Economies of scale and optimal size of hospitals: Empirical results for Danish public hospitals

Kristensen, Troels

Publication date:
2008

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Preface:
The aim of this Working Paper (WP) is to contribute to the current debate about the future configuration of the Danish hospital sector, in particular the issue of ‘optimal’ hospital size. From an economic perspective we find that the empirical evidence underpinning the planned hospital structure is ambiguous and partly lacking. The WP contributes to this debate with an empirical study of the question of economies of scale in the Danish hospital sector and estimates of an optimal hospital size.

Our WP is addressed to foreign and Danish economists with an interest in industrial organization and, in particular, the organisation of the (Danish) hospital sector. Furthermore, our WP serves as the back ground paper for an article submitted to a peer-reviewed health economic journal. In addition to the content of the submitted article, the WP contains details such as an appendix and a more detailed discussion of methodological issues and concepts.

Acknowledgments
An earlier version of this WP was presented at the Health Economics’ Study Group Joint UK & Nordic meeting at the Health Economic Research Unit, University of Aberdeen 27-29 August 2008. We thank the discussant, Professor Jørgen T. Lauridsen, for helpful comments and suggestions. We would also like to acknowledge helpful comments from our SDU colleague, associate professor Jacob Nielsen Arendt, and visiting fellow at the Danish Institute for Health Services Research Professor Andrew Street, the University of York. Finally, we would like to thank John Mason of Manuscripts.dk for linguistic revision and secretary Helle Møller Jensen for helping in formatting and compiling the WP.

This project was partly financed by the Danish VAT foundation (Det kommunale momsfond). All errors, omissions and opinions are the sole responsibility of the authors.

Troels Kristensen, Kim Rose Olsen and Kjeld Møller Pedersen
November 2008
Title: Economies of scale and optimal size of hospitals: Empirical results for Danish public hospitals

Abstract:
Context and aim: The Danish hospital sector is facing a significant rebuilding programme, driven by a political desire to concentrate activity in fewer and larger hospitals. Our aim is to analyse whether the current configuration of Danish hospitals is subject to scale economies that may justify such plans and to estimate an optimal hospital size.

Methods: We estimate cost functions using panel data on total costs, DRG-weighted casemix, and number of beds for three years from 2004-2006. A short-run cost function is used to derive estimates of long-run scale economies by applying the envelope condition.

Results: We identify moderate to significant long-run economies of scale when applying two alternative translog cost functions. However, using a quadratic functional form we identify constant economies of scale for the medium-sized sub-groups and decreasing economies of scale for the largest sub-groups. The optimal number of beds per hospital is estimated to be 275 beds per site. Sensitivity analysis to partial changes in model parameters yields a joint 95% confidence interval in the range 130 – 585 beds per site.

Conclusions: The results indicate that it may be appropriate to consolidate the production of small hospitals (<230 beds) on fewer and larger units.

Keywords: Economies of scale, optimal size, hospitals, cost function.

1. Introduction
In Denmark the number of somatic hospitals has decreased from 117 in 1980 to 52 in 2004. Part of this decrease is due to the fact that the concept or idea of a hospital has changed. Until the early 1990’s there was always a one-to-one relationship between a hospital as a management entity and its geographical location. During the past 15 years, however, hospitals at different locations have been merged so that many ‘hospitals’ today consist of several geographically distinct ‘production units’ being managed together. These new entities, consisting of several production units, are called management entities or conglomerate hospitals. This trend towards centralization is not uniquely Danish but is also found in, for instance, England, Norway and Sweden [1,2,3].

Hospital plans from the five Danish regions show that this development is expected to continue in the years to come [4]. They are planning a significant rebuilding program including green field investments at 5 new sites, significant extension and reconstruction of several existing hospitals and mergers or closures of several small hospitals.

Whether the increasing centralization of hospitals is to be seen as an advantage depends on a) whether there are economies of scale i.e. lower average costs and b) whether bigger hospitals lead to improved clinical outcomes [5]. Exploiting economies of scale may help to limit costs of health care outputs without compromising their quality and volume. On the other hand, hospitals may become so large that the cost of treatment will be higher due to diseconomies of scale. Furthermore, plans to concentrate further assume that the ‘optimal’ hospital size is bigger than in the current configuration.

From an economic perspective the evidence base underpinning centralization is weak, that is to say that there is a conspicuous absence of research and discussion of economies of scale in Danish hospital production. No econometric studies of economies of scale in hospitals have ever been undertaken in Denmark. In Europe, unlike in the U.S. where more literature exists on economies of scale, the economics of this trend towards larger hospitals have not been sufficiently analyzed. Notable exceptions are [6] and [7] along with a survey [5]. Evidence of the ‘optimal’ hospital size is important at a time when the hospital sector is facing major restructuring. Therefore, the aim of this study is to assess whether there are unexploited economies of scale in the current configuration and to estimate an ‘optimal’ hospital size. The present study

1. The association of Danish Regions has published the rebuilding program for each region, see http://www.godtsygehusbyggeri.dk
is limited to assessing economies of scale and ‘optimal’ hospital size for Danish hospitals in the period 2004-2006 from a hybrid econometric cost function perspective [8].

The unit of analysis is the hospital “production unit”, not the hospital management entity. This approach has become increasingly relevant due to the trend towards concentration in secondary healthcare. In relation to the rebuilding programme it is the geographical hospital “production unit” which is the relevant decision unit when deciding to build new hospitals to replace one or more former hospitals. It is not the management entities with satellite production units which may be located far from each other that are the relevant analytical unit. A distance of 30-50 km between units within the same management entity is quite common. Besides, using the production unit as the unit of analysis means that we can interpret the estimated economies of scale and hospital sizes in relation to the actual geographical hospital production units instead of multisited hospital management entities. In the following, consequently, the term hospital is reserved for freestanding “production units” in specific geographical sites rather than “hospital management entities” which consist of several production units at different sites.

