Økosystemanalyse af forretningsområdet for robotteknologi i Region Syddanmark

Damgaard, Torben Munk; Ingstrup, Mads Bruun; Brendstrup, Stefan; Bach, Søren; Royberg, Jesper; Petersen, Frederik Milling

Publication date:
2018

Citation for published version (APA):
Økosystemanalyse af forretningsområdet for robotteknologi i Region Syddanmark

7. juni 2018

Torben Munk Damgaard (SDU)
Mads Bruun Ingstrup (SDU)
Stefan Brendstrup (Pluss)
Søren Bach (Pluss)
Jesper K. Royberg (Pluss)
Frederik Milling Petersen (Pluss)
Indhold

1 Forord ... 4
2 Introduktion ... 6
 2.1 Baggrund og motivation .. 6
 2.2 Historisk udvikling .. 7
 2.3 Tidligere rapporter og eksisterende viden .. 9
 2.4 Struktur/Læsevejledning ... 10
 2.5 Centrale begreber .. 10
 3.5.1. En klyng .. 10
 3.5.2. Et økosystem .. 10
 3.5.3. En klyngorganisation .. 11
3 Analysetilgang .. 12
 3.1 Analyseproces .. 12
 3.2 Definition, afgrænsning og identifikation af centrale aktører 13
 3.2.1 Definition og afgrænsning af området .. 13
 3.2.2 Værdikæder og markedsafgrænsning .. 13
 3.2.3 Indledende kortlægning af klyngen og identifikation af centrale aktører ... 14
 3.2.4 Analyseramme ... 15
 3.3 Økosystemanalyse ... 15
 3.3.1 Markedet for klyngens produkter og services 16
 3.3.2 Etablerede virksomheder .. 16
 3.3.3 Iværksætttere og små virksomheder .. 16
 3.3.4 Viden .. 16
 3.3.5 Kapital .. 17
 3.3.6 Rådgivere .. 17
 3.3.7 Netværk ... 17
 3.4 Porters diamant .. 17
 3.5 Samlet analyseramme .. 19
 3.6 Internationalt perspektiv .. 19
4 Indsigter ... 20
 4.1 Markeds- og efterspørgselsforhold .. 20
 4.1.1 Global efterspørgsel .. 20
 4.1.2 National efterspørgsel ... 22
 4.1.3 National og global afsætning .. 23
 4.1.4 Afsætning per branche ... 24
 4.1.5 Offentlig efterspørgsel .. 24
 4.1.6 Barrierer for udbredelse af robotteknologi 26

Økosystemanalyse af forretningsområdet for robotteknologi i Region Syddanmark
<table>
<thead>
<tr>
<th>4.2</th>
<th>Relationer og samarbejde mellem aktører</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Leverandørbase og samspil hermed</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Adgang til arbejdskraft</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Test- og demonstrationsfaciliteter</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>Etablerede virksomheder</td>
<td>35</td>
</tr>
<tr>
<td>4.7</td>
<td>Iværksættere og små virksomheder</td>
<td>36</td>
</tr>
<tr>
<td>4.8</td>
<td>Samspil om viden</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Adgang til kapital</td>
<td>41</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Kapital set i et efterspørgsels- og udbyderperspektiv</td>
<td>42</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Kapital i forskellige faser</td>
<td>43</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Offentlige og private kapitalkilder</td>
<td>45</td>
</tr>
<tr>
<td>4.10</td>
<td>Rådgivere</td>
<td>46</td>
</tr>
<tr>
<td>4.11</td>
<td>Netværks- og klyngeorganisationer</td>
<td>47</td>
</tr>
<tr>
<td>4.12</td>
<td>Internationalt perspektiv</td>
<td>50</td>
</tr>
<tr>
<td>4.13</td>
<td>Samlet vurdering af økosystemet</td>
<td>51</td>
</tr>
<tr>
<td>5.</td>
<td>Anbefalinger</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Bilag 1: Referencer</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Bilag 1: Interviewliste</td>
<td>58</td>
</tr>
</tbody>
</table>
1 Forord

Robotklyngen med dens center omkring Odense har efter 30 års vedvarende udvikling og opbygning af et fundament bestående af helt særlig viden, stærke personlige relationer, forretningsmæssig dygtighed og en masse kampånd i de seneste få år gennemgået en nærmest eksplosiv udvikling. Klyngen tiltrækker sig international opmærksomhed, er blevet genstand for store, spektakulære opkøb og er i det hele taget et spændende eksempel på, hvordan en klyng kan tilføre stor værdi til sine virksomheder og øvrige aktører.

Region Syddanmark såvel som en række andre offentlige aktører har på forskellig vis understøttet udviklingen af klyngen og gør det fortsat. En opgørelse for et par år siden viste, at Syddansk Vækstforum samlet set havde investeret mere end 100 mio. kr. i ordninger rettet mod anvendelse af robotteknologi, udvikling af nye teknologier mv.

På den baggrund har Region Syddanmark ønsket et udefrakommende, fagligt og neutralt blik på klyngen og økosystemet med henblik på at tegne et billede af økosystemets funktionemåde og identifikation af eventuelle behov for at justere eller suppleres eksisterende indsatser eller igangsætte nye initiativer, der kan sikre den fortsatte udvikling af klyngen. Analysen er gennemført i foråret 2018 i et tæt samarbejde mellem klyngeforskere fra Institut for Entreprenørskab og Relationsledelse ved Syddansk Universitet og konsulenter fra Pluss Leadership A/S. Analysen er baseret på intensiv desk research og flere end 40 dybdegående interviews med relevante parter i økosystemet.

Analysen har bekræftet, at der er tale om en endog særlig stærk klyng, der udmærker sig ved at være stærk på alle centrale parametre: Stærke virksomheder, der agerer lokomotiver, et stærkt iværksættermiljø, stærke viden- og uddannelsesinstitutioner, samt stor bevågenhed og opbakning fra lokale og regionale myndigheder. Klyngen har skabt international synlighed og tilløpes sig i stigende grad international opmærksomhed. Og så er det hele bundet sammen af veletablerede personlige relationer på tværs af virksomheder, videninstitutioner og offentlige myndigheder.

Virksomhederne i klyngen har stor bredde og dyrker med stor dygtighed mange forskellige niches. Men samlet set er der ingen tvivl om, at samarbejdende robotter står frem som klyngens helt særlige styrke, der spiller tæt sammen med de overvejende mindre, fleksible, omstillingsparate og omkostningsbevidst danske virksomheder med en høj grad af kvalificeret arbejdskraft.

Analysen har også vist, at der er tale om en geografisk stærkt afgrænset klyng, der også er delvist lukket. Som virksomhed må man være til stede for at få adgang til mange af klyngens mere uformelle netværk og ressourcer. Samtidigt trækkes der helt overvejende på videnressourcer mv. inden for klyngen, mens koblinger til andre videnmiljøer mv. er relativt svage.

Med afsæt i denne ambition har vi formuleret en række anbefalinger inden for syv forskellige områder:

1. Styrket fokus på at sikre tilstrækkelig og kvalificeret arbejdskraft
2. Fokus på at sikre kapital til fortsat vækst i klyngen
3. Øget samarbejde om test og demonstration af robotløsninger
4. Afsøgning af nye anvendelsesmuligheder og -områder
5. Styrkelse af kobling til videnmiljøer inden for robotteknologi
6. Afdækning af muligheder for fremtidig organisering
7. Lobby for national robotstrategi.

Det er vores håb, at analysen vil tilføre alle relevante parter en generel indsigt i og forståelse for, hvordan økosystemet omkring robotteknologi fungerer, og hvor der kan være brug for at udvikle tiltag, der holder kuglen på banen og sikrer, at potentialet i klyngen fortsat udnyttes optimalt.

God læselyst!
Aarhus, maj 2018
2 Introduktion

2.1 Baggrund og motivation

Igennem de seneste år er antallet af robotvirksomheder i Region Syddanmark steget kraftigt, ligesom de eksisterende virksomheder til stadighed vokser sig større. Internationalt har klyngen også gjort sig bemærket, og branchen har udviklet sig til at være en regional styrkeposition.

Figur 1: De strategiske rammer for Regional Udvikling og Syddansk Vækstforum

Syddansk Vækstforum definerer således forretningsområdet til at omfatte udviklere, producenter og integratorer, der bidrager til udviklingen af fysiske robot-, automations- og droneløsninger, herunder software, til alle brancher og erhverv.
I den forbindelse har regionen ønsket en udarbejdelse af en økosystemanalyse, der skal skabe fælles forståelse for og indsigt i det økosystem, som regionens robot- og automationsvirksomheder agerer i.

Denne rapport har således til formål at beskrive, hvad der kendetegner klyngen, og hvordan dens situation er i relation til afgørende faktorer som kvalificeret arbejdskraft, faciliteter/infrastruktur, adgang til kapital, etc. med henblik på at identificere, hvor klyngen har sine særlige styrker og svagheder i øjeblikket. Det er derudover målet at identificere, hvilke udfordringer klyngen ventes at stå over for i fremtiden, samt hvilke potentielle muligheder der kan udnyttes til gavn for klyngen.

2.2 Historisk udvikling

Hvad der kan betragtes som første spadestik til det, som vi i dag kender som den syd-danske robotklynge, bliver taget i midten af 1980’erne på Lindøværftet, hvilket er blevet bemærket af flere centrale personer i nutidens robotklynges, journalisters og forskers. Da tidens danske skibsværfter befandt sig i en tid, hvor der var magre år rent økonomisk for samfundet som helhed, ligesom skibsværftsindustrien var under stigende pres fra konkurrenter i særligt Japan og Sydkorea. Nogle danske skibsværfter måtte i disse år lade livet, mens andre med nød og næppe blev holdt i live.

For Lindøværftet måtte der således også tænkes i nye baner. På værftet blev man inspireret af nye japanske robotter, eksempelvis svejserobotten Hirobo.

Skibene på Lindøværftet bestod imidlertid af 1,5 millioner forskellige dele, og da mange af delene kun blev produceret i et fåtal, var programmering af robotter omkostningstung.

Resultatet blev et samarbejde mellem Lindøværftet og Odense Universitet (i dag SDU); et noget umage par, da der forinden havde været ringe tradition for samarbejde mellem virksomheder og de teoritunge universiteter.

Det første større projekt mellem de to blev AMROSE, Autonomous Multiple Robot Operation in Structured Environments, der gjorde op med datidens usmidige robotter ved at give robotterne fleksible bevægelser, ligesom projektet gav nye indsigter og opdagelser, der senere skulle hjælpe med at automatisere skibsproduktionen yderligere.

1 Afsnit baseret på interviews og supplerende Steno, Carsten (2016): En klynge, der virker.
Efter nogle år stod det klart, at der var opbygget en masse viden i samspillet mellem universitetet og værftet, der kunne komme erhvervslivet til gode. Kommercialiseringen skulle finde sted via det nye selskab, AMROSE A/S.

Selskabet fik hurtigt ordre hos Lindøværftet, men på trods af dialog med flere andre store virksomheder i Danmark blev visionerne for selskabet aldrig rigtigt opfyldt. Da A.P. Møller-koncernens satsning på Lindøværftet i starten af 00’erne således også blev mindsket og udviklingsafdelingen afviklet, blev AMROSE så småt det samme.

Hvad der ellers havde tegnet så lyst for robotterne på Fyn tidligere, så nu særdeles dystert ud. Meget af den højt kvalificerede arbejdskraft blev spredt til andre brancher, efter at mange danske virksomheder outsourcede sin produktion til udlandet fremfor at automatisere den indlands.

I denne afgørende tid var der imidlertid en lille samling af ildsjæle tilbage, og der var en idé om, at det skabte robotmiljø på Fyn måtte redres. Dette var ligeledes en prioritet for Mærsk Mc-Kinney Møller Institut, en række lokale uddannelsesinstitutioner samt Fyns Amt og Odense Kommune, der sammen skabte RoboCluster.

I løbet af de næste par år begyndte nye idéer at spire på Mærsk Mc-Kinney Møller Institut, og ud af dette voksede senere stærke virksomheder, der var resultatet af den afgørende satsning på robotteknologi på instituttet en håndfuld år forinden.

I 2004 stiftedes virksomheden Scape, der med sin bin-picker skulle skabe gevinst i virksomheders produktion ved at automatisere ensformige, manuelle opgaver.

I 2005 stiftedes Universal Robots, der senere skulle vise sig at blive en af Danmarks største erhvervssucceser siden ærtusindskiftet, hvilket kulminerer med et salg i 2015 til amerikanske Teradyne på 1,9 mia. kr.

Senest er Mobile Industrial Robots (MIR) gået i Universal Robots’ fodspor og er i sit blot femte leveår i 2018 blevet solgt til Teradyne, der ligeledes købte Universal Robots, for 1,7 mia. kr. I den forbindelse er det værd at bemærke, at flere af de personer, der står til at tjene på det store salg, ligeledes var involveret i UR-succesen for blot få år siden.
2.3 Tidligere rapporter og eksisterende viden

Samarbejdende robotter er mindre robotter, som interagerer med deres omgivelser – herunder mennesker. En samarbejdende robot kan således arbejde side om side med mennesker og kan kombinere robbottens præcision med det, mennesker er gode til.

