cosmetics, and foods. 4) Citrus spp. (local name Unzhokki): High percentages of geranial and neral make it good for cosmetics and aromatherapy treatment. Fruit weight 100–120 g. FSI = 121. Peel is vivid orange-yellow and 6–10 mm thick, with a fresh citrus aroma like C. nobilis Loure. These aroma profiles suggest the potential for further development of essential oil production and utilization of wastes from juice factories in Okinawa. In addition, the high flavonoid contents of these fruits could allow the development of human health care applications.

Influences of Artificial Lightweight Soils and Soil Moisture on the Growth of English Lavender and Spearmint in Rooftop Gardening

Ono, E.; Kimura, M.; Kobayashi, R.; Miyata, M.; Matsuoe, E.

TOYKO UNIVERSITY OF AGRICULTURE, 1737, FUNABASHI-CHO 1-1-1, ATSU, KAGANERU, JAPAN

Rooftop greening is expected to reduce the heat island phenomenon by relieving the outdoor thermal environment and to function to protect insulated buildings. In this experiment, seedlings of English lavender (Lavandula angustifolia) and spearmint (Mentha spicata) were planted in small nursery boxes (L240 x W160 x H70 mm) filled with four types of artificial lightweight soil. Controlled soil moisture was of five levels. Watering was carried out when soil moisture potential in the nursery boxes reached 12, 34, 56 and 78% of field water capacity (100%) respectively, to bring them back to 100%. In addition, soil moisture potential was maintained at 100% in one treatment. Differences with respect to the artificial lightweight soils were observed in the growth of lavender and mint. However, greater than these differences was the difference in soil moisture among the artificial lightweight soils. A cross-soil moisture comparison of plant height, number of leaves, and top fresh weight of the lavender yielded the following figures: 78% > 56% > 34% > 12% > 0%. The ratio of plant height, number of leaves, and the fresh and dry weights of the top at 100% of soil moisture to those at 78% of soil moisture was 68, 43, 37 and 41%. Essential oil content in the lavender leaves was also higher at 78% of soil moisture than at the other treatments. As for spearmint, plant height, number of leaves, and top fresh weight tended to increase with the increase of soil moisture percentage, especially at 100% of soil moisture. Also, a marked defect in growth was observed at 12% of soil moisture. Essential oil content in the spearmint leaves was higher at 12% of soil moisture than at the other treatments.

Study of Chemical Composition and Yield of Essential Oil of Ocimum selloi B. Submitted to Hydrodistillation and Steam Distillation

Morais, L. A. S.; Goncalves, G. G.; Castanha, R. F.

EMBRAPA MEIO AMBIENTE, BIODIVA 424, CP 117, CEP 13055-000, JACUARITUBA, ESTAO DE SAO PAULO, BRAZIL

The present study aimed to evaluate the yield and chemical composition of essential oil of Ocimum selloi obtained by steam distillation and hydrodistillation. The leaves were collected on experimental area of Embrapa Environment (Embrapa Meio Ambiente - Jaguariaíva-SP/ Brazil) and dried at 35 °C for 3 days. The essential oil was obtained by hydrodistillation in a Clevenger-type apparatus and steam distillation apparatus for 2h30. The yield was calculated using the essential oil mass values. Essential oils were analyzed by GC-MS (Shimadzu, QP 5050-DB-5 capillary column - 30 m x 0.25 mm x 0.25 μm). Carrier gas was He (1.7 mL/min); split ratio: 1:30. Temperature program: 50 °C, rising to 180 °C at 5 °C/min, 180 °C, rising to 280 °C at 10 °C/min. Injector temperature: 240 °C and detector temperature: 230 °C. Identifications of chemical compounds were made by matching their mass spectra and Kovat’s indices (IK) values with known compounds reported in the literature. The essential oil of Ocimum selloi did not presented differences in number of compounds. Were identified the fol-
lowing compounds: Cys-beta-ocimene, methyl chavicol (major compound), alpha-
copaene, beta-bourbonene, beta-cleocene, methyl eugenol, trans-caryophyllene,
trans-alpha-bisabolene, allo-aromadendrene, germacrene-D, beta-selinene, bicy-
chleremarcene, germacrene-A and delta-cadinene. There was a reduction on methyl
chavicol content on essential oil extracted by steam distillation (86.6%) when it
was compared to hydrodistillation (93.2%). The inverse was noticed to bicycloger-
macrene that presented higher concentration when it was extracted by steam distil-
lation (2.6%) than hydrodistillation (1.9%). There was significant loss of essential
oil during the extraction process by steam distillation (approximately 25% lower).
These results showed that hydrodistillation presented highest yield of essential oil
and highest content of methyl chavicol, when it was compared to steam distillation.

At the condition in which the experiment was performed, hydrodistillation is the
extraction form more suitable for essential oil of Ocimum cinnii.

Sm08.243
Mountain Arnica Transplants Production by Usage of Mycorrhizal Fungi

1 UNIVERSITY OF ZAGREB, FACULTY OF AGRICULTURE, VEGETABLE CROPS DEPARTMENT, SVEOTOKA 25, 10000, ZAGREB, CROATIA

The genus Arnica belongs to the family Asteraceae, a herbaceous plant of the European hilly-mountain region, grows on acidic lawns and dry heather-lands, and is present in plant community Arnico-Nardetum strictae in western part of Croatia. Negative changes in eco-system (air pollution, over-
fertilization), abeyance of pasture and mowing of lawns, and excessive gathering from the nature, lead to continuous decline of natural populations, proclamations of species as vulnerable and protecting by law in many European states, including Croatia. The aim of research is introduction of arnica into agricultural produc-
tion on agro-ecologically suitable lands (hilly region, acidic soils. with low nutrient
production). Transplants were grown in PP trays with 67 cells, 9 cm deep, filled with
soil and transplanted three weeks later in agricultural field, according to Latin square
treatments on agro-ecologically suitable lands (hilly region, acidic soils, with low nutrient
content). Great variation between different strains in the relative contents for several monoterpenes
was observed. Results showed a large variation between different strains in the relative contents for several monoterpenes
(α-pinene, camphene, β-pinene, sabinene, Δ-3-carene, ϑ-phellandrene, 8-myrcone, 6-terpine, limonene, 1,8-cineole, 7-terpine, cis-β-ocimene, trans-β-ocimene, α-terpinolene and one sesquiterpene, 8-caryophyllene. This wide variability in ter-

Sm08.245
Variations in Terpene Profiles of Different Strains of Cannabis sativa L.