Our presentation of earlier studies is restricted to those that use econometric cost functions that resemble the methods used in this study. However, this study differs from the majority of earlier studies in several ways – especially in its estimation of long run cost functions and ‘optimal’ hospital size. So far, this approach has not been used in European studies. The literature search revealed only a single Canadian study that has estimated an ‘optimal’ hospital size using the envelope condition [9]. All other earlier studies of ‘optimal’ size are based on scale estimates – excluding specific estimates of ‘optimal’ hospital size.

2. Earlier results
The empirical literature on economies of scale in hospitals is extensive, if all statistical techniques are included [5]. Despite the fact that the literature reflects different methods and covers many different countries the results are remarkably consistent, according to a recent survey of 103 studies by Aletras [10], i.e. these studies reveal constant economies – or even diseconomies – of scale for the average hospital with about 200-300 beds, see also Aletras et al. [11]. However, studies based on structural or hybrid econometric cost functions only represent about one fifth of these studies. According to [11] economies of scale were evident only for small hospitals with less than 200 beds and the ‘optimal’ size for acute hospitals ranged form 200 to 400 beds (based on the interpretation of scale estimates). For hospitals above 400-600 beds it was concluded that the average cost increases.

Studies after 1997 based on structural or hybrid econometric cost function do not confirm the above-mentioned consistency. In North America the application of panel data has shown economies of scale in Canada [13,9]. A third study based on cross-section data also indicated economies of scale [14]. Moreover, a study of acute care hospitals in California has revealed a minor trend towards economies of scale [15].

In contrast to, for example, [13] and [14], the present writers use casemix-adjusted output measures instead of particularly constructed casemix indexes to adjust for differences in patient mix and severity. Furthermore, this study differs from [9], for example, by including costs shifters to adjust the structural model for cost drivers that are specific to hospitals.

Finally, it is apparent that the studies described do not rely on the latest data. This study applies the latest data and data adapted for managerial decision-making and efficiency-measurement in the Danish hospital sector.

This study is inspired by the relatively well known properties of scale and optimal scale size of parametric cost functions. The corresponding properties of the alternative non-parametric deterministic data envelopment analysis (DEA) are less explored [12].
Using econometric assessment of economies of scale and 'optimal' size of hospitals, a number of

3. Methods

\[g(C) = \sum_{i=1}^{N} \sum_{t=1}^{T} f(x_i) + u_{it}, \quad i = 1, \ldots, N, \quad t = 1, \ldots, T \]

where \(g \) is a real valued function of the total cost for somatic treatment \(C \) in period \((i, t)\). \(f \) is a constant, \(f \) is the real valued function of the cost determinants, \(x \) is a matrix of outputs, \(Q, (m = 1, \ldots, M) \) and \(u \) is a random disturbance term.

As elsewhere, the number of hospitals in Denmark has declined radically over the past two decades as a result of mergers and closures. This means that many hospitals have changed from being an institution located on a single geographical site, often with a degree of division of labour and hence specialization. When estimating econometric models of hospital production, model for cost functions specifying the cost of output variables, and estimation technique.

\(3.2 \) The data and output functions

\[\text{Cost shifters} \]

As a result of mergers and closures, the estimated models also belong to the family of hybrid cost functions, see, for instance [8]. This category of functional forms is now preferred to the more naïve structural functional form, see, for instance [17]. In equation (1) input prices are left out, because it is assumed that input prices do not vary significantly between the hospitals, i.e., input prices are uniform across the public hospitals.

\[f(x) \]

This study is based on data for hospital production sites to reveal knowledge relevant for policy making about the cost and production characteristics of physical production entities in the Danish hospital sector. If the management conglomerate sites had been used as the sole unit of analysis, then estimates could have been conducted only in relation to an 'optimal management unit'.

\[g(x) \]

As a result of mergers and closures, the estimated models also belong to the family of hybrid cost functions, see, for instance [8]. This category of functional forms is now preferred to the more naïve structural functional form, see, for instance [17]. In equation (1) input prices are left out, because it is assumed that input prices do not vary significantly between the hospitals, i.e., input prices are uniform across the public hospitals.

\[f(x) \]

This study is based on data for hospital production sites to reveal knowledge relevant for policy making about the cost and production characteristics of physical production entities in the Danish hospital sector. If the management conglomerate sites had been used as the sole unit of analysis, then estimates could have been conducted only in relation to an 'optimal management unit'.

\[g(x) \]

As a result of mergers and closures, the estimated models also belong to the family of hybrid cost functions, see, for instance [8]. This category of functional forms is now preferred to the more naïve structural functional form, see, for instance [17]. In equation (1) input prices are left out, because it is assumed that input prices do not vary significantly between the hospitals, i.e., input prices are uniform across the public hospitals.

\[f(x) \]

This study is based on data for hospital production sites to reveal knowledge relevant for policy making about the cost and production characteristics of physical production entities in the Danish hospital sector. If the management conglomerate sites had been used as the sole unit of analysis, then estimates could have been conducted only in relation to an 'optimal management unit'.

\[g(x) \]

As a result of mergers and closures, the estimated models also belong to the family of hybrid cost functions, see, for instance [8]. This category of functional forms is now preferred to the more naïve structural functional form, see, for instance [17]. In equation (1) input prices are left out, because it is assumed that input prices do not vary significantly between the hospitals, i.e., input prices are uniform across the public hospitals.

\[f(x) \]