Foruden de samarbejdende robotter peges der i rapporten på, at den syddanske robotklynge også har styrkepositioner i niches for mere traditionel automation, særligt automatisering i fødevareindustrien, hvor virksomheder som Sanovo, Cabinplant og Jorgensen Engineering fremhæves.

For enden de samarbejdende robotter peges der i rapporten på, at den syddanske robotklynge også har styrkepositioner i niches for mere traditionel automation, særligt automatisering i fødevareindustrien, hvor virksomheder som Sanovo, Cabinplant og Jorgensen Engineering fremhæves.

Der peges på, at branchen overordnet set har et stort vækstpotentiale. Dette gør sig særligt gældende for de samarbejdende robotter, hvor den globale omsætning forventes tidoblet mellem 2015 og 2020, mens andre fremskrivninger er endnu mere optimisti ske. Formår man at fastholde denne styrkeposition, ligger der et betydeligt potentiale.

På landsplan er ca. 8.000 personer i producent- og integratorvirksomhederne, og af de 3.684 personer, der er beskæftiget i en producentvirksomhed, er 55 pct. af jobbene lokaliseret i region Syddanmark. Denne styrkeposition underbygges ydermere af, at 73 pct. af producenterne har hovedsæde i region Syddanmark, mens dette for integratorerne gør sig gældende for 38 pct. Majoriteten af disse producenter og integratorer holder til på Fyn.

Klyngens virksomheder, og andre aktører i økosystemet, er organiseret i tre dedikerede klyngeorganisationer, der er etableret sig med hvert sit formål. De tre klyngesamfund er kort beskrevet i nedenstående tabel.

Tabel 1: Klyngesamfund

<table>
<thead>
<tr>
<th>Klyngesamfund</th>
<th>Beskrivelse</th>
</tr>
</thead>
</table>

Odense Robotics

Odense Robotics tæller ca. 120 medlemmer og har til formål at fremme vækst og rekrutering af arbejdskraft ved at:

- Skabe strategisk markedsindsigt i form af viden, analyser og undersøgelser om markedet og virksomhedernes forretningsmodeller og strategier
- Være katalysator for forretningsudvikling og samarbejde på tværs af virksomheder og økosystem
- Medvirke til at løse rekruteringssudfordringer, som robot- og automationsvirksomhederne oplever
- Tiltrække investorkapital og internationale virksomheder med værdi for økosystemet
- Understøtte robo-startups gennem etableringen af Odense Robotics StartUp Hub

Odense Robotics er finansieret af Udvikling Fyn og Odense Kommune og er organisatorisk forankret i Udvikling Fyn, som er stiftet og ejes af Assens, Nyborg, Svendborg, Faaborg-Midtfyn og Odense kommuner.

UAS Denmark

UAS Denmark blev etableret i 2012 og består af et internationalt testcenter og en droneklynge bestående af omkring 160 virksomheder.

UAS Denmark bygger på et 4-delt-samarbejde mellem Hans Christian Andersen Airport, Odense Kommune, Udvikling Fyn og Syddansk Universitet.

UAS har base i Hans Christian Andersen Airport.

2.4 Struktur/Læsevejledning

I afsnit 3 beskrives den anvendte analysetilgang, mens afsnit 4 behandler de indsigter, der er opnået i analysen – med en opsamling og samlet vurdering af klyngen i afsnit 4.13. I afsnit 5 frembringes syv overordnede anbefalinger med en række konkrete foreslåede tiltag. I Bilag 1 og Bilag 2 findes hhv. referencer og liste over interviewpersoner.

2.5 Centrale begreber

3.5.1. En klynge

En klynge er en koncentreret gruppe af virksomheder, der er tæt relateret i det forretningsområde, de beskæftiger sig med. De er ligeledes tæt koncentreret om et geografisk epicenter, typisk en by eller en region, men klyngen kan godt brede sig ud over dette geografiske epicenter.

Den tætte geografiske concentration skaber ikke en klynge i sig selv. Der er således først tale om en stærk, velfungerende klynge, når de beslægtede aktører i samspil skaber, udvikler, udveksler og udnytter værdikædens potentielle.

3.5.2. Et økosystem

Foruden de virksomheder, der beskæftiger sig med det givne forretningsområde, indeholder klyngens økosystem investorer, uddannelsesinstitutioner, rådgivere og markeder for klyngens produkter og services. Økosystemmodellen, der ligger til grund for denne rapport, er beskrevet nærmere i afsnit 3.3.
3.5.3. En klyngeorganisation

Klyngeorganisationer har til formål at facilitere samarbejde mellem aktørerne i klyngen for at styrke og udnytte de indbyrdes synergier mellem aktørerne. En succesfuld klyngeorganisation vil således typisk både have virksomheder, der beskæftiger sig med det relevante forretningsområde, offentlige myndigheder, uddannelsesinstitutioner, investorer og andre aktører fra økosystemet som medlemmer. En klyngeorganisation varetager typisk en række forskellige opgaver. Den tegner klyngens profil og synliggør klyngens spidskompetencer samt erhvervs- og videnmæssige specialisering. Den skaber platforme for, at dens medlemmer mødes, samt opdyrker nye strategiske muligheder og samarbejder til gavn for klyngens aktører.

En klyng kan både have én eller flere klyngeorganisationer. I de tilfælde, hvor der eksisterer mere end én organisation, vil der nogle gange være en skarp opgavemæssig eller geografisk opdeling, mens det i andre tilfælde er mere flydende, hvor forskellene ligger.
3 Analysetilgang

3.1 Analyseproces

Analysen er blevet gennemført i fire tæt forbundne faser, jf. figur 2 nedenfor.

Figur 2: Aktiviteter og resultater i analyseprocessen

3.2 Definition, afgrænsning og identifikation af centrale aktører

3.2.1 Definition og afgrænsning af området

Initialt er forretningsområdet robotteknologi defineret som følger fra opdragsgiver:

"Forretningsområdet omfatter udviklere, producenter og integratorer, der bidrager til udviklingen af fysiske robot-, automations- og droneløsninger, herunder software, til alle brancher og erhverv".

På baggrund af interviews og desk research i foranalysen, jf. afsnit 3.1, er det besluttet at afgrænse analysen fra rene "software-robotter" (eksempelvis robotter, der håndterer telefonopkald) og dermed kun behandle robotløsninger, hvor både software og mekanik indgår.

Det er derudover i foranalysen blevet klart, at droneområdet med fordel kunne behandles mere perifert i analysen. Flere centrale aktører har således påpeget, at droner blot er et nyt anvendelsesområde for robotteknologi, mens andre har påpeget, at droneområdet kan og bør ses mere selvstændigt, og at det er i en helt anderledes spæd fase end de øvrige robotteknologier. Således har droneområdet indgået i analysen, men mere perifert og særskilt.

3.2.2 Værdikæder og markedsafgrænsning

Robotteknologi afsættes såvel på et privat-/konsumentmarked (eksempelvis robotplænepotter og robotstøvsugere) og et erhvervsmarked. I foranalysen er værdikæderne for de to markedere afdækket og valideret hos centrale aktører, jf. Figur 3 og Figur 4 nedenfor.

Figur 3: Værdikæde – privat-/konsumentmarkedet

Kilde: Egen tilvirkning

Figur 4: Værdikæde – erhvervsmarkedet

Kilde: Egen tilvirkning

Det er her hurtigt blevet klart, at afsætningen i den danske robotbranche i absolut overvejende grad sker til erhvervsmarkedet (jf. også afsnit 4.1 nedenfor), og der er således afgrænset fra at behandle privat-/konsumentmarkedet videre.

Leverandører leverer komponenter og dele til robotproducenterne (eksempelvis stådele, censorer mm.). Producenter udvikler og fremstiller automatiske maskiner, robotter eller færdige robotprodukter (f.eks. griberedskaber, styresystemer eller mobile robotter). Inte-
gratorer/rådgivere rådgiver om og forhandler maskiner og sammensætter og udvikler automatiseringsløsninger, der kan inkludere robotter. Sidst i værdikæden findes aftagere/slutbrugere, der køber robotter eller automatiseringsløsninger enten direkte fra producenter eller fra en integrator.

For så vidt angår erhvervsmarkedet, har den indledende desk research afdækket en række markedssegmenter/afsætningsområder:

- Industriel produktion
- Fødevarer
- Sundhed og velfærd
- Affald, energi og bæredygtighed
- Forsvar
- Byggeri
- Landbrug
- Maritim sektor.

I forlængelse heraf er det tidligt i processen besluttet at interviewe en række klyngen- interresseorganisationer som repræsentanter for en række af disse markedssegmenter (eksempelvis Welfare Tech og Life Science Innovation North Jutland).

3.2.3 Indledende kortlægning af klyngen og identifikation af centrale aktører

Indledningsvis er der foretaget desk research dels via rapporter på området, dels via en kortlægning af medlemsvirksomheder hos en række klynge- og interesseorganisationer: Odense Robotics, RoboCluster, UAS Danmark og Dansk Robot Netværk (DIRA). Her er 600 virksomheder identificeret som medlemmer af én eller flere af ovenfor nævnte organisationer – med en fordeling på medlemskaber som følger:

Kortlægningen er bl.a. anvendt til at identificere centrale aktører ud fra en antagelse om, at virksomheder, der er medlem flere steder, har en væsentlig interesse i området. Derudover er kortlægningen anvendt i forhold til at frembringe en idé om mulige interesseområder hos aktørerne qua de forskellige organisationers forskellig fokus. Endelig er kortlægningen anvendt for at vurdere klyngeorganisationernes medlemsskare og eventuelle overlap mellem klyngeorganisationerne.

3.2.4 Analyseramme

Overordnet er der taget udgangspunkt i dels en model for økosystemanalyser, dels Porters diamant – samlet i én analyseramme. Dette er suppleret med et specifikt fokus på at afdække klyngen i et internationalt perspektiv. De videre beskrivelser af analyserammen – og grundlaget herfor – fremgår af afsnit 3.3-3.6 nedenfor.

3.3 Økosystemanalyse

Analysen af robotklyngen tager bl.a. udgangspunkt i modellen skitseret i Figur 5 nedenfor, som er fremstillet med inspiration fra Napier & Hansen (2012): Ecosystems for Scalable Firms. Ifølge økosystemmodellen består stærke klyngers økosystem af et marked for klyngens produkter og services, etablerede virksomheder, iværksættere, videninstitutioner, risikovillig kapital, rådgivere og et stærkt netværk bl.a. faciliteret af klyngeorganisationer, brobyggere, deal makers m.fl. Økosystemet afspejler netværket og samarbejdet mellem aktørerne.

I hvor høj grad robotklyngens økosystem opfylder disse kriterier, belyses i analysen på baggrund af desk research og interviews med centrale aktører.
Nedenfor gennemgås kort hvert af de centrale elementer i modellen.

Figur 5: Model for økosystem

![Diagram af økosystemmodell](Kilde: Egen tilvirkning baseret på Napier & Hansen (2012): Ecosystems for Scalable Firms)

3.3.1 Markedet for klyngens produkter og services

3.3.2 Etablerede virksomheder

Stærke klynger består typisk af én eller flere veletalerede og succesfulde virksomheder, der samarbejder med og agerer flagskib for andre virksomheder og aktører i klyngen og derigennem medvirker til at udvikle klyngens marked og klyngen som helhed.

3.3.3 Iværksætterere og små virksomheder

3.3.4 Viden

I stærke klynger spiller adgangen til specialiseret viden en væsentlig rolle i udviklingen af virksomhedernes konkurrenceevne og interne dynamik. Et godt samarbejde med relevante videninstitutioner er væsentligt for virksomhedernes mulighed for at udvikle innovative løsninger og skabe nye virksomheder baseret på relevant forskning og viden.
3.3.5 Kapital
I et stærkt økosystem er adgangen til kapital væsentlig for virksomhedernes vækstmuligheder. Involvering af private investorer og fonde er typisk et udtryk for høj værdiskabelse blandt klyngens virksomheder og kan sende et stærkt signal om, at der i klyngen er gode afkastmuligheder, hvilket kan øge adgangen til kapital yderligere.

3.3.6 Rådgivere
I stærke økosystemer findes forskellige typer af rådgivere, som understøtter virksomhederne i deres udvikling. Det kan være advokater og revisorer, der tilbyder virksomhedsrådgivning, eller institutioner som væksthuse og GTS’ere, der arbejder med en mere faglig og teknisk del af virksomhedsudviklingen.

3.3.7 Netværk
En klynges økosystem består af forskellige aktører, der på mange måder arbejder med at skabe værdi i klyngen. Tilstedeværelsen af aktørerne alene er dog ikke en tilstrækkelig forudsætning for et stærkt økosystem; hvis aktørerne ikke samarbejder og netværker med hinanden, skabes der ikke den nødvendige merværdi og synergi, som bidrager til vækstskabelsen blandt klyngens virksomheder.

Stærke økosystemer i klynger er således karakteriseret ved, at aktørerne er tæt forbundne i gensidig afhængige samarbejder, og at de tror på de fordele, der er ved at samarbejde med andre.