Casano, S.;1 Grassi, G.;2 Martini, V.; Michelozzi, M.3

1 UNICO-IN, BOLOGNA, BOLOGNA, ITALY
2 UNIVERSITY OF ROME "SAPIENZA", SAPIENZA, SAPIENZA, ITALY
3 INSTITUTE OF PLANT GENETICS, NATIONAL RESEARCH COUNCIL, VIA SABADONNA 9, 50018, FIENESTRO, ITALY

Secondary compounds of the plant are indispensable to cope with its often hostile
environment and the great chemical diversity and variability of intraspecific and
interspecific secondary metabolism is the result of natural selection. Recognition of
the biological properties of secondary compounds have increased their great util-
ity for human uses; numerous compounds now are receiving particular attention
from the pharmaceutical industry and are important sources of a wide variety of
commercially useful base products. Medical and other effects of Cannabis sativa L.
are due to concentration and balance of various active secondary metabolites,
particularly the cannabinoids, but including also a wide range of terpenoids and
flavonoids. Literature reported a wide qualitative and quantitative variability in
cannabinoids, terpenoids and flavonoids contents in Cannabis spp. Terpenes are
strongly inherited and little influenced by environmental factors and, therefore,
has been widely used as biochemical marker in chemosystematic studies to characterize
plant species, provenances, clones and hybrids. Aim of this study was to investigate the variability in terpene profiles in Cannabis sativa L. Samples were collected from
16 inbred lines derived from 16 different strains and were dried at room tempera-
ture. The terpene composition in inflorescences was analysed by GC/MS and GC/
MS. The amount of each terpene (in sufficient quantities to be considered in statis-
tical analysis) was expressed as a percentage of total terpenes. Results showed a large
variation between different strains in the relative contents for several monoterpenes

Sm08.244
Seed Germination Behaviour of the Endangered Medicinal Plant Podophyllum hexandrum Royle

Simonnet, R.;1 Quennoz, M.; Bouillant, S.; Carlen, C.2

1 MÉDICAL-PLANT, ROUTE DES VAREGES 18, 1504, CONFLANS, SWITZERLAND
2 AGROKOSOE CHAMPS - RÉSIDENCE ACF, 1504, CONFLANS, SWITZERLAND

The overexploitation of Podophyllum hexandrum, a Himalayan medicinal species
belonging to Berberidaceae, is endangering its survival in natural sites. Etoposide, a
derivative of the podophyllotoxin, is currently in clinical use for treatments against
many cancers. The cultivation of this species may answer to the growing demand
of this plant species and may assure its supply. However, the difficulties in seed
germination have not favored the cultivation of this plant. Several studies on this

subject were published without giving a final answer. Germination tests started in
2008. Seeds were collected from a culture in Switzerland in August 2008, washed
and dried, then conserved at room temperature. From the harvest on and during
200 days, germinations were made 13 times at regular intervals. Seeds treated with
 gibberellic acid GA3 (450 ppm, 24h) were compared to untreated seeds (in Petri
dishes in a germinator with 12 hours with light at 25 °C and 12 hours in the dark
with 18 °C). The development of excised embryos were also analysed in a similar
way on the Gamborg B5 medium with or without GA3 (2.5 µmol/l). More than
90% of the excised embryos presented a normal growth from 5 to 8 days after
having been put in culture. No behaviour difference was observed between the
embryos issued from fresh seeds at harvest and those issued from dried seeds up
to 12 weeks after harvest. The addition of gibberellic acid to the culture medium
had no effect on the growth rate or speed. The best result for seed germination was
obtained by treating fresh seeds at harvest with GA3, allowing 90 % germination
after 80 days. Complementary tests including the importance of temperature on
germination rate and duration will be necessary to better define the procedure to
get plants from seeds for cultivation of Podophyllum hexandrum.

Sm08.246
Study of Chemical Composition and Antioxidant, Antibacterial and Cytotoxic Activities of Salvia urmiensis Bunge from Iran

Pakzad, R.; Karamian, R.; Ranjbar, M.; Saboori, A.

1-3 AHVAZ UNIVERSITY, AHVAZ UNIVERSITY, AHVAZ UNIVERSITY, AHVAZ, IRAN
4-5 ALZAHRA UNIVERSITY, ISLAMIC REPUBLIC OF IRAN
5 ALZAHRA UNIVERSITY, ISLAMIC REPUBLIC OF IRAN

The genus Salvia (Lamiaceae) comprises more than 700 species and wide spreads

| 79 |
over the world. In Flora Iranica, this genus is represented by 58 species, 17 of which are endemic. The genus Salvia is known for medical value, antibacterial and antioxidant properties. S. staminea was collected during the flowering stage from Mahnian, Qazvin Province, W Iran. The aerial parts were hydrodistilled for 6 hours, using a Clevenger-type apparatus to yield 0.5% of dark yellowish oil. The oil was analyzed by GC-MS. 50 compounds were characterized in the essential oil of S. staminea, which 5-α-homopropenyl-4,5-dimethyl-octahydroinden-4-yl (14.19%), Scabresin (Cis-A/β) (18.36%), (+) α-Dihydroakonol (15.56%), Scarediol (6.99%), 13(16),14-Ladenben-8-ol (5.671%) and Scared (5.671%) were found to be the major components. Total phenolic content in the extract was 0.27 mg Gallic acid equivalents (GAE)/g and total flavonoid content was 11.32 mg/g (DW). Antioxidant activity (IC50 value) of the extract was determined as 1.51 mg/ml by DPPH assay. The methanolic extract showed a high antibacterial activity against the bacteria Bacillus subtilis and Enterobacter aerogenes. It showed a moderate activity against Serratia marcescens and Pseudomonas aeruginosa and a low activity against Escherichia coli, Bacillus megaterium and Bacillus cereus, but it has no activity against Staphylococcus aureus, Staphylococcus saprophyticus and Citrobacter amalonaticus. In addition, the methanolic extract showed cytotoxic effect against two cancer cell line (Breast Cancer MCF-7 and Colon Cancer HT-29).