This study is based on data for hospital production sites to reveal knowledge relevant for policy making about the cost and production characteristics of physical production entities in the Danish hospital sector. If the management conglomerate sites had been used as the sole unit of analysis, then estimates could have been conducted only in relation to an 'optimal management unit'.

\[g(x) \]

As a result of mergers and closures, the estimated models also belong to the family of hybrid cost functions, see, for instance [8]. This category of functional forms is now preferred to the more naïve structural functional form, see, for instance [17]. In equation (1) input prices are left out, because it is assumed that input prices do not vary significantly between the hospitals, i.e., input prices are uniform across the public hospitals.

\[f(x) \]

This study is based on data for hospital production sites to reveal knowledge relevant for policy making about the cost and production characteristics of physical production entities in the Danish hospital sector. If the management conglomerate sites had been used as the sole unit of analysis, then estimates could have been conducted only in relation to an 'optimal management unit'.
hospitals, for instance, different managerial abilities and severity of illness. Therefore it is less likely that FE models suffer from omitted variables bias as it is often the case in cross-sectional behavioural equations. Besides, the fixed effect model accounts for technical inefficiency among the variable inputs, even though it does not disentangle the fixed effect into an efficacy part and any unmeasured time invariant cross firm heterogeneity. 20 It was used to test for the choice of the FE estimator over the Random Effects (RE) estimator.

Calculation of the optimal hospital size

The optimal size of a hospital can be calculated from the short-run cost function by application of the envelope condition [9, 27]. Given the cost function (1), this calculation can be expressed as:

$$ K^* = \frac{\partial \ln g}{\partial \ln \text{output}} = 0 $$

The long-run cost function

The long-run cost function has been estimated in two different ways. The first approach uses the estimated short-run cost function and the envelope condition to calculate the long-run cost function (2) in which the estimated short-run cost function set equal to zero defines the optimal relationship between beds and outputs as defined in (1). Substituting (2) into the short-run cost function (1) yields the long-run cost function in terms of capital (K).

$$ \text{Output} = \text{Capital} + \text{Efficiency} + \text{Cost Shifter} $$

Sensitivity analysis was conducted for the choice of the FE effect estimator over the Random Effects (RE) estimator. The Hausman test was used to test for the choice of the FE estimator over the Random Effects (RE) estimator.

The 'optimal' number of beds K* in (2) becomes an exponential function of hospital size. This approach makes it feasible to estimate the 'optimal' number of beds (optimal capital stock) by application of a 'flexible' functional form and the envelope condition [9].

$$ \text{Output} = \text{Input} + \text{Efficiency} + \text{Cost Shifter} $$

Sensitivity analysis was conducted for the choice of the FE effect estimator over the Random Effects (RE) estimator. The Hausman test was used to test for the choice of the FE estimator over the Random Effects (RE) estimator.

The long-run cost function

The long-run cost function has been estimated in two different ways. The first approach uses the estimated short-run cost function and the envelope condition to calculate the long-run cost function (2) in which the estimated short-run cost function set equal to zero defines the optimal relationship between beds and outputs as defined in (1). Substituting (2) into the short-run cost function (1) yields the long-run cost function in terms of capital (K).

$$ \text{Output} = \text{Capital} + \text{Efficiency} + \text{Cost Shifter} $$

Sensitivity analysis was conducted for the choice of the FE effect estimator over the Random Effects (RE) estimator. The Hausman test was used to test for the choice of the FE estimator over the Random Effects (RE) estimator.

The long-run cost function

The long-run cost function has been estimated in two different ways. The first approach uses the estimated short-run cost function and the envelope condition to calculate the long-run cost function (2) in which the estimated short-run cost function set equal to zero defines the optimal relationship between beds and outputs as defined in (1). Substituting (2) into the short-run cost function (1) yields the long-run cost function in terms of capital (K).

$$ \text{Output} = \text{Capital} + \text{Efficiency} + \text{Cost Shifter} $$

Sensitivity analysis was conducted for the choice of the FE effect estimator over the Random Effects (RE) estimator. The Hausman test was used to test for the choice of the FE estimator over the Random Effects (RE) estimator.

The long-run cost function

The long-run cost function has been estimated in two different ways. The first approach uses the estimated short-run cost function and the envelope condition to calculate the long-run cost function (2) in which the estimated short-run cost function set equal to zero defines the optimal relationship between beds and outputs as defined in (1). Substituting (2) into the short-run cost function (1) yields the long-run cost function in terms of capital (K).

$$ \text{Output} = \text{Capital} + \text{Efficiency} + \text{Cost Shifter} $$

Sensitivity analysis was conducted for the choice of the FE effect estimator over the Random Effects (RE) estimator. The Hausman test was used to test for the choice of the FE estimator over the Random Effects (RE) estimator.
The second approach applies an alternative way, where the cost function is estimated directly without use of the envelope condition [6]. This approach, the ‘direct approach’, has been achieved by omitting the number of beds in the estimation of the cost function. Hence, in contrast to the ‘envelope condition approach’, the direct approach assumes that hospitals use an optimal amount of capital in terms of beds (\(K^*\)) in the short and long run, see for instance, [16]. In other words, the direct approach assumes fixed cost to become variable in the long run, in other words as a function of, for example, outputs. Besides, it assumes that fixed cost varies with output across the data set and that the hospitals are always endowed with an optimal amount of capital. The latter is a relatively restrictive assumption to be discussed later.

The degrees of freedom gained from dropping the beds variable (\(K\)) are used to include two output measures, DRG value of inpatients and outpatients instead of the total DRG value per hospital.