Et stærkt netværk muliggør værdifuld erfaringsudveksling og kan give adgang til nye kunder, samarbejdspartnere, kompetencer, markeder og forretningsudvikling. Den type af samarbejder udvikler sig typisk over tid og bliver stærkere i takt med, at klyngen udvikler sig. I nogle økosystemer bindes de mange aktører sammen af en lang række af private investorer, deal makers m.fl. I andre økosystemer – særligt i Europa – forsøger man at fremme samarbejdet mellem klyngens aktører ved at etablere klyngorganisationer, som arbejder med at fremme netværk, erfaringsudveksling og samarbejde mellem aktørerne. Derudover kan brancheorganisationer og erhvervsfremmeaktører i forskellig grad påtage sig rollen med at bringe økosystemets aktører sammen.

3.4 Porters diamant
I analysen af robotklyngen tages der endvidere udgangspunkt i Porters diamant, som beskriver, hvorfor lande besidder komparative fordele inden for bestemte brancher. Porters diamant betoner i den forbindelse, at seks centrale faktorer har en afgørende forklaringskraft. Modellen er angivet i Figur 6 nedenfor.

Figur 6: Porters diamant

For det første er det centralt at belyse firmastrategi, struktur og rivalisering, hvilket bl.a. indbefatter graden af konkurrence og samarbejde mellem aktørerne. Konkurrence er ofte en medvirkende faktor til, at brancher finder nye måder at udvikle sig innovativt på.

For det andet er det centralt for en klynges udvikling, at der eksisterer en kvalificeret efterspørgsel efter klyngevirksomhedernes produkter. Særligt er det vigtigt, at virksomhederne hos hjemmemarked har en sofistikeret efterspørgsel, som kan fordre innovation.

For det tredje skal man have blik for beslægtede virksomheder og underleverandører, da disse kan spille en vigtig rolle for virksomhederne værdikæder og muligheder for at udvikle viden.

For det fjerde er det vigtigt at belyse, hvilke produktionsfaktorer der er tilgængelige for virksomhederne. Produktionsfaktorer er eksempelvis adgangen til kvalificeret arbejdskraft, teknologisk udvikling, viden, infrastruktur og kapital. Disse produktionsfaktorer skal forstås afgrænset fra de generelle rammevilkår for at drive en virksomhed (eksempelvis patentsikkerhed, lovgivning og adgang til vejnet).

Endelig spiller staten en rolle via regulering, lovgivning standarder mm., ligesom tilfældigheder har indflydelse på udviklingen.
3.5 Samlet analyseramme

Som grundlag for den gennemførte økosystemanalyse af forretningsområdet for robotteknologi er ovenstående to analyserammer blevet combineret, således at i alt 11 analysepunkter har været i fokus, jf. Figur 7 nedenfor.

Figur 7: Samlet analyseramme

Kilde: Egen tilvirkning

De 11 punkter er blevet belyst gennem desk research og interviews, hvor spørgerammen har været modulopbygget, således at forskellige grupper af aktører har belyst forskellige dele af den samlede analyseramme.

3.6 Internationalt perspektiv

Set i et syddansk og nationalt dansk perspektiv er robotklyngen meget stærk og interessant. Men er den også det, når man ser på den udefra?

For at besvare dette spørgsmål har vi dels spurt de af de danske aktører, der har et fagligt grundlag for at belyse klyngens internationale position, dels interviewet repræsentanter for flere internationale klyngorganisationer om deres kendskab til den syddanske robotklyng og dens relative styrkeposition.
4 Indsigtter

Med afsæt i den valgte analysetilgang beskrives i nærværende afsnit de indsigter, der er opnået via desk research og de gennemførte interviws i forbindelse med analysen.

4.1 Markeds- og efterspørgselsforhold

Jf. afsnit 3.3.1, er alle klynger drevet af en markedsefterspørgsel. Altså er det essentielt at forstå robotmarkedet, og hvad der driver det, hvis udviklingen af klyngens økosystem og dets vækspotentiale skal styrkes.

4.1.1 Global efterspørgsel

Figur 8: Udvikling i den årlige globale afsætning af industrirobotter

![Diagram](https://via.placeholder.com/150)

Hvis man betragter, hvilke brancher der aftager industrielle robotter, fremgår det af samme undersøgelse, at bilindustrien og elektronikindustrien aftager størstedelen af de industrielle robotter, mens også metal-, kemikalie-, gummi- og plastikindustrien samt fødevareindustrien i høj grad eftersøger industrielle robotter, jf. Figur 9 nedenfor.

Figur 9: Global afsætning af industrirobotter per branche

Potentialet i robotbranchen er således stort, og en undersøgelse af robot- og automatiseringssningerbranchen, foretaget af Region Syddanmark⁶, viser, at danske robotvirksomheder er globalt førstende inden for nicheområdet samarbejdende robotter, som understreget tidligere i rapporten. Inden for samarbejdende robotter forventes ifølge ABI Research en årlig vækst i den globale omsætning på omkring 60 pct. frem mod 2020, jf. Figur 10 nedenfor.

Figur 10: Global afsætning af samarbejdende robotter

De samarbejdende robotter er billige, fleksible og lette at tage i anvendelse sammenlignet med traditionelle robotløsninger, hvorfor de forventes at accelerere anvendelsen af robotter blandt særligt små og mellemstore virksomheder, som tidligere har været afskåret fra at anvende robotter grundet de store omkostninger forbundet med indkøbet af en robot.

At robotbranchen kan blive en vigtig platform for vækst og beskæftigelse i Danmark fremgår også af en McKinsey-rapport7, som bl.a. estimerer, at branchen i år 2030 vil have skabt en halv million jobs inden for landets grænser.

4.1.2 National efterspørgsel
Region Syddanmark har foretaget en undersøgelse af 908 små og mellemstore virksomheder, der deltager i Region Syddanmarks virksomhedspanel, i et forsøg på at afdække efterspørgslen efter robotter i det danske marked. Udvalgte resultater fremgår af Figur 11.

Figur 11: Anvendelse af robotter i dansk kontekst

58 pct. af virksomhederne angiver, at robotter ikke er relevante for dem. Omkring 12 pct. af virksomhederne har investeret i robotter, mens 30 pct. angiver, at robotter er relevante, men at de endnu ikke har indført robotter. Af de 12 pct., der har indført robotter, angiver blot 2 pct., at de i høj grad har indført robotter.

De virksomheder, der indfører robotter, høster så gode erfaringer med robotter, at de fleste ønsker at udvide brugen af robotter. 63 pct. af de virksomheder, der har indført robotter, planlægger at investere yderligere i robotter. 24 pct. af de virksomheder, som ikke har indført robotter, men vurderer robotter som relevante, planlægger at indføre robotter i løbet af de næste fem år.

Analysen peger altså på, at små og mellemstore virksomheder har været forholdsvis tilbageholdende med at investere i robotter.

Hildebrandt & Brandi har ligeledes foretaget en undersøgelse\(^8\) blandt danske virksomheder på tværs af brancher. Denne undersøgelse viser, at 62 pct. af de adspurgte virksomheder enten allerede arbejder med robotautomatisering eller planlægger at gøre det. Og hele 54 pct. har startet deres robotrejse inden for det seneste år. De største danske virksomheder beholder førertrøjen, men de mindre virksomheder er også godt med. For blot to år siden arbejdede ingen virksomheder uden for top-500 med robotautomatisering. I dag er det tal oppe på 22 pct.

Når resultaterne sammenholdes med rapporten fra Region Syddanmark, tyder det således på, at etterspørgslen efter robotløsninger i Danmark er stigende – og det ventes, at udbredelsen af samarbejdende robotter vil bidrage her til, da anvendelsen af robotter bliver billigere og mere fleksibel.

Blandt de forhold, der driver den nationale etterspørgsel, fremhæves især den fleksible og omstillelige produktion i Danmark – samt fraværet af storskalaproduktion, som eksempelvis kendetegner bilindustrien:

\begin{quote}
Det har været en styrke for os, at vi ikke har haft bilindustri – for så har vi skul-let tænke robotter ind i en anden sammenhæng, har tidligt øvet os og er blevet dygtige til at lave fleksibel produktion.
\end{quote}

\textendnote{u}{uddannelsesinstitution}

\begin{quote}
Vi har jo ikke de meget store samlebåndindustrier (...) Men for dem, der laver teknologier til robotterne, der er det ofte noget med mere dynamisk produktion, hvor tingene ændrer sig hele tiden – nogle karakteristika som danske virksomheder har.
\end{quote}

\textendnote{u}{uddannelsesinstitution}

Blandt øvrige drivere for den nationale etterspørgsel fremhæves bl.a. høje krav til arbejdsmiljø, det høje danske lønniveau og det fleksible arbejdsmarked, der alt sammen på forskellig vis kan fremme etterspørgslen efter robotter.

De høje krav til arbejdsmiljø øger behovet for at udtænke nye løsninger, hvor medarbejdere ikke udsættes for unødige belastninger. Det høje danske lønniveau og høje krav til produktivitet kan på samme måde anspore til implementering af robotter i produktionen. Og endelig kan den danske velfærdsmodel og det fleksible arbejdsmarked være med til at reducere frygten for at miste sit job og dermed øge paratheden til at tage ny teknologi i anvendelse.

4.1.3 National og global afsætning

\textendnote{h}{Hildebrandt & Brandt (2018): Robotterne er kommet på topledelsens agenda.}
\textendnote{o}{Odense Robotics (2018): Insight Report 2018.}
Det er særligt de små og mellemstore robotvirksomheder, som er afhængige af at af sætte deres produkter på det danske marked.

Figur 12: Gennemsnitlig andel af eksport blandt danske robotvirksomheder i 2015

![Gennemsnitlig andel af eksport blandt danske robotvirksomheder i 2015](image)

4.1.4 Afsætning per branche

Figur 13: Aftagere af robotter per branche (ultimo 2017)

![Aftagere af robotter per branche (ultimo 2017)](image)

4.1.5 Offentlig efterspørgsel

Jf. afsnit 4.1.4, befinder langt hovedparten af aftagerne sig inden for industrielle produktion. Her kan der fra offentlig side arbejdes med at bearbejde modernheden og virksomhedernes fokus på robotteknologi, mens det offentlige ikke i nævnerværdig grad selv er aftager. Anderledes ser det ud inden for velfærds- og sundhedssektoren, som flere aktører peger på som et stort potentiel marked for robotteknologi.
Odense Universitetshospital er en stor aftager af robotteknologi.

– klyngeorganisation

Vores største vækstrater findes i øjeblikket i sygehussegmentet.

– integrator

Udover at der eksisterer en offentlig efterspørgsel, er denne samtidig ofte kombineret med en væsentlig interesse og imødekommenhed i forhold til udvikling og afprøvning af løsninger.

Udvalgte andre eksempler fremgår af faktaboksen på næste side.

10 LT Automation (2015): Ny velfærdsteknologi skal gøre borgere selvhjulpne
11 Mobile Industrial Robots (2016): Robotten tager skraldet på plejecenter
12 Mobile Industrial Robots (2015): Mobile Robots deliver chemotherapy
FAKTABOKS: Robotter i sundheds- og velfærdssektoren

Med midler fra Syddansk OPI-pulje har Syddansk Vækstforum siden 2012 medfinansieret en række testforløb, hvor robotvirksomheder får testet deres løsninger i samarbejde med potentielle bruger:

- **RoboTool** har videreudviklet en automatisk biobank, der gør det billigere at opbevare og finde frem til laboratorieprøver.
- **Robo Trainer Light** har videreudviklet en intelligent genoptæningsmaskine, der automatisk tilpasser sig brugerens evner og behov.
- **Mobile Industrial Robots** har videreudviklet en logistikrobot, der autonомуt kan transportere eksempelvis kemokure, affald og linned på sygehuse og plejehjem.
- **HC Smede** har videreudviklet en automatisk centrifuge til blodprøver, hvor centrifugen fyldes og tømmes for blodprøver, uden at centrifugen skal bruge tid på at starte og stoppe, som de eksisterende centrifuger på markedet gør.

En anden mulighed for finansiering af udvikling inden for robotteknologi er den fælles pulje Sygehuspartnerskabet med i alt 100 mio. kr., som er finansieret af de fem regioner og staten. Sygehuspartnerskabets formål er at hjælpe danske virksomheder med at udnytte det erhvervsmæssige potentielle, der er forbundet med de kommende års investeringer i nybygning og renovering af sygehuse.

To eksempler herpå er virksomheden **Gibotech**, der har testet robotten *Gibosort*, der automatisk pakker blodprøver fra praksislæger ud af transportkas, så prøverne hurtigst muligt kan blive analyseret på laboratoriet, og **Blue Ocean Robotics**, der har testet en desinfektionsrobot på Odense Universitetshospital, som dræber bakterier ved UV-bestråling.

4.1.6 Barrierer for udbredelse af robotteknologi

Blandt de virksomheder, der ser robotter som relevante, er der flest (41 pct.), der angiver mangel på medarbejdere med de rette kompetencer som barriere for at indføre robotter, jf. figur 14. Dernæst peger 37 pct. på mangel på tid, mens 36 pct. peger på, at det er svært at vurdere, om investeringen er rentabel. 28 pct. har vanskeligt ved at vurdere, om der er robotter, der kan overtage funktioner i virksomheden, og 25 pct. oplever vanskeligheder med at få uafhængig rådgivning. 14 pct. angiver, at det er vanskeligt at finde finansiering, mens 12 pct. angiver problemer med datasikkerhed som en barriere. Blot 18 pct. af virksomhederne angiver, at de ikke oplever nogen barrierer ift. at indføre robotter.