Sm08.247
Analysis of Chemical Composition, Antioxidant Potency and Antibacterial Activity of Salvia staminea Montbr. & Auch ex. Benth. from Iran

Pakzad, R.; Karamian, R.; Banjbar, M.; Saboora, A.

The genus Salvia (Lamiaceae) with more than 700 species widely distributed over the world. In Flora Iranica, this genus is represented by 58 species, 17 of which are endemic. The genus Salvia is known for medical value, antibacterial and antioxidant properties. S. staminea was collected during the flowering stage from Mahnian, Qazvin Province, W Iran. The aerial parts were hydrodistilled for 6 hours, using a Clevenger-type apparatus to yield 0.5% of dark yellowish oil. The oil was analyzed by GC-MS. 50 compounds were characterized in the essential oil of S. staminea, which α-Copaene-8-ol (15.10%), Germacrene-D (12.25%), α-Pinene (11.04%), β-Pinene (9.44%), Bicyclogermacrene (7.322%) and 4-Formyl-3,5-di-α-Copaene-8-ol (3.94%) were found to be the major components. Also total phenol content in the extract was 1.69 mg Gallic acid equivalents (GAE)/g and total flavonoid content was 12.15 mg/g (DW). Antioxidant activity (IC50 value) of the extract was determined as 1.5 mg/ml by DPPH assay. In addition, the methanolic extract showed high antibacterial activity against the bacteria Bacillus cereus and Bacillus subtilis. It showed moderate activity against Bacillus megaterium, Enterobacter aerogenes, Serratia marcescens and Pseudomonas aeruginosa and low activity against Escherichia coli but it has no activity against Staphylococcus aureus, Staphylococcus saprophyticus and Citrobacter amalonaticus.

Sm08.248
Comparative Studies on the Polysaccharide and Amino Acid Content in Natural and Cultivated Poria cocos

Liu, D. B.; Kang, X. C.; Xia, Z. L.; Li, J.

The fruit body of Poria cocos (Schw.) Wolf is a well-known traditional Chinese herbal medicine that has been used as a diuretic, sedative and tonic drug. However, the natural P. cocos forms sclerotia on the roots of cedar or pine, its productivity is limited. Therefore, it is imperative to find a cultivated P. cocos substitute for the natural one. The aim of this study is to establish theoretical foundation for the species domestication by the determination of Polysaccharide and amino acid. The molecular marker SRAP (Sequence-related Amplified Polymorphism) was applied to discriminate natural P. cocos 28 and cultivated P. cocos 578. The Phenol-sulfuric acid procedure and amino acid standard analysis method are used to determine the composition of Polysaccharide and amino acid. The results demonstrated that different bands were found in 3 SRAP primer combinations out of 26 ones and plentiful Polysaccharide and amino acid were detected in P. cocos 28 and 578. 19.83%, 17.67% and 15.116%, respectively. Both P. cocos contain essential amino acid except for Trp (Trp is totally destroyed by Hydrochloric acid hydrolysis method). The ratio of essential amino acid to total amino acid in cultivated P. cocos 578 reached 60.85%, higher than that of natural P. cocos 28, 59.07%. Besides this, the content of Ser, Glu, Val, Phe in cultivated P. cocos 578 are higher than that of the natural P. cocos 28. Therefore, the cultivated P. cocos 578 could be the alternative strain of natural P. cocos 28. The study indicated that SRAP marker could be an effective molecular marker to the analysis of genetic diversity of P. cocos. The information illustrated by this study is useful for selecting high-yield cultivation of Poria cocos.
to 12.22%. The average stem rot mortality was comparatively low (16-20%) in summer crop but increased 18 to 26% in winter crop. The percentages of root and stem rot mortality in plantation of were initially low but had increased to 37.35% (summer crop) and 26% (winter crop) at Ranichauri.

Sm08.251
The ex situ Comparison of Two Improved St. John’s Wort (Hypericum perforatum L) Cultivars with an Iranian Wild Population

Crockett, S. 1; Azizi, M. 2; Ghani, A. 2; Ebadi, T. 2
1Ran-Farshad-University, 59, Institute for Pharmaceutical Chemistry, Department of Pharmacognosy, 31774111, GAZ, AUSTRIA
2Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran

In this research, two improved cultivars of Hypericum perforatum (‘Gold’ and ‘Vepekon’) were compared with a wild Iranian population (Arabie population) under common garden conditions in Iran. Plants were cultivated from seed in a greenhouse and seedlings were transplanted after one month to the field plots. The statistical design of this study was a Randomized Complete Block Design with three replications. During the period of full flowering, selected phenological (number of days to flowering), morphological (plant height, mean leaf area, number of black nodules/leaf) and chemical (hypericin and pseudohypericin content) characteristics were assessed. Our observations were that the ‘Vepekon’ cultivar is very sensitive to soil-borne diseases. All transplanted seedlings were infected by the plant pathogenic fungus Colletotrichum gloeosporioides (Penzell), which caused necrosis of the whole plant. Both the ‘Gold’ cultivar and plants from the wild population persisted despite mild infections with C. gloeosporioides and produced flowering shoots at both the first and second years after cultivation. The ‘Gold’ cultivar was superior to the Arabie population in terms of phenological and morphological characteristics. The average naphthodianthrene contents (% dry weight of tissue) for the wild Iranian population were 0.09±0.03% but for the ‘Gold’ cultivar, 0.65±0.12%. These data indicate that selection and directed cultivation of Iranian H. perforatum plants can result in plants with improved morphological, phenological and chemical characteristics.