Derivation of economies of scale estimates

In accordance with [28], economies of scale are estimated in a way that shows the relative rise in costs when output is increased proportionally. Since the translog and Cobb-Douglas models are logged in all variables and the quadratic forms are unlogged this yields (3) and (4):

\[
SE1 = \sum \frac{\partial g(Q_m)}{\partial Q_m} = (3)
\]

\[
SE2 = \sum \left(\frac{C}{Q_m} - \frac{C}{Q_m} \right) = (4)
\]

\(SE1\) in (3) expresses the sum of first order partial derivatives of the cost function (1) with respect to each output \(Q_m\) in logs. The logarithmic transformations imply that each of these derivatives is an estimate of cost elasticities for each \(Q_m\).

\(SE2\) in (4) measures the sum of cost elasticities with respect to output. Each of the cost elasticities in \(SE2\) is calculated using the standard (unlogged) approach, because the quadratic form is in cost levels. In the translog and quadratic models, in which scale estimates by definition are flexible, the sub-group median hospital was used to calculate scale estimates for each of the defined size groups. The size groups were defined by quartiles. The smallest size group (1st quartile) consists of the 25% of hospitals, which has the smallest number of beds, while the other size groups, 2nd quartile, 3rd quartile and 4th quartile, include hospitals with a size in the respective quartiles. Both \(SE1\) and \(SE2\) express the multi-product analog of marginal cost divided by average cost. The exact model specifications are shown in the Appendix.

In equations (3) and (4), \(SE\) values less than 1 indicate economies of scale corresponding to cost increases, which are smaller than the proportional output increase. \(SE\) values larger than 1 show diseconomies of scale.

Data

The data comes from a national cost database developed by the National Board of Health [29]. The cost database is based on patient activity and cost information from most public hospitals and is also used to calculate Danish DRG tariffs. Total hospital costs are actual costs incurred in respective years adjusted for costs from shared facilities with other hospitals, such as laundry.\(^6\) They are used as the best available proxy for the total cost for somatic treatment. DRG values, or in other words the reimbursement received by hospitals, give the most appropriate picture of the value of hospital production.

There may be some inconsistencies for the DRG values for the three years 2004 to 2006, because the DRG grouper used for 2005 and 2006 was different from that used for 2004 (giving different input prices). This means that 2004 data is based on 2007 input prices while 2005 and 2006 data is based on real 2008 input prices. We assume, however, that the effect of this is negligible due to a low inflationary level. Variables used and descriptive statistics are shown in table 1.

\(^6\) The National Board of Health calculates adjusted actual operating costs by deducting from total reported operating costs, whenever relevant. This applies, for instance, to the cost of psychiatric services, laboratory services for general practitioners, the cost of medicines provided for outpatients, adjustments for differences in accounting practice and unpaid services between hospitals. This gives the figure for ‘the adjusted operational costs’ which is used in the present study.
Table 1 Descriptive statistics for Danish hospitals in the years 2004-2006

<table>
<thead>
<tr>
<th>Variable</th>
<th>Year</th>
<th>Description</th>
<th>Average</th>
<th>Std. dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2004</td>
<td>Adjusted operational costs</td>
<td>530,934</td>
<td>648,465</td>
<td>21,581</td>
<td>3,591,319</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>-</td>
<td>616,490</td>
<td>784,055</td>
<td>19,035</td>
<td>4,337,614</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>-</td>
<td>439,160</td>
<td>449,149</td>
<td>16,761</td>
<td>1,890,084</td>
</tr>
</tbody>
</table>

Independent:

	2004	DRG value inpatient	328,514	379,452	0	2,123,694
	2005	-	361,908	477,284	0	2,516,725
	2006	-	252,824	231,748	3,265	898,218

	2004	DRG value outpatient	209,637	335,966	2,514	1,180,949
	2005	-	274,984	231,748	3,265	898,218
	2006	-	226,344	247,555	3,555	1,000,748

	2004	Total DRG value (Q₁ + Q₂)	538,152	592,734	22,968	3,304,644
	2005	-	592,734	636,892	22,968	3,304,644
	2006	-	459,168	468,839	15,163	1,898,966

Independent cost shifters:

	2004	Average number of staffed beds	281.6	250.9	25.6	1107.1
	2005	-	265.1	259.5	9	1136.7
	2006	-	176.0	152.1	9	517

a Unbalanced due to missing data for 2006. The numbers of observations in 2004-06 are 57, 55 & 31 respectively. * Including the value of grey zone DRG activity

Data in table 1 shows that hospital production units on average had operating costs in the range DKK 530 to 616 million. The DRG values are measured in local currency, DKK. The total value of DRG production for each hospital is divided into two output categories: 1) the production value of inpatients and 2) the production value of outpatients, including both so called grey zone patients and emergency patients.

Grey zone patients are patients that the hospital staff both can choose to treat as outpatient or as inpatient (in connection with hospitalization). To avoid distortion of this substitution choice, a special grey zone DRG rate is used. The grey zone DRG rate is calculated as the weighted average between what it costs to perform same-day surgery or outpatient treatment, and the corresponding price for similar inpatient treatment.

The average number of beds per hospital production unit is in the range 265 to 281, but this average covers wide variation between production units (e.g. min. 9, max. 1136 in 2005). The average number of disposable beds per hospital is used as a proxy for the size of hospitals and fixed inputs.

Table 1 also shows that the percentage of public hospitals that were university hospitals was on average approximately 21% in the period 2004 to 2005. Finally, it should be noted that the data for 2006 is generally sparser than the data for the previous year. This is due to data being missing for some of the large units in 2006, i.e. unbalanced panel data. Psychiatric hospitals are excluded from this study. Danish psychiatric hospitals do not use the DRG system. In special hospitals, e.g. Friklinikken in Bredstrup and Hammel Neurocenter, the production process is considered to be atypical. Therefore, six hospitals were excluded.
Results

Table 2 shows the results for the short-run cost models in the Cobb-Douglas, the translog and the quadratic model specification.