Figur 14: Virksomhedernes oplevede barrierer for investering i robotter

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Procent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der er mangel på medarbejdere med de rette kompetencer</td>
<td>41%</td>
</tr>
<tr>
<td>Det er vanskeligt at finde tid til at indføre robotter</td>
<td>37%</td>
</tr>
<tr>
<td>Det er vanskeligt at vurdere, om investering i robotter kan betale sig økonomisk</td>
<td>36%</td>
</tr>
<tr>
<td>Det er vanskeligt at finde ud af, om der er robotter, der kan overtage funktioner i virksomheden</td>
<td>28%</td>
</tr>
<tr>
<td>Det er vanskeligt at finde uafhængig rådgivning om robotter</td>
<td>25%</td>
</tr>
<tr>
<td>Det er vanskeligt at finde finansiering til at indføre robotter</td>
<td>14%</td>
</tr>
<tr>
<td>Det er vanskeligt at få klarhed over datasikkerhed i forbindelse med robotter</td>
<td>12%</td>
</tr>
<tr>
<td>Andet</td>
<td>6%</td>
</tr>
<tr>
<td>Ingen</td>
<td>18%</td>
</tr>
</tbody>
</table>

Manglende viden om værdien af at indføre robotteknologi samt manglende tid/fokus er altså en væsentlig barriere for udbredelsen. Dette billede bekræftes af flere interviewpersoner, der især påpeger et problem i forhold til små og mellemstore virksomheder:

Vi snakker meget om, at vi skal nå de små og mellemstore virksomheder, men det er godt nok svært, for de står tit et helt andet sted end de store virksomheder.

– uddannelsesinstitution

Der mangler puljer til virksomheders afdækning af deres automatiseringspotentiale og til implementering af automatiseringsløsninger.

– rådgiver

Pilen peger dog umiddelbart begge veje, da flere interviewpersoner påpeger, at klyngen ikke har nok fokus på SMV-segmentet og de muligheder, der ligger her:

Robotbranchen er sløv, konservativ og fokuserer kun på store produktioner og glemmer SMV-segmentet.

– aftager

Syddansk Vækstforum og Region Syddanmark har siden 2013 investeret i indsatser, der styrker anvendelsen af robotteknologi i små og mellemstore virksomheder.

Syddansk Vækstforum har i 2013-2014 bevilliget 14,2 mio. kr. til tre automationsinitiaver, hvor flere end 370 virksomheder har deltaget i udviklingssamarbejder, hvilket har styrket kompetencer og viden omkring automationspotentialet i syddanske SMV'er. Som resultat heraf har 24 virksomheder efterfølgende investeret i automationsudstyr.

Initiativerne har altså været med til at overkomme nogle af de barrierer, der ellers kan være for investering i robotter. Region Syddanmarks 2017-rapport og de gennemførte interviews indikerer dog, at der fortsat eksisterer barrierer for flere virksomheder – herunder viden om og forståelse for den værdi, som robotteknologi kan bibringe.

Derfor har Vækstforum investeret yderligere 25 mio. kr. frem mod 2019 i Automations-Boost for at udvikle innovative løsninger, der kan commercialiseres og skaleres, ligesom flere andre initiativer er iværksat for at understøtte den fortsatte udbredelse af robotteknologi i små og mellemstore virksomheder13.

4.2 Relationer og samarbejde mellem aktører

Flere af de interviewede virksomheder fortæller, at de ikke oplever, at relationerne til andre virksomheder er præget af rivalisering. Således peger flere på, at de ikke har nogle direkte konkurrenter, da de beskæftiger sig med hver sin niche eller gren af industrien.

På den anden side giver interviewene heller ikke et indtryk af, at der er et udpræget stærkt samarbejde på tværs af virksomhederne i klyngen. Opfattelsen af dette varierer fra virksomhed til virksomhed:

| Der er en stor grad af samarbejde i klyngen, og der er kun i mindre grad rivalisering. | – integrator |
| Der er ikke meget rivalisering, men der er dog heller ikke en decideret samarbejdstilgang i udbredt grad | – producent |

Overordnet beskrives relationerne virksomhederne imellem som positive, hvilket underbygges af mange stærke personlige relationer, der ofte går mange år tilbage til studietiden på SDU:

Kernemedarbejderne i virksomhederne kender hinanden særdeles godt. – uddannelsesinstitution

De stærke personlige relationer beskrives af flere interviewpersoner som vigtige. Det understreges i den forbindelse, at der ligger en stor fordel i, at man kender personer i andre virksomheder, og at dette er med til at underbygge tilliden og samarbejdet i interaktionen virksomhederne imellem.

Relationerne holdes bl.a. ved lige via arrangementer i de forskellige klyngorganisationer, deltagelse i udviklingsprojekter, bestyrelsesposter og medejerskab af virksomheder. Ligeledes styrkes relationerne af, at flere geninvesterer deres kapital og viden i klyngen.

Foruden relationerne nævnes det af flere interviewpersoner, at der i klyngen findes en kerne-personkreds, som der henvises til på tværs af interviews. Disse personer er personer, der ses som vigtige for klyngens udvikling – både i et historisk perspektiv og fremadrettet. Heriblandt er eksemplerlig Thomas Visti (tidliger Universal Robots og investor i MiR), Esben Østergaard (medstifter og CTO i Universal Robots samt investor i MiR), Niels Jul Jacobsen (medstifter og CSO i MiR samt tidligere involveret i Universal Robots) samt personerne bag Blue Ocean Robotics.

Udover aktører fra virksomhederne peges der også på aktører mere bredt i økosystemet, hvor særligt Henrik Gordon Petersen (professor, SDU), Kasper Hallenborg (institutleder, Mærsk Mc-Kinney Møller Institut), Nigel Edmonsen (direktør, MADE) og Kurt Nielsen (centerchef, Teknologisk Institut) nævnes.
4.3 Leverandørbase og samspil hermed

I en værdikæde, som beskrevet i afsnit 3.2.2., udgør alle led en vigtig del af en klynges funktion. Ikke desto mindre er der mulighed for, at en klyngne har særlige styrker inden for ét eller flere af leddene, ligesom samspillet også kan være særligt stærkt i interaktionen mellem ét eller flere af leddene.

Det påpeges af flere interviewpersoner, at klyngen står stærkest i producent/integrator-leddet, hvilket ydremere kan ses ved den succes, som flere producentvirksomheder har haft de seneste år, ligesom antallet af integratorvirksomheder ligeledes har været i vækst. For så vidt angår samspillet mellem producerter og integratorer, virker samspillet mindre stærkt. Integratorerne forhandler ofte robotteknologi fra flere producenter, og tilsvarende sælger robotproducenterne ofte deres produkter til flere forskellige integratorer. Der er således ikke nødvendigvis et tæt samarbejde med disse led i værdikæden.

Ydremere påpeges det, at leverandørleddet står relativt stærkt, hvilket af flere interviewpersoner understreges som værende vigtigt for klyngens funktion.

I den forbindelse findes der en række globale komponentleverandører, som klyngen betyder sig af, men også inden for landets grænser og i regionen peges der på stærke underleverandører. En klyngeorganisation og en større producent peger i den forbindelse på, at disse underleverandører er særligt vigtige i forhold til startups, men i mindre grad for de etablerede virksomheder. Ydremere peges der på, at underleverandørerne i disse år oplever samme positive udvikling som robotvirksomhederne:

I takt med at klyngen udvikler sig, udvikler den lokale leverandørbase sig også. Det ser man blandt andet via konkrete samarbejdsprojekter mellem aktørerne.

 — producent

Valget af en lokal leverandør i Micro Technic har betydet, at kommunikationen foregår mere direkte og hurtigere, end tilfældet havde været med en kinesisk leverandør, og hvis produktionen skal besøges, er det ikke mere end en halv times kørsel væk.

Ovenstående eksempel demonstrerer, hvordan det særligt i en virksomheds tidlige fase kan være vigtigt med en lokal leverandør, hvor produktet fortsat skal rettes til og modnes
til markedet. Kubo Robotics peger selv på, at dette ikke havde været muligt med en kinesisk leverandør, og Micro Technic opfattes i dag som en del af udviklingsholdet i Kubo Robotics.14, 15

4.4 **Adgang til arbejdskraft**

Adgang til kompetent og kvalificeret arbejdskraft er en af de mest afgørende faktorer i forhold til at sikre en konkurrencemæssig fordel som klynge. Heri ligger, at arbejdskraften både skal være kvalificeret og af en volumen, der kan mætte klyngens efterspørgsel.

Der gøres allerede i dag en stor indsats for at skaffe tilstrækkelig arbejdskraft til den fortsatte udvikling af virksomhederne i klyngen. Odense Robotics arbejder f.eks. med at tiltrække arbejdskraft via jobmesser, branding og opkvalificeringsinitiativer, samt med at understøtte samarbejdet mellem klyngeorganisationerne og virksomhederne om eksem- pelvis at tage kontakt til en uddannelsesinstitution for at etablere en tættere kobling mellem de aktører, der uddanner eller efteruddanner arbejdskraft, og de, der eftersøger arbejdskraften for at kunne udnytte sine vækstpotentiale.

Odense Robotics har samtidig fokus på at opkvalificere ledige teknikere og teknikere fra andre brancher. SDU har tilsvarende samarbejde med Odense Robotics om at tiltrække bachelorstuderende fra udlandet.

En rapport fra Odense Robotics viser, at robotindustrien beskæftiger folk med mange forskellige uddannelsesbaggrunde. Hovedparten har dog en universitetsuddannelse eller en erhvervsfaglig uddannelse, som illustreret i Figur 15.

Figur 15: Arbejdsstyrke fordelt på uddannelsesniveau

<table>
<thead>
<tr>
<th>Uddannelsesniveau</th>
<th>Procent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundskole</td>
<td>11%</td>
</tr>
<tr>
<td>Ungdomsuddannelse</td>
<td>5%</td>
</tr>
<tr>
<td>Erhvervsuddannelse</td>
<td>42%</td>
</tr>
<tr>
<td>Videregående uddannelse</td>
<td>40%</td>
</tr>
<tr>
<td>Ukendt</td>
<td>2%</td>
</tr>
</tbody>
</table>

14 Christiansen, Jakob H. (2016): Kubo producerer 100 procent fynske robotter.

15 Christiansen, Jakob H. (2017): Lokal underleverandør skaber ro: Fynske Kubo på vej ud i hele Europa og USA.
De gennemførte interviews bekræfter ligeledes denne pointe, hvor interviewpersonerne har fortalt, at medarbejderne kommer fra forskellige uddannelsesbaggrunde og forskellige uddannelsesinstitutioner; robotteknologer fra Syddansk Universitet, automationsteknologer fra erhvervsakademierne, civilingeniører fra Aalborg Universitet, samt personer fra de tekniske skoler, der ofte er blevet yderligere kompetenceudviklet lokalt hos virksomhederne.

Der udtrykkes i interviewene en generel tilfredshed med kvaliteten af arbejdskraften:

Den arbejdskraft, der bliver udklækket fra SDU, er særdeles kvalificeret.

– producent

Unge, nyuddannede kommer med en frisk viden, som branchen har brug for.

– integrator

Ikke desto mindre peges der også på, at der kan være kamp om arbejdskraften. Særligt efterspørges der ingeniører med 5+ års brancheerfaring, hvilket nævnes af både en større producent, en større integrator og en investor. Ingeniørmanglen er dog ikke kun en udfordring for virksomheder i robotklyngen, men findes på tværs af industrier:

Vi har en mangel på ingeniører generelt. Så vi kan ikke bare hive nogle ind fra en anden branche.

– producent

Denne umættede efterspørgsel gør sig også gældende for flere mindre virksomheder, der giver udtryk for, at de ikke står forrest i køen, når det gælder kampen om skarpe, nyuddannede kandidater fra SDU:

Universal Robots fylder meget, hvilket gør det svært at tiltrække udviklere til de mindre virksomheder.

– producent

I forhold til arbejdskraft fra SDU har vi lidt under, at der har været nogle andre, der har stået foran i køen (…). Udviklere, de nørdede ingeniører, de har bias mod at tage til Universal Robots, hvor de kan grave sig helt ned i teknikken uden at skulle tømme opvaskeren eller lignende.

– producent

Manglen på arbejdskraft opleves ikke kun af virksomhederne, men også af uddannelsesinstitutionerne, der er bevidste om, at der ikke udklækkes et tilstrækkeligt antal kandidater til at modsvare efterspørgslen.

Det konstateres ydermere i denne forbindelse, at flere af de studerende undervejs i deres studieforløb ikke nødvendigvis kommer i kontakt med erhvervslivet, da majoriteten har
større interesse i at fordybe sig i studiet og det tekniske. Det afføder også, at flere af virksomhederne har vanskeligt ved at etablere relationer til de studerende, hvilket særligt rammer de mindre virksomheder:

Det er synd, at civilingeniører kan gå derude (universitetet, red.) i fem år uden at have nogen reel kontakt med virksomhederne.