Sm08.252
Content and Chemical Composition of Essential Oil of ‘Alecirm-Pimenta’ in Manaus - Amazonas State, Brazil

Chaves, F. C. M.; Chagas, A. C. S.; Souza, A. M.; Pinto, M. A. S.; Bizzo, H. R.
1Embrapa Amazonas Oriental, Km 19, Av. Presidente Vargas, 60910-970, Manaus, Amazonas, Brazil
2Embrapa Petúria, Besouro, Rod. Washington Lutz, Km 234, Cx. Postal 359, 13560-970, São Carlos, São Paulo, Brazil

The family Piperaceae globally presents 1214 genera and about 1400 to 1500 species, 708 species of the genus Piper and 600 species of genus Piperomia, distributed in the tropics. Brazil has five genera, and Piper and Piperomia predominate with 170 and 150 species, respectively. In general, are herbaceous plants or shrubs, with entire leaves, alternate, inflorescence with very small hermaphrodite flowers. The species of the genus Piper have as main characteristic, in any organs of plants, strong aroma and sweet and spicy flavor. They offer wide variety of uses as spices, flavorings and medicinal. The objective of this study was to evaluate the biomass of aerial part (dry weight basis), essential oil yield and its components, of Piper callosum, affected by different spacings in plants cultivated in Manaus - Amazonas States, Brazil. The experiment was conducted at Embrapa Western Amazon, in Manaus, AM, Brazil. The experimental design was randomized blocks, with four treatments (E1 - 0.5 x 0.5 m, E2 - 0.5 x 1.0 m; E3 - 1.0 x 1.0 m; E4 - 1.0 x 1.5 m) and seven replicates with six plants in useful area. The seedlings were made from cuttings of the stems and were planted in February 2007. In December of that year, they were cut at 10 cm of soil level. Biomass production was inversely proportional to the spatial arrangements, with the greatest biomass production (1.034 kg/ha) in the shortest spacing (E1), although no statistical difference was verified between E3 and E4. The same response was observed for the production of essential oil. For the chemical composition, regardless of spacing, it was found that the majority was composed of safrole (59.1%), followed by beta-pinene (8.3%), alpha-pinene (6.5%). Other constituents found were methyl eugenol (6.3%), 1,8-cineole (4.1%), sabine (2.4%), gamma-terpinene and dicline, both with 2.0% and beta-caryophyllene (1.2%).

Sm08.254
The Intercropping Fennel and Bean in Brazilian Semi-Arid Region

Carvalho, L. M. 1; Oliveira, I. R. 2; Almeida, N. A. 2; Andrade, K. R.
1University Center of Aracaju, Av. Beira Mar 3250, P.O. 44, 49025040, Aracaju, Sergipe, Brazil
2Federal University of Sergipe, M. Karolos, Podium Center, 23080-970, São Cristóvão, Sergipe, Brazil

Fennel (Foeniculum vulgare Mill.) is a spice and medicinal plant from Mediterranean region. In the Brazilian northeast, this crop is grown by family farmers, without irrigation, under high temperature conditions. A field experiment was conducted in semi-arid of Sergipe state, Brazil, to evaluate the performance of fennel - bean intercropping, under organic management, regarding to the agroecological traits, Area Equivalency Index (AEI) and components of yield. The experiment was conducted in a complete randomized blocks design with six replications and four treatments. The treatments were single crop and intercropping (additive model) of fennel with one variety of cowpea (Vigna unguiculata) and two varieties of beans (Phaseolus vulgaris), under organic management. Additionally, cowpea and beans were also grown as single crops. Plants of fennel were obtained from seeds sowing in trays, filled with organic substrate. The field
experiment was carried out for 167 days, from June, at the beginning of the rainy season, until the harvest of umbels on January. After harvest, the umbels were dehydrated in drying room, at room temperature (34 °C) and relative humidity kept at 40%. It was determined the dry mass of umbels, absolute and relative yield, AEl and essential oil content. No significant differences were detected as related to yield, which averaged 686 kg·ha⁻¹, but the height and canopy area of the plants were higher at the intercroppings. AEl values confirmed the viability of intercropping fennel and bean. It was also found that the production of dried umbels in all treatments was highest the fourth harvest, when it reached peak and then declined. The incidence of pests (especially aphids) was very low, causing no reduction in production.

Sm08.255
Rosemary (Rosmarinus officinalis L.) Essential Oil Composition along an Altitudinal Gradient in the Requena-Utiel Uplands (Western Valencia, Spain)

Sanz, L.¹; Molina, M. J.²; Soriano, D.²; Argilés, A.¹

¹DEPARTAMENTO DE QUÍMICA, ESCUELA TÉCNICA SUPERIOR DEL MEDIO RURAL Y ENOLÒGIA, UNIVERSIDAD POLÍTECNICA DE VALENCIA, VALENCIA, SPAIN
²DEPARTAMENTO DE ECOLOGIA VITAL, CENTRO DE INVESTIGACIONES SOBRE DESERTIFICACION-CIDE, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, UNIVERSIDAD DE VALENCIA, GANDIA/VALENCIA

