ModestPy

An Open-Source Python Tool for Parameter Estimation in Functional Mock-up Units

Krzysztof Arendt, M. Jradi, M. Wetter, C.T. Veje
The American Modelica Conference 2018, October 9-10, 2018

Center for Energy Informatics, University of Southern Denmark
Introduction
Background

- Functional Mock-up Interface (FMI) is becoming a de facto standard co-simulation interface, already supported by over 100 simulation tools
- **FMI offers flexibility** in terms of modeling environments
- **FMI attracts generic tools** for co-simulation, system identification, and optimization
- There are several tools for **parameter estimation** in Functional Mock-up Units (FMUs), but most of them are tied to at least one of the following:
 - Specific optimization algorithms
 - Specific proprietary platforms
 - Large software environments
Objective

The objective was to develop a tool for parameter estimation in FMUs that would:

- be lightweight,
- support multiple optimization methods,
- support chaining of global and local methods,
- be easily deployable.
Software Description
Architecture

Figure 1: Package structure.

Available algorithms:

- Genetic Algorithm (GA)
- Generalized Pattern Search (GPS)
- SciPy:
 - Sequential Least Squares Programming (SLSQP)
 - Limited Memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B)
 - Truncated Newton Method (TNC)

Dependencies:

pyfmi, numpy, scipy, pandas, matplotlib
Currently, two type of error metrics are implemented, the total mean-square error (MSE_{tot}) and the total normalized mean-square error ($NMSE_{tot}$). $NMSE_{tot}$ is suggested for multi-output models.

\[
MSE_{tot} = \sum_i \frac{\sum_{t=1}^{N} (\hat{Y}_i^t - Y_i^t)^2}{N}
\]

\[
NMSE_{tot} = \sum_i \frac{MSE_i}{\bar{Y}_i^2}
\]

where \hat{Y}_i^t is the measured value of variable i at time step t, Y_i^t is the simulated value of variable i at time step t, \bar{Y}_i is the mean measured value of variable i, N is the number of time steps, and MSE_i is the mean-square error for variable i.
Installation

Through conda (recommended):

conda config --add channels conda-forge
conda install modestpy

Through pip:

python -m pip install modestpy

Installation through pip requires pyfmi to be installed separately.
from modestpy import Estimation

session = Estimation(workdir, fmu_path,
 inputs, known_parameters,
 estimated_parameters, measurements,
 method=('GA', 'GPS'),
 ga_opts={'maxiter': 5, 'tol': 1e-4},
 gps_opts={'maxiter': 500, 'tol': 1e-6},
 ftype='MSE')

estimates = session.estimate()
err, res = session.validate()
Example
Gray-box model is calibrated to mimic the dynamics of a white-box model implemented in *EnergyPlus*.

Model outputs used in the cost function: T, CO_2, verate, q_{rad}.

Error metric: $NMSE_{\text{tot}}$.

T – indoor temperature [$^\circ\text{C}$], CO_2 – indoor CO_2 [ppm], verate – ventilation airflow rate [m^3s^{-1}], q_{rad} – radiator heating rate [W].
Figure 2: Gray-box zone model developed in Modelica (using Dymola).
Estimation Setup

Table 1: Setup of model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial guess*</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>shgc</td>
<td>5</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>tmass</td>
<td>50</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>imass</td>
<td>50</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>RExt</td>
<td>5</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>RInt</td>
<td>5</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>Vinf</td>
<td>5</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>maxVent</td>
<td>5</td>
<td>0.1</td>
<td>10</td>
</tr>
</tbody>
</table>

* Not used by GA

shgc – solar heat gain coefficient [\(\cdot\)], tmass – indoor air thermal mass [\(\text{JK}^{-1}\text{m}^{-3}\)], imass – internal thermal mass [\(\text{JK}^{-1}\text{m}^{-2}\)], RExt – external wall resistance [\(\text{m}^2\text{WK}^{-1}\)], RInt – internal wall resistance [\(\text{m}^2\text{WK}^{-1}\)], Vinf – infiltration air change rate [\(\text{h}^{-1}\)], maxVent – max. ventilation air change rate [\(\text{h}^{-1}\)]
Results

Table 2: CPU time and $NMSE_{tot}$ for validation and training, sorted in ascending order by validation error

<table>
<thead>
<tr>
<th>Method</th>
<th>Training $NMSE_{tot}$</th>
<th>Validation $NMSE_{tot}$</th>
<th>CPU Time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA+SLSQP</td>
<td>0.377</td>
<td>0.353</td>
<td>920</td>
</tr>
<tr>
<td>GA+GPS</td>
<td>0.351</td>
<td>0.371</td>
<td>1319</td>
</tr>
<tr>
<td>GA+TNC</td>
<td>0.393</td>
<td>0.372</td>
<td>801</td>
</tr>
<tr>
<td>GA</td>
<td>0.394</td>
<td>0.373</td>
<td>723</td>
</tr>
<tr>
<td>GA+L-BFGS-B</td>
<td>0.349</td>
<td>0.379</td>
<td>934</td>
</tr>
<tr>
<td>GPS</td>
<td>1.306</td>
<td>3.428</td>
<td>986</td>
</tr>
<tr>
<td>TNC</td>
<td>4.967</td>
<td>5.856</td>
<td>101</td>
</tr>
<tr>
<td>L-BFGS-B</td>
<td>4.929</td>
<td>6.808</td>
<td>38</td>
</tr>
<tr>
<td>SLSQP</td>
<td>5.040</td>
<td>6.920</td>
<td>12</td>
</tr>
</tbody>
</table>
Figure 3: Histogram of estimates yielded by the 9 method sequences.
Figure 4: Cost function evaluated on the training data based on linear combinations of parameters yielded by GA (x_1) and SLSQP (x_2). Sections with positive derivatives with respect to s marked in red.
Figure 5: Parameter evolution in the genetic algorithm – color represents the training error (darker more accurate).
Figure 6: Validation root-mean-square error (RMSE) per output variable.
Figure 7: Validation results: temperature (T), CO₂ (CO₂), ventilation airflow rate (verate).
Figure 8: Validation results: radiator heating rate (q_{rad}).
Conclusions and Future Work
Conclusions

• The in-house algorithms (GA, GPS) were validated.
• Using GA for a preliminary global search significantly improved the model accuracy in the test case.1
• The current functionality of the tool is already sufficient for a general use. It is used by the authors for calibrating gray-box models of buildings and HVAC systems for the use in MPC.

1It should be noted, that the initial global search would not be needed if the approximate initial values of parameters were known. In such a case the gradient-based methods would easily outperform GA. Another solution could be to run gradient-based methods with multiple initial guesses.
The development work continues and there are plans to include the following functionality:

- a simple graphical user interface to attract users less experienced in the Python programming language,
- support for on-line estimation methods (e.g. Kalman filter),
- support for multi-period stochastic gradient descent training,
- support for parallel processing methods.
Project repository:
https://github.com/sdu-cfei/modest-py