– producent

Dem, der uddannes, ved typisk meget på den tekniske side – ikke så meget på den kommercielle.

– uddannelsesinstitution

I forbindelse med snakken omkring mangel på kvalificeret arbejdskraft peger flere virksomheder på, at der kigges til relatedere brancher for at finde kvalificeret arbejdskraft. Men manglen på ingeniører er generel og går på tværs af brancher, så det er ikke sådan, at der findes en pulje af uudnyttet ingeniørarbejdskraft, som virksomhederne blot kan aktivere.

Opkvalificering og efteruddannelse af medarbejdere med kortere uddannelser er også en mulighed, men det påpeges, at der er behov for omfattende opkvalificering, for at de kan dække de behov, som robotvirksomhederne står med:

Der er brug for direkte kompetenceudvikling via efteruddannelse, som kan tilføre teknologiske kompetencer, som mangler nu, men vi er nødt til at se på det sammen med den måde, som de teknologiske kompetencer undnyttes på lige nu. Efteruddannelsen kan evt. tilføre viden om det kommercielle (ledelse og salg), og det kan evt. være med til at frigøre teknologisk viden hos klyngens virksomheder

– uddannelsesinstitution

Region Syddanmark har igangsat projektet ”Vækstrettet Kompetenceudvikling”16 rettet mod robotvirksomheder, fødevareindustrien og stålbranchen. Her kan virksomhederne få foretaget en behovsafdækning og plan for kompetencer, få skræddersyede uddannelses- tilbud, tilskud til uddannelsesforløb, samt adgang til branchenetværk.

Flere virksomheder peger også på, at der kan kigges uden for landets grænser for at finde kvalificerede folk. Der peges dog i samme ombæring på, at det kan være svært at få medarbejdere fra udlandet til Danmark på grund af regler og politik:

Jeg er ked af den hetz, der kører politisk i forhold til udenlandsk arbejdskraft. Vi burde være meget mere åbne for at lade folk blive i landet og bidrage med deres gode kompetencer – og vi burde blive meget bedre til at tiltrække kvalificeret arbejdskraft fra udlandet.

– integrator

Det er meget svært på grund af regulativer fra staten. Det kan tage 6 måneder bare at få dem til en jobsamtale (...) Inden for EU går det okay, men udenfor EU er det meget vanskeligt.

– producent

Og det er i denne forbindelse ikke fordi, at interessen fra udlandet mangler for Odense og robotmiljøet i Danmark. En mindre virksomhed fortæller således om, hvordan udenland-rike ansøgninger gerne udgør flertallet i ansøgningsrunder, hvor ansøgningerne sendes fra vidt forskellige Verdensdele; Syd- og Østeuropa, Asien samt Mellemøsten.

En anden og større virksomhed fortæller i den forbindelse ligeledes om, at interessen er der fra udenlandsk arbejdskraft, og at robotmiljøet har en fornuftig synlighed i udlandet:

– producent

4.5 Test- og demonstrationsfaciliteter

I Porters model indgår testfaciliteter i den samlede infrastruktur, der er afgørende for en klynges succes. Testfaciliteter er fysiske faciliteter, der muliggør afprøvning af produkter, inden de kommer på markedet, ligesom faciliteterne giver mulighed for at teste eksisterende løsninger.

Sådanne faciliteter findes til en vis grad allerede ved blandt andre Teknologisk Institut og til dels FORCE Technology, hvor enkelte virksomheder har haft gavn af et samarbejde. Det samme gør sig gældende for den Smart Learning Factory, der er etableret på SDU Sønderborg, hvor virksomhederne kan afprøve ny teknologi:

I laboratoriet kan vi sammen med virksomhederne finde innovative løsninger omkring automation, så de kan se, ikke bare generelle løsninger, men specifikke, som de kan bygge op her.

– uddannelsesinstitution

Interviewene indikerer imidlertid, at der kunne være behov for yderligere, fælles testfaciliteter med henblik på at forbedre virksomhedernes mulighed for at udvikle deres produkter:

Teknologisk Institut har et lille værksted, men det er ikke nok. Det skal være et sted, hvor virksomheder f.eks. kan teste brugen af robotter i forhold til forskellige materialer.

– producent

Særligt flere af de små og mellemstore virksomheder efterspørger fælles testfaciliteter, da det ganske enkelt er for omkostningstungt at have egne testfaciliteter in-house:
Hvis vi siger, at vi skal have 10 robotter stående, og de alle koster en halv million at have, så er det noget af en afskrivning for os, hvis det kun skulle være et testværktøj (...). Det kunne være rart at have sådan nogle faciliteter ude i byen.

– producent

En af uddannelsesinstitutionerne bakker ligeledes denne idé op og mener, at fælles testfaciliteter vil være særligt gavnligt for de mindre virksomheder på brugersiden:

Testfaciliteter til understøttelse af SMV’er kunne være gavnligt i forhold til at tå dem til at prøve nye tilgange af.

– uddannelsesinstitution

I interviewene gives der altså udtryk for, at offentlige testfaciliteter vil være gavnligt både på producentsiden, hvor faciliteterne kan anvendes til at afprøve og teste produkter med henblik på at modne dem til markedsst, og på brugersiden, hvor faciliteterne kan anvendes af mindre virksomheder til at se, hvor en robot- eller automatiseringsløsning kan indgå i virksomhedens eget setup og på den måde være en øjenåbner for SMV’er.

Foruden et potentiale for slutbrugere og producenter, giver en uddannelsesinstitution udtryk for, at de ser et potentiale i bedre adgang til fælles faciliteter for institutionernes vedkommende:

I min verden, der er der ikke nogen grund til, at vi køber de samme ting, som de andre skoler køber. Vi skal se på, om vi ikke kan bruge hinandens udstyr i et eller andet omfang. Der er selvfølgelig noget, som vi er nødt til at have, f.eks. fordi mange studerende bruger det.

– uddannelsesinstitution

Sådanne offentlige testfaciliteter er der gode eksempler på i Europa, nemlig de såkaldte Robotics Innovation Facilities (RIFs)17, der tilbyder adgang til højteknologisk robotudstyr og ekspertise uden risiko; dels er faciliteterne gratis at anvende, dels beskyttes virksomhedernes intellektuelle ejendom. De nuværende tre europæiske RIFs findes i Bristol (Storbritannien), Paris (Frankrig), samt nær Pisa og Firenze (Italien), hvor de er oprettet i samarbejde med lokale universiteter eller videninstitutioner. Faciliteterne er finansieret af EU gennem ECHORD++.

Foruden testfaciliteter efterspørges der i klyngen også mulighed for at afprøve og demonstere et produkt, hvor det er integreret i driften hos en potentielt aftager af produktet. Adgangen til at demonstrere sit produkt adskiller sig fra testfaciliteter på den måde, at testfaciliteter typisk findes i et laboratoriemiljø, mens demonstrationen foregår i det naturlige miljø, som produktet ellers vil indgå i, når det er på markedet.

Det understreges i den forbindelse, at adgang til demonstrationer i driften giver produkter et positivt stempel og kan hjælpe i markedsføringen som en god business case, hvis det har fungeret med succes i drift – gerne i 6 måneder eller længere:

Det er ikke systematiseret, hvordan de får deres robotter testet i relevante miljøer, fx sygehuse. Som det er nu, er det lidt ind ad bagdøren. – producent

Det er særligt i løbet af det første år eller to, at det er vigtigt, at de får testet deres robotter. – producent

Flere af de adspurgte efterspørger bedre mulighed for at få produkter afprøvet og demonstreret hos potentielle slutbrugere, hvilket potentielt kan give en konkurrencemæssig fordel over for producenter fra andre lande, der ikke har samme adgang til at demonstrere sine produkter.

Syddansk Vækstforum og regionsrådet i Region Syddanmark har i 2017 afsat en OPI-pulje på 27,5 mio. kr., der yder støtte til samarbejder mellem SMV'er, offentlige parter og forskningseinstitutioner, hvor der kan søges om støtte fra 400.000 kr. og op til 1.475.000 kr. Projekterne skal understøtte commercialisering af produkter og services inden for Vækstforummets forretningsområder, og produkterne skal være tæt på markedet, men mangle eksempelvis den endelige dokumentation for effekt eller afprøvnings i forskellige brugs situationer.

Muligheden for at opnå støtte til demonstration af et produkt findes altså i dag, hvis ens produkt falder inden for et af Vækstforummets forretningsområder. Interviewene giver imidlertid indikationer af, at indsatsen på dette område kan styrkes

4.6 Etablerede virksomheder

I de gennemførte interviews er der blevet spurgt ind til, hvem interviewpersonerne anser som værende særligt vigtige blandt de etablerede virksomheder, og hvilken betydning de har for klyngen.

Særligt én virksomhed er svær at komme udenom i denne sammenhæng; således peger en meget stor andel af interviewpersonerne på Universal Robots som afgørende for klyngens succes:

Universal Robots er et fyrtsår, som sætter spotlight på klyngen. – producent

18 Region Syddanmark (2017b): Syddansk OPI-pulje

– investor

Universal Robots er klyngens fyrstårn. De trækker opmærksomhed, skaber politisk bevågenhed samt engagement hos uddannelsesinstitutioner.

– integrator

Der peges således på, at Universal Robots har været med til at sætte Odense og robotklyngen på landkortet – ikke blot nationalt, men også internationalt.

Universal Robots’ store succes mærkes også blandt klyngens mindre virksomheder i form af øget bevågenhed og investeringer fra succesfulde UR-personer, ligesom enkelte virksomheder lever af at udvikle hardware, der kan anvendes sammen med UR-robotterne, eksempelvis On Robot.

Foruden Universal Robots peges der ydermere på Blue Ocean Robotics og deres rolle i forhold til at etablere nye robotvirksomheder, mens også Mobile Industrial Robots og enkelte andre etablerede virksomheder identificeres som vigtige for klyngens succes. For UR og MIR ses ejerskabets ‘udflytning’ til udlandet via Teradynes opkøb ikke som et større problem, da tilstedevarsel i området fortsætter, ligesom der eksisterer forventninger om væsentlige investeringer herfra i robotklyngen fremadrettet:

Den inspiration, som salget har givet miljøet, masser af knowhow og kapital. Universal Robots er stadig en magnet, som ikke findes lignende andre steder.

– klyngeorganisation

Det er dog ikke blot de etablerede virksomheder selv, der ifølge interviewpersonerne er afgørende for klyngens succes. Således fremhæves også personer fra de etablerede virksomheder, der har valgt at geninvestere deres viden – og nogle gange økonomisk kapital – i klyngen, ofte i form af bestyrelsesposter. De etablerede virksomheder har derfor ikke blot en funktion i sig selv, men ledende og tidligere ledende medarbejdere har ligeledes en positiv effekt på klyngen i forhold til videndeling, salgskanaler og markedsadgang, ledelse mm.

4.7 Iværksættere og små virksomheder

Klyngen er generelt kendetegnet ved, at mange af dens virksomheder er blevet etableret inden for de seneste 5-10 år, mens nye virksomheder udklæckkes hvert år.

Foruden at bidrage til skabelsen af nye arbejdspadser og økonomisk vækst bidrager de nystartede virksomheder ligeledes med inspiration til de større virksomheder i klyngen:
Der er en stor opblomstring af nye robotvirksomheder, som bidrager med inspiration til de etablerede virksomheder.

Inspirationen består bl.a. i, at de små virksomheder videreudvikler løsninger på baggrund af teknologiplatforme udviklet af de større, etablerede virksomheder. Nogle virksomheder bygger således hardware, der kan fungere i samspil med etablerede robotvirksomheders produkter, mens andre finder deres egen niche i markedet.

Et eksempel på sidstnævnte er flere af de spin-outs, der er blevet etableret fra Blue Ocean Robotics i samarbejde med en ekstern samarbejdspartner, hvilket har resulteret i virksomheder som WallMo, Multi Tower Company og Kubo.

En anden stor leverandør af nye virksomheder til klyngen er Odense Robotics’ StartUp Hub, hvor nye virksomheder kan nyde godt af den viden og sparring, der stilles til rådighed:

StartUp Hub’en, som drives af Odense Robotics, skaber gode rammer for nye virksomheder.

Der skabes mange ideer i klyngen, og Odense Robotics er gode til at spotte de gode af slagsen og bortsortere de mindre gode.

StartUp Hub’en er også med til at forme iværksætterne i klyngen, herunder lærer dem at samarbejde og videndele.

Odense Robotics’ StartUp Hub er en stor inkubator-facilitet hos Teknologisk Institut, hvor såvel teknisk udstyr som videnressourcer inden for både forretning og udvikling stilles til rådighed, ligesom de spirende virksomheder også får hjælp til at sikre den rette finansiering. Virksomhederne kan blive optaget i hubben via en ansøgningsproces, og der er i øjeblikket fire virksomheder tilknyttet hubben.

Flere virksomheder har siden StartUp Hub’s etablering forladt denne igen – eksempelvis Kubo Robotics, Robot At Work og CP Robotics – hvoraf flere har fået kommersiel succes efter at være blevet udklækket fra hubben:

Industrien i vores klynge er forholdsvis ung... StartUp Hub’en i Odense Robotics er meget stærk. Vi har direkte brugt Hub’en til opstart af en af vores klyngevirksomheder, som er placeret i StartUp’en i robotklyngen.