Rosemary essential oils have been accepted and recognized as having several therapeutic applications. The diverse composition of the essential oils of different rosemary’s ecotypes in a given area may modify their level of activity. This preliminary study attempts to provide a contribution on the relationship between chemical composition and biotypes and/or chemotypes. The chemical composition of the essential oil of spontaneous Rosmarinus officinalis is presented for three populations sampled in February and distributed in an altitudinal gradient in the Requena-Utiel uplands of the Valencia region (Eastern Spain). The relationship between bioclimatic indexes and edaphic factors with chemotypes is determined through the application of linear discriminant analysis (LDA) to both ecological and the essential oil data set components. A total of 28 compounds have been identified in the oils. The essential oil composition of the three populations of plants appeared quite different and allows us to identify three different chemotypes. Chemotype eucalyptol (36% eucalyptol, 17% camphor, 13% α-pinene) seems to be related to the best ecotype, with higher minimal temperature of the coldest month, and low nutrient content of soil, characteristics of the lowest altitude. At higher altitudes, the chemotype camphor (32% camphor, 24% eucalyptol, 11% α-pinene) seems to be related to better soil nutrient content and hydric balance in plants and soils, and higher minimal temperature of the coldest month than another chemotype also found at high altitude which characterized by similar proportions of eucalyptol and camphor. It seems that Rosemary plants with an oil composition with camphor contents above 24% resist to freezing and grow at altitudes between 900 and 1200 m.

Sm08.256
In vitro Micropropagation of Meristotropis xanthoides Vassilcz

Karamian, R.; Zareie, Z.; Ranjarb, M.

Agrasali Radix, the dry root of Astragalus mongholicus Bge, has been used for centuries as an important medicine to reinforce vital energy, and to promote the discharge of pus and the growth of new tissue. Since Astragalus mongholicus Bge, has a long cultivation cycle, are greatly impacted by the environment production can be unstable and growers can hardly satisfy the market demand. The establishment of suspension cell lines is the best solution to address this problem. This study uses MS medium to study the different concentrations and ratios of hormones, different explants and light on the impact the formation of callus of Astragalus mongholicus Bge. The results showed that in MS medium with 1.0 mg / L 2,4-D added the rate of callus induction was 90.0%, 2.4-D had a much better effect on induction than 1.0 mg / L of NAA (the rate was 26.32%), and callus grown were in good condition. The best combination of imposed concentration was 2.0 mg / L 2,4-D + 1.0 mg / L BA, the rate of callus induction was as high as 93.33%, and time to callus growth callus was as early as 2-3 days. The order from high to low of rates of induction of different explants was cotyledons, hypocotyl, and radicle, but cotyledons’ growth status was not as good as hypocotyl growth status. Compared with the dark culture, light culture was more conducive to callus induction and growth. The rates of hypocotyls, cotyledons and radicle induction of were 83.33%, 93.33% and 46.67%, while for the dark the rates were 73.33%, 90.0 % and 26.67%, respectively. This study will provide the foundation of establishment of suspension cell lines of Astragalus mongholicus Bge.
Postharvest losses, caused by fungal diseases, are the major factor limiting the stor- age period and market life of apples. Currently, the control of postharvest decay is mainly based on the use of synthetic fungicides during growing season. However, the use of fungicides is restricted due to health concerns and consumers’ demand for less chemical residues on fresh produce. Application of substances of natural origin could be a convenient solution, safe for both human health and the envi- ronment. Essential oils from aromatic and medicinal plants are well known for their antimicrobial activity. Therefore, the objective of our study was to investigate the effect of volatile phase some essential oils on the growth of certain apple fruit pathogens: Monilinia sp.; Botrytis cinerea, Colletotrichum sp.; Fusarium avena- cum, and Alternaria sp. In order to determine fungicidal activity of the oils, the cultures, grown on artificial media in Petri dishes, were exposed to volatile phase of the oils. The exposure of the pathogen to the investigated oils lasted seven days and was followed by ventilation in a laminar flow hood. A culture of the pathog - en grown without any treatment was used as a control. The growth rate of the tested microorganisms was partially or completely inhibited by the oil applied at concentrations 0.04 - 0.65 μl/ml air. Thyme essential oil showed fungicidal effect on all the tested pathogens at the concentration of 0.16 μl/ml air. The effect of cinnamon oil was lethal to Monilinia sp. Colletotrichum sp. at concentrations 0.04 and 0.08 μl/ml air, respectively. Parsley essential oil showed the lowest antifungal activity with minimal lethal concentration higher than 0.65 μl/ml air. These results indicate that some of the tested essential oils could be used for the control of investigated pathogens.

Micropropagation of Lavandula multifida L from Field-Growing Adult Plants

Zuzarte, M.¹; Salgueiro, L.²; Canhoto, J.¹

¹CENTRE OF PHARMACEUTICAL STUDIES, DEPARTMENT OF LIFE SCIENCES, UNIVERSITY OF COIMBRA, AF 3546, 3031-470, COIMBRA, PORTUGAL
²LABORATORY OF PHARMACOGNOSY, FACULTY OF PHARMACY, CENTER OF PHARMACEUTICAL STUDIES, HEALTH SCIENCE CAMPUS, UNIVERSITY OF COIMBRA, AZINHALA D. S. COIMBA 3000-354, COIMBRA, PORTUGAL

The selection of native Lavandula species and their economic exploitation have increased in the last few years. Micropropagation techniques have been used as an alternative for vegetative propagation allowing the multiplication of selected genotypes. For the first time an efficient protocol has been established for in vitro propagation of field-growing L. multifida. Auxillary buds from adult plants were established in Murashige and Skoog (MS) medium supplemented with 10 mg/L ascorbic acid. Several concentrations of the cytokinins b-naphthalene (BA, 0.0; 0.1; 0.2; 0.5 and 1.0 mg/L) and zeatin (0.0; 0.1; 0.2; 0.5 and 1.0 mg/L) were tested on shoot proliferation and two concentrations of indol-3-butyric acid (IBA, 0.5 and 1.0 mg/L) were used to analyze rooting. The highest multiplication rate (6.1 shoots per explant) and the highest number of nodes per shoot (5.9) were obtained using MS with 1.0 mg/L BA. Shoots exhibited a normal development but the root multiplication rate was nearly three times higher. Moreover, the highest mean number of leaves produced ex vitro was observed at the end of the acclimation stage on plants that were previously in vitro cultured on Formula B based medium. Hence, it proved that the tissue culture medium based on Formula B could efficiently im-
prove the micropropagation rate of Chinese foxglove (Rohmmannia angulata). This will be useful to produce large quantities of plant materials for further biochemical characterization, phylogenetic analysis, pharmacological research and pharmaceutical production.