Table 2 Regression results – short-run cost functions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.1423**</td>
<td>-0.1966***</td>
<td>-0.0297</td>
</tr>
<tr>
<td>Inpatients (DRG value)</td>
<td>0.4425***</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Outpatients (DRG value)</td>
<td>0.2736***</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total DRG value</td>
<td>-0.6921***</td>
<td>1.4800***</td>
<td></td>
</tr>
<tr>
<td>Avg. number of beds</td>
<td>0.0511</td>
<td>-0.0403</td>
<td>-1.2360**</td>
</tr>
<tr>
<td>(Total DRG value)</td>
<td>-</td>
<td>0.2862</td>
<td>0.1266**</td>
</tr>
<tr>
<td>(Avg. number of beds)</td>
<td>-</td>
<td>-0.0967</td>
<td>0.8131***</td>
</tr>
<tr>
<td>Total DRG value*Avg.</td>
<td>-</td>
<td>0.6921***</td>
<td>1.4800***</td>
</tr>
<tr>
<td>number of beds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>143</td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td>Number of hospitals</td>
<td>54</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>0.6028</td>
<td>0.7717</td>
<td>0.7657</td>
</tr>
<tr>
<td>Between</td>
<td>0.9837</td>
<td>0.9778</td>
<td>0.9517</td>
</tr>
<tr>
<td>Overall</td>
<td>0.9763</td>
<td>0.9663</td>
<td>0.9374</td>
</tr>
<tr>
<td>F-test (5,78)</td>
<td>28.11***</td>
<td>105.37***</td>
<td>30.10***</td>
</tr>
<tr>
<td>Hausman chi2(5)</td>
<td>8.49**</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*** P < 0.01, ** P <0.05%, * P <0.10
1 Model did not meet the assumptions of the Hausmann test

For the Cobb-Douglas and translog specification the beta estimates should be interpreted as elasticities, while in the quadratic form they indicate the absolute increase in costs due to an increase in one unit of output.

The Cobb-Douglas and the translog model show that elasticities for inpatients are higher than for outpatients and that the results are quite similar for cross-section and panel data specification except for the outpatient elasticity being higher in 2006 than in 2004 and 2005. This deviation is probably due to missing data in 2006 as mentioned in the data description.

The beta estimate for the average number of beds changes sign and significance across the model specifications leaving the effect ambiguous. The university hospital dummy in table 1 was eliminated in the fixed effect model 2.

The regression results in table 2 are used to estimate the long-run cost function based on the envelope condition, shown together with the direct approach to long-run cost function in table 3. The results in table 2 are also used to estimate the scale elasticities shown in table 4.

Table 3 Regression and calculated result – long-run cost functions

Table 3 shows the three long-run cost functions. The first version of the translog function and the quadratic function are calculated from the short-run cost functions in table 2 by substitution of equation (2) into equation (1).

The second version of the translog model is a directly estimated, fixed-effect, long-run cost function. In this model, the total output vector has been divided into two output measures – inpatient and outpatient DRG value – and no cost shifters have been included to avoid collinearity.

The beta estimates of the Cobb-Douglas and translog cost functions are elasticities, whereas the betas of the quadratic model show the absolute increases in costs. The difference in

7 In an earlier cross-section analysis the university hospital dummy was positively significant for each of the years 2004-2006. This indicates, as expected, that university hospitals incur higher cost, see the method section.
In the short-run, the translog model expresses economies of scale, and the quadratic model expresses decreasing economies of scale as the size of hospital is increased. Overall, the models suggest that results of the flexible models depend on the functional form used, while the nested Cobb-Douglas and the translog models allow us to make non-linear scale estimates. The results indicate that scale estimates are increasing with the size of the hospital. The translog model becomes larger.

Table 4 shows estimates of economies of scale for the alternative functional forms. Both short-run and long-run economies of scale are measured by conventional ray scale economies, which are the elasticity of cost taken along a ray that holds product mix constant. SE < 1 implies scale economies and SE > 1 implies diseconomies when outputs are changed proportionately.

The short-run and long-run scale estimates for hospital production units in Denmark. The two translog models indicate presence of scale economies, while the quadratic form indicates constant or decreasing returns to scale. Therefore, the long-run results are similar in the sense that the results are sensitive to the functional form. Besides, the directly estimated translog model indicates that results are sensitive to the functional form. In the long-run, long-run results are similar in the sense that the results are sensitive to the functional form.

The translog scale estimates for the largest size groups lie around 0.67 or very close to the value 1, equivalent to constant economies of scale in the long-run. Thus, there is nothing special about the functional form model based on the envelope condition. The Cobb-Douglas model has a low variation between hospital size groups (0.69 for the largest hospitals and 0.67 for the smallest), the variation shows up as larger when we use the direct approach (0.70 for the smallest to 1.02 for the largest hospital).

Table 4 - Short-run and long-run scale estimates for hospital production units in Denmark.