– anden klyngeorganisation
Ligesom Mærsk Mc-Kinney Møller Instituttet danner grobund for flere nystartede virksomheder, sker dette også andre steder i regionen. Det påpeges i denne forbindelse, at også Mads Clausen Institutlet i Sønderborg står stærkt, særligt i forhold til automation. Sønderborg har derfor også set nye automations- og robotvirksomheder spire op de seneste år:

Udover de etablerede automationsvirksomheder, er der også nogle nye robotvirksomheder. Det er eksempelvis EasyRobotics (…), der kan anvendes med UR-robotter fra Odense.

-- klyngeorganisation

På trods af succesen med flere af de nyopstartede virksomheder inden for de seneste år, peges der også på enkelte udfordringer i forbindelse med nyopstartede virksomheder og iværksættere. Enkelte peger således på, at det kan være vanskeligt at identificere, hvor man kan få den fornødne hjælp og støtte som iværksætter:

Både når du kommer ud som studerende, eller i det hele taget som iværksætter, er det svært at navigere i alle de her tiltag, der er. Hvem er hvem?

-- producent

Det ville være lidt lettere, hvis der var ét tilbud eller én rådgiver i Odense Kommune, der kunne forsege at tegne et billede af, hvor du kan gå hen. Det er hos mig, du skal starte, og så er jeg skidegod til at navigere i, hvilke andre tilbud der er til dig.

-- producent

Ydermere peger flere uddannelsesinstitutioner og enkelte virksomheder på, at mange studerende og nyudklækkede kandidater ikke besidder et særligt kommercielt fokus, da det i stedet er det tekniske, der er i centrum. Dette kan tænkes at hæmme det fulde potentiale, der ellers ligger i startups:

Vi kobler studerende til virksomheder, men der er ikke meget fokus på iværksætteri.

-- uddannelsesinstitution

Dem, der uddannes, ved typisk meget på den tekniske side; ikke så meget på den kommercielle.

-- uddannelsesinstitution

Det tilsyneladende manglende fokus på den kommercielle del hos de studerende er således med til yderligere at understrege vigtigheden af Odense Robotics’ StartUp Hub og andre initiativer, der kan sikre, at de studerendes tekniske viden ligeledes kan omsætte til kommercielle forretninger.
4.8 Samspil om viden

Samspil om viden kan antage en række forskellige former. RegLab har i flere forskellige rapporter beskrevet fem forskellige såkaldte videnbroer19:

- Forsknings- og innovationsprojekter
- Studenterprojekter
- Videnservice
- Brugerdrivet kompetenceudvikling
- Iværksætteri.

Hertil kan lægge, at den væsentligste videnbro typisk er produktion af kandidater, der får arbejde i de virksomheder, som uddannelserne retter sig imod.

Foruden at kigge på den arbejdskraft, der kommer ud af forsknings- og uddannelsesinstitutionerne, giver det som ovenfor nævnt også mening at kigge på interaktionen mellem virksomhederne og forsknings- og uddannelsesinstitutionerne.

Helt overordnet er der ingen tvivl om, at vidensamarbejde siden etableringen af Mærk Mc-Kinney Møller Instituttet i 1995 har været en krumtap i udviklingen af klyngen – og fortsat er det. Virksomhedernes udviklingsarbejde er præget af åben innovation, de tænker i samarbejde og viden, og videninstitutionerne er på deres side også vant til at tænke i samarbejde.

Flere af virksomhederne beskriver således deres store interesse i samarbejder med forskellige uddannelsesinstitutioner, navnlig SDU (både Odense og Sønderborg), hvor der kan være gensidige gevinst i samarbejdet. Således fremhæver virksomhederne konkrete eksempler på samarbejder, hvor universitetet har bidraget med viden til markedsøjens løsninger:

Det er eksistensen af stærk industri og stærk forskning fra universitetet, der skaber den rette base for klyngens udvikling. På samme måde som man tidligere så på teleområdet i hovedstadsområdet.

- investor

Det er en kendt problematik, at de regelsæt, som universiteter og uddannelsesinstitutioner agerer inden for, kan vanskeliggøre smidige og kortsigtede samarbejder, som virksomhederne oplever værdi af. En rapport fra Dansk Industri fra 2016 peger på, at der særligt eksisterer udfordringer i forbindelse med universiteternes manglende forståelse for virksomhedens proces fra patent til commercialisering, fortolkning af statsstøttereglerne, manglende klar juridisk linje internt på universiteterne samt fordeling af rettigheder til den udviklede forgrundsviden.

Analysen har bekræftet, at disse udfordringer også kan genfindes i de syddanske uddannelsesinstitutioner. Hovedindtrykket er dog, at det faktisk håndteres godt:

Samarbejder omkring forskning er rigidt. SDU løser det dog typisk for virksomhederne. Deres jurister håndterer det administrative og løfter deres rolle i forhold til at få det til at passe med juraen på landsplan. Uden dem ville vi ikke kunne løfte det, og ville nok ikke være med.

– integrator

I interviewene nævnes det, at SDU stiller bistand til rådighed i forhold til diverse administrative opgaver. Men der er selvfølgelig interesseforskelle mellem virksomhederne og universitetet, der skal afstemmes indledningsvis i et samarbejde; universitetet har typisk et forskningsperspektiv, der er relativt langsigtet, mens virksomhederne i højere grad har et markeds perspektiv, der typisk er relativt kortsigtet. Disse perspektiver kan ifølge flere af de interviewede være vanskelige at forene i samarbejderne.

Mens interaktionen mellem virksomhederne og uddannelsesinstitutionerne overordnet beskrives som positivt – om end til tider lidt rigidt – fremhæves det, at der er plads til yderligere samarbejde. En interviewperson fremhæver således, at de som uddannelsesinstitution indgår virksomhedssamarbejder, hvor de hjælper virksomheden med en robot- eller automatiseringsløsning, hvilket de sagtens kunne gøre i endnu højere grad:

Jeg tror ikke, de tænker på en uddannelsesinstitution, når de skal have analyseret et problem. De går til en integrator eller en anden udbyder. En anden ting er, at hvis de endelig tænker på at gå til en uddannelsesinstitution, så tror jeg, mange af virksomhederne er i tvivl om, hvilken en uddannelse er det så, der kan hjælpe os. Der vil jeg gerne som det her videncenter kunne guide virksomhederne. Hvis I prøver at forklare mig, hvad Jeres udfordring er, så vil jeg kunne sætte de rigtige uddannelser og undervisere i spil.

– uddannelsesinstitution

Et sådant samarbejde kan være gavnligt for andre dele af klyngen, da uddannelsesinstitutionen i så fald kan hjælpe med at åbne virksomhedens øjne for robot- og automatiseringssløsninger, hvilket senere kan give ordrer i bogen hos lokale virksomheder. Samtidig får de studerende noget ud af samarbejdet og en konkret anledning til og mulighed for at komme ud i de lokale virksomheder.

En anden uddannelsesinstitution peger i den forbindelse på, at særligt SMV'er kan nyde godt af sådanne samarbejder. Der ligger et gensidigt potentiale i, at virksomhederne kan få øjnene op for, hvad automatisering og robotteknologi kan gøre for deres virksomhed, ligesom uddannelsesinstitutioner kan lære noget af, at små virksomheder prøver deres løsninger af:

De store virksomheder har lettere ved at sætte gang i nye tiltag end de små. Vi har et samarbejde med en række SMV'er, men det er vanskeligt. Heri ligger der en udfordring, men også et potentiale.

– uddannelsesinstitution

Endelig peges der også på behovet for, at uddannelsesinstitutionerne bliver bedre til at samarbejde for derved bedre at kunne udnytte hinandens kompetencer og udstyr. Udover ovenstående indspil til, hvordan samspillet mellem virksomheder og uddannelsesinstitutioner kan udvikles yderligere, har vi i afsnit 5.4 om adgang til arbejdskraft beskrevet behovet for øget samspil om efteruddannelse og omtalt den indsats, der allerede gøres på dette område i regi af projektet Vækstrettet Kompetenceudvikling.

Et sidste indtryk fra de gennemførte interviews med både virksomheder og andre aktører er, at AAU, DTU og andre universiteter i Danmark og udlandet ikke er særligt meget i spil i klyngen. Dette til trods for, at eksempelvis AAU har fokus på og en stærk position inden for smart industri, og at der både på AAU og DTU foregår virksomhedssamspil. Vi har ikke i de gennemførte interviews identificeret konkrete behov eller udviklingspotentieralier, som virksomhederne i robotklyngen går glip af som følge af det manglende samspil med eksempelvis AAU og DTU. Men det er vanskeligt at forestille sig, at der ikke er virksomheder på Fyn, der ville kunne udnytte denne viden og dermed tilføre robotklyngen yderligere udvikling. Omvendt noterer vi os også, at universiteterne på tværs af landet ofte primært indgår i lokale og regionale samarbejder, hvilket understreger, at viden ikke blot er en vare, der kan bestilles, men en ressource, der udvikles i samspil og fordrer en vis grad af interaktion.

4.9 Adgang til kapital

Tilgang til kapital er et utroligt vigtigt forhold for udviklingen af alle industrier og et forhold, der efter finanskrisen har fået meget stor opmærksomhed i den danske debat om erhvervsudvikling, hvor manglende tilgang til kapital ofte fremhæves som en væksthæmmer. Vi har i denne analyse søgt at skabe grundlag for en nuanceret belysning af emnet, hvor vi har skelnet mellem:

- Efterspørgsels- og udbyderperspektiv
- Kapital i forskellige faser af en virksomheds udvikling
- Offentlige og private kapitalkilder.
4.9.1 Kapital set i et efterspørgsels- og udbyderperspektiv

Når talen falder på tilgængelighed af kapital, fokuseres der ofte på bankers manglende risikovillighed og bureacrati forbundet med offentlige ordninger. Disse synspunkter har vi bestemt også mødt.

En mindre producent forbinder således Vækstfondens kapital med en "stor administrativ byrde", der kan være svær at løfte for en mindre virksomhed, mens en anden og større producent opfatter Vækstfonden som "rigide, komplicerede og dyre", ligesom vedkommende også peger på andre i sit netværk, der deler den negative opfattelse af forløb med Vækstfonden. Dette bakkes op af en anden interviewperson, der mener, at lånene er for dyre. Det påpeges også, at Vækstfonden har for stort fokus på afkast – frem for at hjælpe virksomhederne:

Vi har haft to forløb med Vækstfonden, og de har begge været negative (...) De er rigide, komplicerede og dyre.

– producent

Vækstlån er de dyreste lån i hele verden. De (de små virksomheder, red.) har brug for billige banklån.

– producent

Derudover peger en tredje virksomhed på, at de tidligere har ansøgt InnoBooster-programmet, men at de endte med at stoppe forløbet igen, da det blev for bureacratisch:

Vi har søgt en InnoBooster, men vi kom til at bruge alt for meget tid på at skaffe pengene. De penge er for bureacratiske at arbejde med.

– producent

En fjerde virksomhed peger på, at på trods af, at der stilles konsulentbistand til rådighed i forbindelse med ansøgning om offentlige midler, er denne utilstrækkelig, hvilket placerer en byrde på virksomheden selv.

En anden udfordring kan være, at det kan tage lang tid, før midlerne står på kontoen, når man får støtte fra offentlig side, hvilket er kritisk i en virksomhed, der befinder sig i sin spæde fase:

Der er en likviditetsudfordring. Der går lang tid, før pengene kommer ind på kontoen. Altså, der er et cashflow, der skal hænge sammen. (...) Har du penge, så kan du få... Men man tjener jo ikke nogen penge i starten.

– producent

De SMV-programmer, der er, er meget fine, men pengene kommer meget sent. Det kunne være regionen eller andre, der kommer med pengene tidligere. Ellers så skal de eksisterende ordninger smidiggøres.

– producent
Overordnet er der altså en opfattelse hos flere virksomheder af, at det er bureaucratisk og tungt at arbejde med offentlig funding, hvilket har fået flere til at prioritere privat kapital.

Som modstykke til disse virksomhedsoplevelser peges der fra flere institutionelle aktører på, at virksomhederne ofte ikke er parate til at modtage kapital; den såkaldte investor readiness. Virksomhederne undervurderer, hvilket grundlag både Vækstfond og private investorer er nødt til at støtte deres investeringsbeslutninger på. Og derfor kan det opleves som bureaucratisk. Men i virkeligheden er der tale om såkaldt Business Intelligence, som virksomhederne burde være bedre forberedte på at medvirke til. Det ville forkorte forløbene.

Det skal i forlængelse af ovenstående nævnes, at vi også har talt med virksomheder, der har haft positive oplevelser med Vækstfonden og andre kapitalkilder. Så billedet er langt fra entydigt, og dårlige oplevelser og skuffede forventninger hænger efter vores vurdering i betydeligt omfang sammen med utilstrækkelig forventningsafstemning.

4.9.2 Kapital i forskellige faser
Jo længere fra markedet en teknologi eller virksomhed er, jo større er usikkerheden, og jo større fokus vil der være på at afdække risikoen, jo højere vil prisen på kapitalen være og jo flere krav vil der ofte knyttes til den.