Sm08.263

Radioprotective Activity of Some Medicinal Plants Extracts

Mamedov, N.; Craker, L.; Rzayev, A.; Shamilov, E.; Abdullayev, A.; Rzayeva, I.; Gasimova, N.; Guliev, G.

1 University of Massachusetts, Medicinal Plant Program, EN 114, Stockbridge Hall, Amherst, Massachusetts, United States
2 Institute of Radiation Problems, National Academy of Sciences, Baku, Azerbaijan

Exposure to radiation has significantly increased during the past hundred years due to the development and use of x-rays and radiotopes in medicine and through environmental pollution from nuclear weapons and power plants. Because radiation can induce mutagenic changes, interfere with the immune system, and lead to development of cancers, efforts that could protect the body from radiation effects would be of great benefit. In this study, aqueous extracts of saffron (Crocus sativus), yarrow (Achillea nobilis), and scholarly tree (Sophora japonica) reduced mutagenic effects of γ-radiation on albino Wistar rats. The most effective radioprotection and anti-mutagenic activity were demonstrated by the saffron extract, which reduced frequency of chromosomal aberrations in bone marrow cells (35.7% at 3 Gy; 17.1% at 5 Gy) and sperm cells (26.9% at 3 Gy; 16.4% at 5 Gy) and restored cell division. Radiation was applied in a gamma-irradiation chamber at the R.Khund-20000 facility. The Institute of Radiation Problems in Bakou has used an average power of 1.252 rad/sec.

Sm08.264

Antioxidant Activity of Lavandula latifolia, Salvia lavandulifolia and Thymus mastichina Collected in Spain

Asensio-S-Manzanera, M. C.; Martin, H.; Herrero, B.; Sanz, M. A.

1 Texto, Cta. Burgos En 119, Ecos Zamadú, CV 707, Valladolid, Spain
2 ETSIA, Universidad de Valladolid, Campus de Palencia, Valladolid, Spain

Industry has been using antioxidants and their positive effects in order to maintain food quality and to prolong its long life. Some of these compounds are synthetic; however, it might be highly desirable to find out natural antioxidants. Aromatic plants help to improve organoleptic qualities of food products and also contribute to their preservation. Owing to this, the antioxidant activity of some populations of Lavandula latifolia (L), Salvia lavandulifolia (Sil) and Thymus mastichina (Tm) have been evaluated. Ten populations of Tm and 12 of each of Sil and Ll have been collected at flowering stage during the summer of 2.009 around Castilla y León (the Central Region of Spain). The vegetal material was dried in dark and room temperature conditions before hydrodistillation. Dry plant material and dry residues after hydrodistillation were used for analysis. Total phenolic content and antioxidant activity were determined. Two methods have been used to determine the antioxidant activity: 1) Free-radical scavenging (DPPH), and 2) Reducing power assay. The results showed that Tm had the higher content in essential oil, although there was high variability among the populations, indicating the selection will be possible in the three species. Total phenolic content and antioxidant activity of dry plant material were higher than hydrodistilled dry material, showing that a considerable portion of antioxidants was retained in the remaining hydrodistillation-aqueous water and the essential oil. Total phenolic content and antioxidant activity of dry plant material were also higher in Tm. In the case of hydrodistilled dry material, there were no differences between Tm and Sil, both species had higher phenolic content and antioxidant activity than Ll. Although there have been variability among the populations and selection would be possible, Tm is postulated as the most interesting species from an antioxidant activity point of view.

Sm08.265

Volatilets from Coriandrum sativum: Comparison of in vitro and ex vitro Grown Plants

Cardoso, S.; Dias, I.; Sousa, J.; Figueiredo, C.; Barroso, J.; Pedro, L.

1 Instituto Politécnico de Bragança, Escola Superior Agrária, Dep. Biologia e Biotecnologia, Campus de S. João de Penalva, 5301-855, Bragança, Portugal
2 Universidade de Lisboa, IUL, IPV, Centro de Biotecnologia Viegas, Cl. Pte J. Campinho, 1749-016 Lisboa, Portugal

Coriandrum sativum (coriander) is commonly used, raw or cooked, in Portuguese gastronomy. Coriander is also used in traditional medicine as a carminative and as a digestive aid. The fruit essential oil is used in food flavouring and in perfumery and is also responsible for the digestive and stimulant effect as well as for fungicidal and bactericidal activity [1]. In vitro C. sativum plants were established by micropropagation in MS medium from in vitro grown 3 weeks old coriander seedlings. Six months after multiplication, some plants produced anthocyanins and maintained this phenotype for, at least, two years under in vitro micropropagation. In the present work, the volatiles of fruits and of ex vitro and in vitro C. sativum plants, with (A) and without (B) anthocyanin production, were studied. The volatiles were isolated by hydrodistillation and analyzed by GC and GC-MS. The fruits volatiles were dominated by linalool (82%), with γ-terpinene (4%), camphe (3%) and germacre (3%) as other major compounds. Linalool was present in the volatile fractions of A and B in in vitro and of ex vitro grown plants in small relative amounts (0.1%, 0.1% and 0.3%, respectively). Dodecanal (17%), α-tetraecanol (15%) and n-nonane (7%) were the dominant compounds in ex vitro plants volatiles. β-Phellandrene (37%, 45% in A and B, respectively), terpinolene (both 9%), β-pinene (4%) and α-thaiphenol (2%, 3% in A and B, respectively) were the major compounds in A and B in vitro grown plants. Despite the anthocyanin production in A in vitro grown plants, the volatile profile was quantitative and qualitatively very similar to that of B in vitro grown plants.