<table>
<thead>
<tr>
<th>Groups of hospitals</th>
<th>Short-run</th>
<th>Long-run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobb-Douglas</td>
<td>Translog</td>
<td>Quadratic</td>
</tr>
<tr>
<td>1 hospitals</td>
<td>0.7160</td>
<td>0.7086</td>
</tr>
<tr>
<td>2 hospitals</td>
<td>0.7160</td>
<td>0.6235</td>
</tr>
<tr>
<td>3 hospitals</td>
<td>0.7160</td>
<td>0.6688</td>
</tr>
<tr>
<td>4 hospitals</td>
<td>0.7160</td>
<td>0.6972</td>
</tr>
</tbody>
</table>

The short-run and long-run estimates in Table 4 indicate that results are dependent on the functional form used. The Cobb-Douglas and the translog models show significant economies of scale in the short-run and that hospitals can change the amount of capital in the long-run. Long-run results are similar in the sense that the results are sensitive to the functional form.
Figure 1 shows the long-run (LR) scale estimates as a function of hospital size for the three different LR model specifications. The figure shows that LR scale estimates for the translog model using the envelope condition lie below 1 for all hospital sizes, whereas they start to exceed 1 for hospitals above around 400 beds in the direct translog LR model. The estimates based on the quadratic form show less correlation between hospital size and LR scale estimates even though a positive trend can be detected with increasing size of hospitals. This increased level of noise probably stems from the lack of compression of outliers in the unlogged model.

In contrast to table 3, which showed scale estimates for the median hospitals data in each size groups (representative units), figure 1 shows the short-run scale characteristics for all observed hospitals. The smallest quartile has estimates in the range of 9-50.9 beds, while the following three size groups (2nd quartile, 3rd quartile and 4th quartile) have observations in the intervals 50.9-229.0, 229.0-356.6 and 356.6-1136.7 beds.

Finally, figure 1 shows that there are three outlier observations that we did not find any arguments to exclude and that there are relatively few observations among the largest hospital production sites.

Optimal hospital size

The estimation based on (1) and the calculation of an ‘optimal’ hospital size based on (2) yields 204.9 beds for the median Danish hospital in the translog model and 275.2 beds for the quadratic functional form.

In figure 2 the estimated optimal hospital size is shown as a function of present size. Using the 45 degree line as point of departure, the figure illustrates how the ‘optimal’ size of each hospital deviates from the present size (‘45º’ line). The results of both models indicate that small and medium-sized hospitals with less than 204 or 275 beds are too small, while the larger hospitals are too large. However, it is not evident whether, for example, ‘small is too small’ in the translog model, since optimal and actual sizes are not different, at least not statistically. Both results are in line with the above-mentioned literature review by Aletras & Jones, which points to optimal sizes.
of hospitals as being between 200 and 400 beds. An example is a recent Canadian study, which estimated an 'optimal' value of 179.5 beds [9]. Applying the 'directly' estimated long-run cost function, it is not possible to derive an optimal hospital size through (2). However, the long-run scale estimates in table 4 can be analyzed to reveal whether they indicate an 'optimal' size (e.g. 357-1137 beds). The results indicate that economics of scale have been exploited for the largest quartile (357-1137 beds), and that these hospitals are facing constant economies of scale where no economic gains can be obtained by centralization.

From an econometric perspective, the quadratic form is preferred to the translog model, which may result in biased estimates as well as biased transformation problems in the cost function [33]. To avoid these transformation issues (i.e. the introduction of approximate correction factors), we choose to use the quadratic form to construct confidence intervals for 'optimal' hospital sizes.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>Model of the estimated scale of the optimal hospital size</th>
<th>Model of the estimated scale of the optimal hospital size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of beds</td>
<td>130.0</td>
<td>179.9</td>
</tr>
<tr>
<td>Total DRG value * Average number of beds</td>
<td>235.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Sensitivity analysis for estimate of optimal hospital size

585 beds per hospital

5. Discussion

This study shows that parametric estimates of economies of scale are sensitive to partial changes in each of the estimated parameters included in the envelop condition (2). According to the estimated confidence interval for the average number of beds (130.0 to 179.9), the model is not robust to more than one or two different outcome measures without getting multicollinearity, which of course, leaves open critical issues regarding collapsing the multidimensional output vector. Hence, in order to minimize these obstacles, the approach used in this study has been to aggregate the output vector to one aggregated output and to use one cost function in order to have sufficient degrees of freedom for model estimation without getting multicollinearity. Besides, the unit of analysis has been defined at hospital production units instead of conglomerate hospitals. This is done both to define the unit of analysis relevant for policy and to increase the number of observations that are higher for hospital production units than conglomerate hospitals. Theory makes assumptions about first and second order effects of cost functions, i.e. marginal cost elasticity and the envelop condition. This study is based on the relatively well-known properties of parametric flexible cost functions guided by neoclassical production theory [33]. Still, due to the fact that input prices were assumed to be constant, this study was limited to adopting a second-best practice where it was impossible to test all cost function regulations. However, the translog cost function, which has become a standard approach, has been applied in a number of hospital studies [17]. In the same way, the Cobb-Douglas function is a standard functional form, but it has been used to estimate economies of scale since the development of the more flexible functional form, such as the translog model [35].