I den første fase, hvor fokus typisk vil være på teknologi- og produktudvikling, er det primært innovationsmiljøerne, der kan spille en rolle (Syddansk Innovation og BOREAN). Innovationsmiljøerne kræver et ejerskab af virksomhederne til gengæld for at stille kapital til rådighed, hvilket kan gøre ondt på virksomhedejere, der har udviklet et perspektivrigt produkt. Hvis der er behov for meget teknologiudvikling, kan Innovationsfonden også være en mulighed i denne fase.

Kapitalen hentes i denne fase både fra offentlige og private aktører, hvor sidstnævnte i høj grad bærer præg af intern funding og geninvestering fra aktører, der har haft succes med en eller flere virksomheder. Her fremsættes særligt personer med en historik i Universal Robots som afgørende aktører i forbindelse med rejsning af kapital til mindre virksomheder:

Der er en stigende grad af personer, som geninvesterer viden og kapital i klyngen. Det er primært UR-drengene.

– producent
I de senere skaleringsfaser, hvor virksomheder kan have behov for meget store beløb for at kunne forløse deres markedsmæssige potentiale, kan venturefonde, pensionskasser m.fl. spille en rolle.

Bankerne er naturligvis også fortsat rigtig vigtige, men er langt bedre gearet til at finansiere drift og driftsinvesteringer (nye produktionsfaciliteter mv.), end til at finansiere teknologiudvikling og udvikling af virksomheder i deres tidlige og usikre stadier:

Vi har en løbende dialog med de store banker. De har et ønske om at være en del af rejsen, og de kan godt bløde op for deres egen kreditpolitik, hvis man f.eks. er en del af et stærkt økosystem (...) Jeg tror dog ikke, at bankerne vil være med på soft money, da det er alt for risikofyldt.

– klyngeorganisation

Det generelle billede, der tegnes af rigtigt mange aktører i klyngen – store såvel som små – er, at der er gode muligheder for at skaffe kapital, særligt for nystartede virksomheder:

For helt nyudklækkede virksomheder er finansieringsmulighederne næsten uendelige.

– producent

Det er ikke noget problem at skaffe kapital i klyngen.

– integrator

Dette understøttes af investorer, som understreger, at de forventede høje væksttal gør klyngen overordentligt interessant. Her er det interessant, at det er et meget præcist afgrænset område, som én investor ser som det centrale sted at placere investeringerne:

Det er 'by far' det hotteste spot set med investorejne. Der er andre interessante steder, men de måler sig ikke med Fyn. (Du mener ikke Syddanmark?) Nej, jeg mener Odense og Fyn. I bund og grund så er det Fyn, der har førertrøjen på.

– investor

Investorerne ser klyngen som et meget interessant sted, og det smitter af på muligheden for at skaffe kapital. På trods af en generel oplevelse af tilstrækkelig kapital overordnet set, fremhæver én virksomhed, som har været i gang i et par år, at det kan være svært at tiltrække kapital til robotvirksomheder, som hverken er spæde, nyopstartede virksomheder eller veletablerede virksomheder med en stor omsætning – et synspunkt, der ligeledes bakkes op af en anden interviewperson. Således angives det, at det for virksomheder mellem disse stadier kan være svært at tiltrække kapital for at nå til det næste niveau:
(...) men når man har været i gang i nogle år og gerne vil tage det næste skridt, er det sværere at opnå kapital, da der så stilles omsætnings- og/eller overskudskrav.

— producent

Der er fantastisk gode rammer i forhold til at starte op, men ja, i den midterste fase, vækstfasen, er det vanskeligt at skaffe kapital.

— producent

4.9.3 Offentlige og private kapitalkilder

Det offentlige kan primært spille fire forskellige roller i relation til kapital:

1. Det kan træde ind, hvor det private kapitalmarked ikke træder ind i et omfang, der vurderes som ønskeligt – primært i de meget tidlige faser af en teknologi eller virksomheds udvikling, hvor risikoen og usikkertigheden er høj.

2. Stille muligheder for test og demonstration af nye teknologier til rådighed.

3. Forberede virksomhederne på, hvilke krav og forventninger de vil blive mødt med, når de skal søge at tiltrække kapital.

4. Bidrage til at tiltrække privat kapital gennem at synliggøre investeringsmulighederne og facilitere mødet mellem potentielle investorer og kapitalsøgende virksomheder.

Vi har allerede beskrevet den rolle, som innovationsmiljøerne og Innovationsfonden kan spille i de helt tidlige faser, og den rolle, som Vækstfonden kan spille i de efterfølgende faser. Vi har også været inde på behovet for, at uddannelsesinstitutioner og offentlige myndigheder stiller test- og demonstrationsfaciliteter og -muligheder til rådighed, så der kan skabes den dokumentation, som kunder ofte vil efterspørge, og som derfor også er afgørende for at få investorer om bord. Vi har i den forbindelse også sat, hvordan puljer som den syddanske OPI-pulje kan skabe match mellem virksomheder og offentlige brugere og bidrage til finansiering af demonstrationsforløb.

Analysen har ligeledes vist, at særligt Odense Robotics og Invest in Odense yder en stor indsats i forhold til at synliggøre klyngen og informere om investeringsmuligheder og søge at skabe match mellem virksomheder og investorer. Ligeledes tilbydes robotvirkomhederne træning i at tiltrække investeringer for at styrke deres investor readiness. Invest in Odense afholder således investordage, hvor et meget stort antal internationale investorer kommer til Odense for at afsøge mulighederne for gode investeringsemner. Ligeledes oplever eksempelvis Invest In Denmark en stor og stigende international interesse for robotklyngen og noterer sig i øvrigt, at klyngen er meget professionel og åben for investorer, hvilket er meget positivt.

Samlet set har analysen vist et samlet set mangefacetteret billede af tilgængeligheden af kapital i klyngen. Det overordnede indtryk er, at der er stor tilgængelighed til kapital, og at det private kapitalmarked bliver flint understøttet af offentlige ordninger. Det eneste be-
hov, der kan kalde på ny og/eller yderligere opmærksomhed, er at forberede virksomhederne bedre på de krav, som de vil blive mødt af, når de søger kapital – uanset om kapitalkilden er offentlig eller privat.

Eftersom kapitalen på det generelle plan ikke opfattes som mangelfuld i klyngen, peger et par aktører på, at man med fordel kan skifte fokus fra at tiltrække ny kapital til klyngen til at fokusere på at kanalisere større eller midler til bruger-/aftagersonen og dermed være med til at synliggøre nytten af robotter:

Man kunne lave en ubureaukratisk pulje målrettet brugen af robotter til SMV'er. Puljen kan give tilskud til rådgivning, der kortlægger processer og synliggør mulighederne for robotter hos SMV'er. Ad den vej kan producenterne og integratorerne lære at Lamarbejde med SMV'erne og forstå deres behov, og SMV'erne kan se mulighederne i robotter.

Vi ser dette ønske som meget i overensstemmelse med indsatsen Automationsboost, hvor leverandører og virksomheder, der kan have brug for automation, bringses sammen om at udvikle løsninger. Men spørgsmålet er, om erfaringerne fra denne pulje aktivt kunne bringes i spil i de øvrige danske regioner med henblik på at skabe øget afsætning af robotløsninger på hjemmemarkedet.

4.10 Rådgivere

Rådgiversegmentet beskrives som et snævert segment af flere forskellige typer af aktører i økosystemet. Ifølge en rådgiver står segmentet svagt i forhold til anvendelsen og udbredelsen af robotteknologi, mens segmentet står stærkere i forhold til selve udviklingen af robotteknologi.

En af årsagerne er ifølge en interviewperson, at uddannelses- og forskningsinstitutionerne løfter en stor del af aktiviteterne i samarbejde med eksempelvis Teknologisk Institut og til dels andre GTS-institutter. Særligt kvaliteten af Teknologisk Institut fremhæves af flere:

Teknologisk Institut er meget anerkendte og tilgængelige i forhold til samarbejde.

– producent

Der findes i økosystemet flere stærke ikke-kommercielle aktører som SDU, RoboCluster, Teknologisk Institut og så videre, som er gode til at hjælpe de kommercielle aktører som UR, MIR og andre.

– rådgiver

Der er stærke aktører i forhold til udbredelse af brancheviden i form af navnlig Teknologisk Institut og MADE.

– uddannelsesinstitution
Flere virksomheder nævner således, at de har kørt udviklingsprojekter med forskellige aktører, hvor det særligt har været Teknologisk Institut, der har været inddraget, ligesom Højteknologifonden, Industriens Fond, Innovationsfonden samt diverse EUDP-projekter nævnes.

Interviewene bærer præg af, at den indledende bemærkning om, at klyngen står stærkt på rådgiversiden i forhold til udviklingen af robotteknologi, er sand. Rådgiversiden er mere svag på anvendelses- og udbredelsessiden, hvor de deciderede rådgiver er få, da en stor del af opgaven varetages af integratorerne, som står for udviklingen og installeringen af robotløsninger hos slutbrugerne.

4.11 Netværks- og klyngeorganisationer

Jf. afsnit 4.2, er der stærke personlige relationer blandt aktører i klyngen, hvilket er med til at understøtte samarbejdet i og udviklingen af klyngen. Det er dog også undersøgt, hvilken rolle klyngeorganisationer og andre netværks-/interesseorganisationer spiller i dette regi.

I forhold til klyngeorganisationer har klyngen tre, jf. afsnit 2.3: Odense Robotics, RoboCluster og klyngeorganisationen for droner UAS Denmark. Dertil kommer flere netværks-/interesseorganisationer såsom DIRA, MADE og CenSec.

I forhold til navnlig Odense Robotics og RoboCluster fremhæver flere, at det kan være vanskeligt at se den egentlige forskel mellem de to i forhold til, hvilke opgaver de løser:

Der er meget overlap mellem aktørerne.

– integrator

Der udtrykkes i forlængelse heraf tvivl om, hvorvidt der er en hensigtsmæssig opdeling af opgaver mellem de to organisationer – samt øvrige netværks-/interesseorganisationer – ligesom der hos nogle hersker tvivl om, hvad organisationernes respektive kernekompencer er:

DIRA, RoboCluster og Odense Robotics – hvem er det lige, der gør hvad her? Det kan jeg godt nogle gange have svært ved at se.

– uddannelsesinstitution

Der er meget store overlap. Det må man sige. Og de kan dårligt nok selv forklare forskellen.

– integrator

Flere interviewpersoner påpeger, at Odense Robotics og RoboCluster med fordel kan fokusere mere på deres respektive kernekompencer og medlemstilbud, og at de i højere grad bør samarbejde med hinanden.
Nogle ser en fordel i anden organisering og eventuelt en konsolidering:

De gør alle sammen noget godt (…) men det kunne man måske godt organisere anderledes.
— uddannelsesinstitution

Der er helt klart brug for konsolidering. RoboCluster, DIRA og Teknologisk Institut har stort set samme funktionsområde.
— integrator

Omvendt udtrykkes der også en vis bekymring i forhold til en eventuel sammenlægning:

Det tog 10 år at opbygge RoboCluster for at få andre geografiske repræsentationer med. Man skal passe på, at man ikke får smidt andre regioner ud af samarbejdet ved en konsolidering.
— producent

I forbindelse med den indledende kortlægning af klyngerne fremgik det bl.a., at 100 virksomheder er medlemmer af begge klyngleorganisationer. Således er der på medlemssiden væsentlige overlap, hvilket indikerer, at medlemsvirksomheder oplever en særlig værdi ved at være medlem hos begge klyngleorganisationer.

Altså er der på den ene side udtalelser om, at det er vanskeligt at se forskellen på de to organisationer, mens den store overlappende medlemsskare på den anden side indikerer, at organisationerne hver især skaber en særlig værdi for medlemmerne.

Hovedindtrykket fra interviewene er, at Odense Robotics står klarest for virksomhederne og øvrige aktører, mens der hos flere interviewpersoner er større usikkerhed om, hvad RoboCluster laver.

Odense Robotics har skabt en enorm synlighed omkring robotklyngen og er ifølge både virksomheder og institutionelle aktører i høj grad lykkedes med at sætte Odense på landkortet og udvikle Odense til et brand inden for robotteknologi:

Odense Robotics brander klyngen godt.
— uddannelsesinstitution

Odense er et brand.
— international aktør

Odense Robotics har således langt hen ad vejen til formål at skabe opmærksomhed og synlighed omkring robotklyngen og er lykkedes med dette. RoboCluster’ arbejde med
forskning og forskningssamarbejder vil sjældent kunne skabe samme synlighed og opmærksomhed, trods succesfulde indsatser, hvilket kan forklare aktørernes opfattelser af de to organisationer.

Flere interviewpersoner opfatter en uhensigtsmæssigt snævert, geografisk fokus hos Odense Robotics. Der hersker dog dette meninger herom: Enkelte ser det som en styrke, mens andre ikke forstår det relativt snævre geografiske fokus med henblik på, at Danmark som helhed ikke er større. Begge synspunkter kommer til udtryk på tværs af interviewene:

Vi skal sørge for, at det er landsdækkende. Større er Danmark ikke.