Sm08.266

In vitro Establishment of Aromatic Geranium from Brazil

1 Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Cep 49100-000, São Cristóvão, Sergipe, Brazil
2 Universidade Federal de Uberlândia, Brazil

The aim of this work was to realize in vitro establishment of aromatic Pelargonium gravoensi L’Hér ex Air. from Brazil. The completely randomized design was used. A 4 × 4 × 2 factorial scheme was utilized in the first assay, testing four concentrations of sodium hypochlorite (1.0; 1.5; 2.0 and 2.5%), four immersion times (8, 10, 12 and 14 minutes) and with and without pulverization with fungicide and antibiotic of the mother plants before removing explants. In the second assay a 4 × 2 factorial scheme was utilized, testing four concentrations of mercury chloride (0.06; 0.08; 0.10 and 0.12%), four immersion times (8, 10, 12 and 14 minutes) and with and without pulverization with fungicide and antibiotic of the mother plants before removing explants. For the third assay a 4 × 2 factorial scheme was utilized, testing four concentrations of salts of the MS medium (25%; 50%; 75%; 100%) and two types of explants (nodal and leaves). The evaluated variables were regeneration (%), contamination (%), number of shoots per explants, dry weight of the aerial part (mg). Sodium hypochlorite at 1.2% for 12 minutes was efficient in vitro establishment of aromatic Pelargonium gravoensi L’Hér ex Air. from Brazil.
Sm08.267

Tissue and Cell Cultures of Hypericum undulatum for the Production of Acetylcholinesterase Inhibitors

Zhang, C.1,2; Fevereiro, P. S.1; Laranjo, J. G.1; Moura, J.2; Simplicio, A. L.2

1VITAS – UNIVERSIDADE DE TRÁS-OS-MONTES E ALTO DOURAL, 5000-911, VILA REAL, PORTUGAL. 2INSTITUTO POLÍTÉCNICO DE BRAGANÇA, ESCOLA SUPERIOR DE CIÊNCIAS, DET. BIOLÓGICAS E BIODIVERSIDADE, CAMPUS DE VILA REAL, APARTADO 1172, 5301-811, BRAGANÇA, PORTUGAL.

Hypericum undulatum Wild. (Guttiferae), general name wavy St. John’s wort, is a medicinal plant. It is traditionally used for renal antispasmodic, hepatic protector, and the treatment of migraine, bladder and gall bladder ailments and intestinal-inflammatory. Alzheimer’s disease (AD) is frequent in elderly people, being the leading cause of dementia among older people. An estimated 10% of the world’s population over the age of 65 years is afflicted by AD. Acetylcholinesterase inhibitors (AChEI) are currently the best available pharmacotherapy for AD patients. Presently, treating the symptoms of AD can only delay the progress of the disease. In addition, all the present medicines for AD have side effects. Therefore, it is of importance to screen for more powerful drugs from natural products to treat AD with fewer side effects. A recent work has demonstrated that H. undulatum plant has the AChEI activity. In this work, cell suspension cultures of H. undulatum were established for the production of the AChEI. Seeds were sterilized and aseptically germinated on MS medium solidified with agar without plant growth regulator. The germinated plants were maintained and used for callus induction. The best medium for callus induction and growth was MS plus 1 mg/l 2,4-D, 1 mg/l NAA and 0.2 mg/l 6-BA. Dispersed white calli were transferred to the same medium but without agar to establish cell suspension cultures. The suspension cultured cells turned dark and formed big cell blocks after subculture more than two months. Different cultivation parameters were tested to optimize the cell growth for a continuous culture. Kinetics of cell growth and sugar consumption was analyzed. The AChEI activity of the plant cell extract was determined by capillary electrophoresis. The results show that upon metabolic regulation by elicitors the suspension cultured plant cells had a higher AChEI activity than that of the plants.

Sm08.268

Cloning of Pharmaceutical Cannabis through an Aeroponic Propagation System

Bèguerie, S.1,3; Casano, S.2,3; Grassi, G.3

1GRADUATE SCHOOL OF EXPERIMENTAL PLANT SCIENCES, WAGENINGEN UNIVERSITY AND RESEARCH CENTER, DROENSANDENKUSTERI 1, 6708 PA, WAGENINGEN, NETHERLANDS. 2NAT, FACULTY OF AGRICULTURAL SCIENCES, VULGARI DELLE SCIENZE, 20138, MILAN, ITALY. 3IPA-CNR, BIOPROCESS INNOVATION, Viale Amendola 16, 41125 BOLOGNA, ITALY.

Cannabis sativa L. is an important pharmaceutical species because it is the only source for a whole series of chemically diverse bioactive compounds that are currently under intensive investigation. Cuttings of pistillate plants is the preferred propagation material for the pharmaceutical production to ensure continuous phenotypic correspondance of clonal progenies. Aeroponic propagation gave satisfactory results on cloning of many economic important plant species and for that reason the aim of this study is to evaluate the feasibility of its use in the cloning phases of Cannabis pharmaceutical production. Two experiments were conducted to evaluate the rooting capacity of three different stock plants (‘mostly sativa’, ‘sativa/indica hybrid’, ‘mostly indica’) and the rooting capacity of cuttings taken from three different positions (top, middle, bottom) of the stock plants used. Stock plants were selected from recreational strains on the basis of Δ9-THC yield per crop area unit and kept in vegetative stage in artificial growing conditions. The aeroponic propagation system resulted easy to use and efficient to observe root initiation as the cuttings remain suspended in the air. Significant differences on rooting capacity were found between the different stock plants used and the different positions from where the cuttings were taken. The highest percentage of rooted cuttings was obtained from a ‘mostly sativa’ biotype (80%), followed by a ‘mostly indica’ biotype (70%), and the lowest value was obtained from a ‘hybrid sativa/indica’ (67%). Direct correlation was found between the percentages of rooted cuttings and the average of root lengths after 14 days from the edge of cuttings. Cuttings taken from the bottom position of stock plants had the highest rooting capacity. Cuttings were ready for transplantation in 14 days without the application of plant growth regulators. Despite the satisfactory results obtained, further research is needed to optimize the technique.