The only functional form that is not very frequently used is the quadratic form even though it is more flexible than the Cobb-Douglas function. This might be due to the fact that the coefficients are more difficult to interpret in the quadratic form. On the other hand, the quadratic form has the advantage that it can result in a transformation problem regarding the dependent variable if non-convexities are present in the model [33]. However, increased flexibility requires an increasing number of parameters to be estimated. The quadratic form is more appropriate for estimating the long-run scale estimates in table 4, since it is not possible to include more than one or two different outcome measures without getting multicollinearity, which of course, leaves open critical issues regarding collapsing the multidimensional output vector. Hence, in order to minimize these obstacles, the approach used in this study has been to aggregate the output vector to one aggregated output and to use one cost function in order to have sufficient degrees of freedom for model estimation without getting multicollinearity. Besides, the unit of analysis has been defined at hospital production units instead of conglomerate hospitals. This is done both to define the unit of analysis relevant for policy and to increase the number of observations that are higher for hospital production units than conglomerate hospitals.
The above-mentioned approach, which uses only one output index, is debatable. From one point of view, the multi-dimensional output can only be aggregated if the original dimensions are broad terms of, for example, quality, patient characteristics and institutional conditions in order to avoid bias due to omitted variables. On the other hand, empirical studies show that quality data, for example, can be significant in hospital cost functions. This is due to the fact that fixed costs are assumed to be driven by the number of beds as a proxy for fixed cost. However, this approach was not feasible since the Danish National Board of Health has adopted an accounting approach to costing. There are no available data available as in the "small country" case. From another angle, use of the Cobb-Douglas model implies constant scale elasticities, which decrease flexibility and increase the risk of misspecification. The inflexibility of the Cobb-Douglas model also shows that it cannot be used as a standard method to measure hospital size. Therefore, it could be claimed that increasing the number of hospital cases in hospital size. However, it is recognized that measuring hospital size is a complex undertaking, and while the Cobb-Douglas model seems to be well-suited for estimating hospital size, the results compared to an ideally balanced panel. In this paper we used only three years of panel data. The reason is that changes in hospital activity. In a long-run perspective, this is due to a trend towards substitution of hospital activity for reimbursement care as a measure in the 1970s to reduce hospital costs, so, for instance, [40]. The number of non-acute care medicine beds in particular has been declining. Despite the critics, we did not find a more appropriate and recognized approach to measuring hospital size. According to a trend, both Danish and international, towards relatively more outpatient activity, the number of beds as a proxy for fixed cost and hospital size is debatable. Therefore, we did not find a more appropriate and recognized approach to measuring hospital size. According to a trend, both Danish and international, towards relatively more outpatient activity, the number of beds as a proxy for fixed cost and hospital size is debatable. This is due to the fact that fixed costs are assumed to be driven by the number of beds as a proxy for fixed cost. However, this approach was not feasible since the Danish National Board of Health has adopted an accounting approach to costing. There are no available data available as in the "small country" case.
It is not realistic to assume that hospitals can adjust all their inputs quickly as was the case in the present study. Individual effects were not used to calculate technical inefficiencies. In the present study, individual effects were not used to calculate technical inefficiencies. The estimated scale estimates and optimal hospital size are based on the interpretation of data from hospitals in the direct approach [44]. Most studies indicate that hospitals cannot adjust all inputs quickly when output levels or factor prices change. Consequently, it is probably more reasonable to assume that hospitals only apply optimal quantities of the most easily adjustable variables such as manpower and medical supplies, given likely non-optimal levels of fixed inputs (measured in terms of beds). Therefore, it is more appropriate to estimate short-run cost functions and explain the envelope condition to derive the long-run cost function. A test for long-run equilibrium exists [16]. To use this test, however, it is necessary to take into account the other determinants that may be important for whether or not a firm is on its efficient frontier.

For the short-run Cobb-Douglas model and the directly estimated long-run translog model, the Hausman test confirmed that the fixed effect model is preferred to the random effect model. This indicates that there is no correlation between the individual effects and the covariates. As shown in table 1, it was not feasible to conduct the test for the short-run translog model. However, FE models indirectly correct for individual differences through the fixed effects. In addition, optimal consistent estimators require that both time series and cross-sectional dimensions go to infinity [25]. It could be argued that the old technology is not representative for the future one.

Table 4 shows that hospital size is increasing above 1200 beds, because it is outside the range of data used here. In other words, it is not known whether the unit cost will decline (become U-shaped) or not. Furthermore, the optimal scale is estimated to be 275 beds per site within a 95% confidence interval between 130 to 585 beds per hospital. This is roughly in line with international results.

The analysis concludes that the accumulated costs of hospitals in large hospitals is significantly lower than in small hospitals. This indicates that there is correlation between the individual effects and the covariates. As shown in table 4, it was not feasible to conduct the test for the short-run translog and quadratic models. Both models failed to meet the assumptions of the Hausman test. This prohibits relevant covariates from being included directly such as teaching, university status, which are believed to be structural cost drivers in hospitals. However, FE models indirectly correct for individual differences through the fixed effects. In addition, optimal consistent estimators require that both time series and cross-sectional dimensions go to infinity [25]. It could be argued that the old technology is not representative for the future one.

It is feasible to test whether the short-run scale estimates in table 4 are significantly different from zero using the delta method or bootstrapping, see for instance [46,47]. Since we are focusing on the long-run scale estimates we have omitted these tests. Since the FE approach is a version of regression analysis, cost function estimation is usually required that it assumed the costs apply variable input in a cost-minimizing way or in other words that hospitals are on the cost frontier (and that they cannot alter the number of beds in the short run). In other words, it is not known whether the unit cost will decline (become U-shaped) or not. Furthermore, the optimal scale is estimated to be 275 beds per site within a 95% confidence interval between 130 to 585 beds per hospital. This is roughly in line with international results.

The analysis concludes that the accumulated costs of hospitals in large hospitals is significantly lower than in small hospitals. This indicates that there is correlation between the individual effects and the covariates. As shown in table 4, it was not feasible to conduct the test for the short-run translog and quadratic models. Both models failed to meet the assumptions of the Hausman test. This prohibits relevant covariates from being included directly such as teaching, university status, which are believed to be structural cost drivers in hospitals. However, FE models indirectly correct for individual differences through the fixed effects. In addition, optimal consistent estimators require that both time series and cross-sectional dimensions go to infinity [25]. It could be argued that the old technology is not representative for the future one.

It is feasible to test whether the short-run scale estimates in table 4 are significantly different from zero using the delta method or bootstrapping, see for instance [46,47]. Since we are focusing on the long-run scale estimates we have omitted these tests. Since the FE approach is a version of regression analysis, cost function estimation is usually required that it assumed the costs apply variable input in a cost-minimizing way or in other words that hospitals are on the cost frontier (and that they cannot alter the number of beds in the short run). In other words, it is not known whether the unit cost will decline (become U-shaped) or not. Furthermore, the optimal scale is estimated to be 275 beds per site within a 95% confidence interval between 130 to 585 beds per hospital. This is roughly in line with international results.

The analysis concludes that the accumulated costs of hospitals in large hospitals is significantly lower than in small hospitals. This indicates that there is correlation between the individual effects and the covariates. As shown in table 4, it was not feasible to conduct the test for the short-run translog and quadratic models. Both models failed to meet the assumptions of the Hausman test. This prohibits relevant covariates from being included directly such as teaching, university status, which are believed to be structural cost drivers in hospitals. However, FE models indirectly correct for individual differences through the fixed effects. In addition, optimal consistent estimators require that both time series and cross-sectional dimensions go to infinity [25]. It could be argued that the old technology is not representative for the future one.

It is feasible to test whether the short-run scale estimates in table 4 are significantly different from zero using the delta method or bootstrapping, see for instance [46,47]. Since we are focusing on the long-run scale estimates we have omitted these tests. Since the FE approach is a version of regression analysis, cost function estimation is usually required that it assumed the costs apply variable input in a cost-minimizing way or in other words that hospitals are on the cost frontier (and that they cannot alter the number of beds in the short run). In other words, it is not known whether the unit cost will decline (become U-shaped) or not. Furthermore, the optimal scale is estimated to be 275 beds per site within a 95% confidence interval between 130 to 585 beds per hospital. This is roughly in line with international results.
Appendix I

(1) Short run Quadratic (1a), Translog (1b) and Cobb Douglas (1c) cost functions:

\[C(Q, K) = \beta_0 + \beta_1 Q + \frac{1}{2} \beta_2 Q^2 + \beta_3 K + \frac{1}{2} \beta_4 K^2 + \beta_5 QK \]

\[\ln C(Q, K) = \beta_1 \ln Q + \frac{1}{2} \beta_2 \ln Q^2 + \beta_3 \ln K + \frac{1}{2} \beta_4 \ln K^2 + \beta_5 \ln Q \ln K \]

\[\ln C(Q, K) = \beta_1 + \beta_2 Q + \beta_3 K + \beta_5 \ln K \]

(2) The optimal hospital production unit size measured in terms of beds is calculated from the short run cost functions (1a-c) by application of the envelope condition:

\[\frac{\partial C(Q, K)}{\partial K} = \beta_3 + \beta_5 K + \beta_5 QK = 0 \Rightarrow K = -\frac{\beta_5 - \beta_5 Q}{\beta_5} \]

\[\frac{\partial \ln C(Q, K)}{\partial K} = \beta_3 + \beta_5 \ln K + \beta_5 QK = 0 \Rightarrow \ln K = -\frac{\beta_5 - \beta_5 Q}{\beta_5} \Rightarrow K = e^{-\frac{\beta_5 - \beta_5 Q}{\beta_5}} \]

Calculation of long run cost function

The long run cost function is calculated from the short run cost function (1a,b) by substitution of the optimal number of beds (2a, 2b respectively) derived by the envelope condition (2). For the long run Quadratic cost function this yields:

\[C(Q_t) = \beta_0 + \beta_2 Q_t + \frac{1}{2} \beta_2 Q_t^2 + \beta_3 \left(-\frac{\beta_5 - \beta_5 Q_t}{\beta_5} \right) + \beta_5 Q_t \left(-\frac{\beta_5 - \beta_5 Q_t}{\beta_5} \right) \]

After mathematical reduction the long run cost function can be reduced to:

\[C(Q_t) = \beta_0 + \beta_2 Q_t + \frac{\beta_2 Q_t^2}{2} \left(\frac{\beta_5 - \beta_5 Q_t}{\beta_5} \right) \]

We omitted the long run Translog cost function since the only differences from the above mentioned quadratic cost function is that the total DRG-production value \(Q_t \) is replaced by logged levels.

Appendix II

Calculation of long run economies of scale

The expression for long run economies of scale (3a, 4a) is calculated from the long run cost function (2a) and (3, 4 respectively).

(3) Long run economies of scale - Translog cost function

\[SE_1 = \frac{\partial \ln C(Q_t)}{\partial \ln Q_t} = \beta_3 + \frac{2 \beta_5 \beta_2}{\beta_3} + \frac{\beta_5 \beta_2 \beta_3}{\beta_5} + \frac{2 \beta_5}{\beta_3} \ln Q_t \]

By mathematical reduction expression (3a) can be reduced to the following:

\[SE_1 = \frac{\beta_3}{\beta_3} + \frac{2 \beta_5 \beta_2}{\beta_3} + \beta_5 \beta_2 \left(\beta_2 - \beta_3 \right) \ln Q_t \]

(4) Long run economies of scale - Quadratic cost function

\[SE_2 = \frac{\partial C(Q_t) / C}{\partial Q_t} = \frac{1}{\beta_3 \ln \text{marginal}} + \frac{2 \beta_5}{\beta_3} + \beta_5 \beta_2 \left(\beta_2 - \beta_3 \right) \ln Q_t \]

By mathematical reduction expression (4a) can be reduced to the following:

\[SE_2 = \frac{\beta_3}{\beta_3} + \frac{2 \beta_5}{\beta_3} + \beta_5 \beta_2 \left(\beta_2 - \beta_3 \right) \ln Q_t \]
References