Sm08.269

In vitro Culture of Coriandrum sativum

Dias, I.; Cardoso, S.; Martins, A.; Sousa, J.

INSTITUTO POLÍTÉCNICO DE BRAGANÇA, ESCOLA SUPERIOR DE CIÊNCIAS, DET. BIOLÓGICAS E BIODIVERSIDADE, CAMPUS DE VILA REAL, APARTADO 1172, 5301-811, BRAGANÇA, PORTUGAL.

Coriander (Coriandrum sativum L.) is a plant from the Umbellifera family. In Portugal, the use of coriander plants in gastronomy is very common, like in all the countries in the Mediterranean area. This plant species has also several other applications than as an aromatic plant, such as medicinal, being recommended for dyspeptic complaints, loss of appetite, convulsion, insomnia and anxiety. Moreover, the essential oils and various extracts from coriander have been shown to possess antibacterial, antioxidant, antidiabetic, anticancerous and antimutagenic activities among others, it has also been used as a flavoring agent in food products, perfumes and cosmetics. To study the potential use of this plant all over the year it is necessary to establish an in vitro system production and to evaluate the better conditions for its growth. In vitro coriander cultures were started from seeds of Coriandrum sativum from a commercial origin. Seeds were inoculated in a MS medium containing different concentration of IBA and BAP. After 6 months of in vitro culture, the plants were separated in two lots named A and B differentiated by their pigmentation (clones with differentiation in flavonoids accumulation), being lot B the less pigmented and lot A the one that presented a higher purple coloration, under the same in vitro growth conditions (nutrition, temperature and light). The growth rates of both lots were determined through fresh and dried weights and evaluating how pigmentation affects these parameters. The medium with better growth rates was MS with 0.1mg/L IBA and 0.1mg/L BAP. The B lot grew better but have the stationary phase after 3 weeks while the A lot was still growing after 4 weeks but grew slower compared the A lot. These results will be used in further studies concerning the essential oils production in each lot.

Sm08.270

Determination of Antibacterial and Antiradical Activity of Origanum vulgare Clones Grown in Latvia

Dubova, L.1; Alsina, I.1; Kruma, Z.1; Rungis, D.2; Zukauska, I.1; Balins, A.1

1LATVIAN UNIVERSITY OF AGRICULTURE, ESTRADO 978, LV-1066, JELGAVA, LATVIA. 2GENETIC RESOURCES CENTRE SIHA /SLAU/, LATVIA.

Origanum vulgare is widely used in pharmacies and folk medicine. Origanum vulgare clones grown in Latvia differ from their phytochemical content. The aim of the study was to determine the antimicrobial and antiradical activity of these clones. Antibacterial and antiradical activity of ethanol extracts prepared from 10 Origanum vulgare clones grown in Latvia was screened. The antibacterial activity was assessed against bacteria (Escherichia coli, Pseudomonas aeruginosa, Saphyloococcus epidermidis, Bacillus cereus). A sensitivity tests were performed in the liquid nutrient media for bacteria. Plant ethanol extracts from leaves and flowers (25-40 g of fresh matter per L) were added to the growth medium. Extract and media proportion was 1:20. Microorganisms growth were detected spectrophotometrically at wavelength 550 nm after 24 and 72 hours of incubation at 28 °C. Plant extract antiradical activity was determined by 2,2-diphenyl-1-pircrylhydrazyl (DPPH). Origanum vulgare leaves and flowers showed different activity. The antimicrobial and antiradical activity depends on the clone and sampling time. Different clones showed unlike activity on used microorganisms and it depends on oregano chemical content.
Sm08.271
Experiment with Family Farmers on the Production of Fennel (Foeniculum vulgare Mill) in Ecologic Bases in Sergipe’s Semi-Arid Region

Embrapa Tabuleiros Costeiros, Beira Mar Avenue, 3250, July 13, 49025-040, Aracaju, Sergipe, Brazil.

The frequent production of fennel in ever-smaller areas without the proper reposition of nutrients is favoring the impoverishment of the soil, such as it was observed in Simão Dias Township, in the state of Sergipe, Brazil. In addition to this, the agro-ecosystems’ imbalance due to the advance of corn monoculture has favored for an increase of plant louse infestation. The action of this aphid takes place during the inflorescence of the plant, affecting fruit and seed production and resulting in great financial loss to farmers. For this reason, Embrapa Tabuleiros Costeiros and EM-DAGRO - Sergipe’s Agonomy and Livestock Development Agency, have joined forces in order to develop a research on the socio-economic and environmental characterization of the reality of small family-owned rural fennel producing properties. The study concentrated on the traditional production of fennel and was developed with the participation of approximately 70 families in three rural communities. This allowed for an exchange of technical knowledge related to agro-ecology. The research took place in two ‘UEs’ - Experimental Units, where informal trials reflected the convergence between the investigative concerns of the farmers and the researchers. These trials were conducted over one productive cycle of fennel of approximately 210 days, under local edafoclimatic conditions. The results demonstrated the pivotal role of the agro-ecological production of this aromatic plant, allowing for new perspectives on plant louse control as well as of soil and water management to be considered in future studies. The indirect sowing was positively evaluated by the farmers since it allowed for early fennel harvest expectancy and consequently the securing of better prices. Moreover, the experiment with farmers represented an important methodological learning process to be enlarged in any future research opportunity that is aimed at familiar agriculture in Sergipe’s semi-arid region.