— investor

Det kan være en styrke i forhold til de lokale aktører, men en svaghed i forhold til andre aktører.

— klyngeorganisation

Det fremhæves bl.a. af flere, at den meget præcise og nuancerede viden, som Odense Robotics bidrager med via deres klyngekort, og den viden, som medarbejderne besiddet, og som virksomheder i klyngen og uden for kan trække på, er særlig værdifuld:

Vi har i vores klyngesystem fra Odense Robotics adapteret den måde at lave klyngekort og få overblik og viden spredt om klyngen på. Vi kigger i deres leverandørkort og kan dermed bruge deres leverandører og opbygge et tilsvarende systemsystem selv.

— klyngeorganisation

Odense Robotics bidrager således med infrastruktur, der kan bruges af og kopieres til andre klyngeorganisationer.

Flere fremhæver den store volumen af møder og arrangementer, der afvikles af såvel klyngeorganisationerne som andre aktører som eksempelvis MADE. Her pointerer flere, at det kan virke som om, at man til tider blot "mødes for at mødes", ligesom det bemærkes, at man er nødt til at være selektiv og prioritere blandt arrangementerne, da det er begrænset, hvor meget udvikling der når at ske mellem arrangementerne.

Omvendt fremhæves netværksmulighederne i høj grad som værdiskabende i forhold til at bringe aktørerne sammen og skabe videndeling – både teknologisk og kommercielt (eksempelvis salgskontakter og markedsadgang). Særligt Odense Robotics fremhæves som professionelle, og det pointeres i den forbindelse:

Odense Robotics er gode til at bringe folk sammen, således at samarbejde og videndeling opstår til fælles gavn.

— producent
Enkelte påpeger, at miljøerne uden for Odense og Fyn kan nyde godt af de samarbejder, der opstår. Således indgår eksempelvis Sønderborg Vækstråd i konkrete samarbejder med fx Teknologisk Institut, RoboCluster og Odense Robotics, som de lokale virksomheder i Sønderborg-området kan nyde godt af, og nogle virksomheder har fået bevillinger ad denne vej.

Det understreges dog, at samarbejde ikke kommer af sig selv, og det kræver et aktivt arbejde for at involvere sig. Det kan projekter på tværs af organisationer, hvor eksterne aktører som erhvervsråd kan indgå, bidrage positivt til.

4.12 Internationalt perspektiv

Der findes foruden den syddanske robotklynge en række andre robotklynger i Europa og den øvrige verden. Flere af disse er organiseret i klyngeorganisationer som i Syddanmark, eksempelvis Robotdalen i det centrale Sverige og RoboValley i Delft i Holland. Foruden disse findes der en række universiteter med stærke robotteknologimiljøer, der eksisterer i et tæt samspil med de lokale virksomheder. Det gælder eksempelvis omkring München og Stuttgart i Tyskland og Zürich i Schweiz – og i en global kontekst eksempelvis Massachusetts i USA og det centrale Japan.

Gennemgående anføres det i interviewene, at både aktører i klyngen og udenlandske aktører er af den opfattelse, at Danmark også har en styrkeposition i et internationalt perspektiv, og flere anerkender den særlige styrke, der ligger omkring Fyn og i resten af regionen:

Mit generelle indtryk er særdeles godt.

– international aktør

Der er jo tilsvarende klynger rundt i verden, men de er bestemt ikke bedre end vores. Så jeg synes absolut, at vi er blandt de førende robotklynger.

– uddannelsesinstitution

Det gode ved Odense er, at det her er noget, man har satset stort på fra det højeste politiske niveau. Og det er en kæmpe styrke (...) Odense gør den rigtige ting. At fokusere på robotteknologi er meget klogt.

– international aktør

Hvor flere af de udenlandske klynger er koblet op mod storskalaproduktion – eksempelvis bilindustrien i Tyskland samt ABB og Volvo i Sverige – fremhæver flere, at en særlig styrke for den danske klynge er fraværet af en sådan produktion.

I forlængelse heraf peger flere på, at den danske robotklynges styrkeposition især ligger omkring samarbejdende robotter:
Samarbejdende robotter er afgjort den centrale styrkeposition for klyngen.

– international aktør

Særligt virksomhedernes evne til at lave stærke og konkurrencedygtige produkter, såsom samarbejdende og mobile robotter, er afgørende for klyngens succes.

– rådgiver

Det er dog ikke kun udlandet, der har blik for robotklyngen – robotklyngen har også blik for udlænding. Der peges således på, at en stor del af robotvirksomhederne indtænker det internationale marked i deres forretnings allerede i virksomhedens spæde fase:

Virksomhederne og klyngen virker born global.

– international aktør

Dette store fokus på internationalisering og eksport stemmer overens med den betydelige andel, som eksport udgør af omsætningen i mange virksomheder, jf. afsnit 4.1.

Det internationale især kommer derudover til udtryk ved, at flere virksomheder har ansat internationale medarbejdere og deltager i og udveksler viden på internationale konferencer, samt at en række store, internationale robotvirksomheder har etableret kontor i regionen. Således er eksempelvis ABB og FANUC til stede i regionen.

4.13 Samlet vurdering af økosystemet

Som det er fremgået, er det vores overordnede vurdering, at der er tale om en endog særdeles stærk og veludviklet klyng. Klyngen har i sin viden- og virksomhedsmæssige kerne været under udvikling i ca. 30 år, men navnlig inden for de seneste få år har den gennemgået en nærmest eksplosiv udvikling, så den nu fremstår meget stærk også på den organisatoriske side og i stigende grad tiltrækker sig international opmærksomhed.

Klyngen udmærker sig ved at være stærk på alle centrale parametre: Stærke virksomheder, der agerer lokomotiver, et stærkt iværksættermiljø, stærke viden- og uddannelsesinstitutioner, samt stor bevågenhed og opbakning fra lokale og regionale myndigheder. Klyngen har skabt international synlighed og tiltrækker sig i stigende grad international opmærksomhed. Og så er det hele bundet sammen af veletablerede personlige relationer på tværs af virksomheder, videninstitutioner og offentlige myndigheder.

Analysen har også vist, at der er tale om en geografisk stærkt afgrænset klyng, der også er delvist lukket. Som virksomhed må man være til stede for at få adgang til mange af klyngens mere uformelle netværk og ressourcer. Samtidigt trækkes der helt overvejende på videnressourcer mv. inden for klyngen, mens koblinger til andre klynger, videnmiljøer mv. er relativt svage.
Klyngen bærer således på mange karakteristika ved en ideel klynge, hvor den stærke koncentration har været afgørende for, at der er skabt den dynamik, der nu trækker udviklingen. Men hvor vi samtidig er bekymrede for, om det også vil begrænse den i dens fortsatte udvikling.

Vi har sammenfattet analysens hovedindsigter i nedenstående SWOT-analyse. Som det fremgår, overstiger styrkerne i antal klart svaghederne og de fundne muligheder og trusler. Men der er bestemt også forhold, der efter vores vurdering kræver opmærksomhed i de kommende år.

Tabel 3: SWOT-analyse for klyngen

<table>
<thead>
<tr>
<th>STYRKER</th>
<th>SVAGHEDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Klyngen er stærk på alle tre ben i Triple Helix – virksomheder (f.eks. UR og MIR), videninstitutioner (f.eks. SDU og TI) og offentlige myndigheder (Odense Kommune og Region Syddanmark)</td>
<td>• Mangel på kvalificeret arbejdskraft</td>
</tr>
<tr>
<td>• Stærke virksomhedsmæssige lokomotiver</td>
<td>• Adgang til kapital kan opleves som vanskelig; særligt for virksomheder i vækstfasen</td>
</tr>
<tr>
<td>• Udbredt grad af samarbejde mellem klyngens aktører baseret på mange og langvange personlige relationer</td>
<td>• Utilstrækkelige test- og demonstrationsfaciliteter for navnlig nyere virksomheder</td>
</tr>
<tr>
<td>• Evne og parathed til samarbejde</td>
<td>• Mangler national strategi for robotter til at udstikke retning for lovgivning, forskningsprogrammer mm.</td>
</tr>
<tr>
<td>• God politisk opbakning fra lokalt og regionalt hold – mange relevante understøttende indsatser</td>
<td>• Tendens til lukkethed</td>
</tr>
<tr>
<td>• SMV’er med fokus på fleksibilitet og effektivitet</td>
<td></td>
</tr>
<tr>
<td>• Arbejdskraften flytter rundt, hvilket skaber relationer og viden deling</td>
<td></td>
</tr>
<tr>
<td>• Stort kendskab til styrkepositionen tiltrækker ressourcer (arbejdskraft, kapital og virksomheder)</td>
<td></td>
</tr>
<tr>
<td>• Stærkt iværksættet miljø med mange spin-outs – herunder Odense Robotics StartUp Hub</td>
<td></td>
</tr>
<tr>
<td>• Klyngen er begunstiget af de mange uddannelsesinstitutioner i området, der fokuserer på robotter, automation mm.</td>
<td></td>
</tr>
<tr>
<td>• Generelt god adgang til kapital for virksomhederne</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULIGHEDER</th>
<th>TRUSLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Øget bevidsthed om muligheder og anvendelse af robotter i SMV’er på tværs af brancher</td>
<td>• Store investeringer i udlandet</td>
</tr>
<tr>
<td>• Øget fokus på klyngen fra nationale aktører</td>
<td>• At udenlandske investorer flytter kompetence og arbejds pladser ud af klyngen</td>
</tr>
</tbody>
</table>

Økosystemanalyse af forretningsområdet for robotteknologi i Region Syddanmark
5 Anbefalinger

Analysen har efterladt os med et meget nuanceret og mangefacetteret billede af økosystemet omkring robotteknologi. Grundlæggende er der tale om en klynge i stærk udvikling og et stærkt økosystem, der skaber gode vækstbetingelser for klyngen.

Men analysen har også peget på forhold, der kan optimeres eller justeres for at møde behovene eller imødegå udfordringerne bedst muligt. Det er disse forhold, som vi i dette sidste kapitel vil opridse.

At skrive anbefalinger er en særlig disciplin, hvor der ofte er store ønsker til præcision, konkretisering og klar adresse. Vi har bestræbt os på at leve op til disse krav. Men på nogle områder vil større præcision og konkretisering kræve en mere detaljeret undersøgelse, end denne, meget bredt dækkende analyse har kunnet honorer. Og så har den nye politiske aftale om fremtidens erhvervsvælksystem gjort det særlig vanskeligt at sætte klar adresse på en række af anbefalingerne. Som konsekvens heraf har vi valgt at fokusere på indholdet i anbefalingerne, og så håber vi, at der også fremadrettet vil være de rette aktører til stede til at gribe de bolde, vi spiller op, og som vil kunne fortsætte og udvikle indsatsen på grundlag heraf.

Vi har samlet vores anbefalinger under syv overordnede overskrifter, hvorunder vi kort uddyber den indsigt, som analysen har bibragt os, samt de anbefalinger som vi har fundet grundlag for.

ANBEFALING 1: Styrket fokus på at sikre tilstrækkelig og kvalificeret arbejdskraft

Mangel på kvalificeret arbejdskraft er den største trussel mod den fortsatte vækst i klyngen. Virksomheder, uddannelsesinstitutioner, klyngleger og myndigheder er allerede meget opmærksomme på dette og gør allerede et stort indsats, men det vil være nødvendigt at se på mulighederne for at aflæse arbejdskraftmanglen på alle niveauer.

Det anbefales derfor, at:

- Det konkrete behov for arbejdskraft på forskellige uddannelsesniveauer kortlægges og synliggøres, så der kan reageres på det.
- Virksomhederne understøttes i at se til relaterede brancher for arbejdskraft (blue collar workers).
- Virksomhederne understøttes i at omskole og kompetenceudvikle/opkvalificere eksisterende medarbejdere til at varetage jobfunktioner, det er særlig vanskeligt at rekruttere til.
- Der skabes tætte kontakter til andre robotmiljøer med henblik på at opnå adgang til arbejdskraft derfra.
- Indsatsen for at koble studerende og virksomheder undrejs i deres uddannelser styrkes, så jobmulighederne i robotklyngen bliver synlige — herunder gennem fokus på studiejobs, studenteropgaver, praktikforløb mv.
Der sættes fokus på, at studerende på de tekniske uddannelser opnår kommerciel indsigt og merkantile kompetencer.

Mulighederne for attraktiv bosættning på Fyn synliggøres, og det internationale miljø i og omkring Odense styrkes.

ANBEFALING 2: Fokus på at sikre kapital til fortsat vækst i klyngen

Robotklyngen har tiltrukket sig beørgerig opmærksomhed gennem et par meget store internationale opkøb, men tilgang til kapital handler om meget andet end opkøb. Udvikling af nye løsninger og virksomheder fordrer tilgang til kapital fra den tidlige udviklingsfase, over vækst og modning, til skalering. Succesfulde match mellem virksomheder og kapitalkilder handler ikke alene om at sikre kapitalkildernes opmærksomhed på robotklyngen, men også om at sikre, at virksomhederne er klar til at møde kapitalkilderne og de krav og forventninger, som disse vil stille til virksomhederne.

Det anbefales derfor, at:

- Styrke rådgivningen om, hvilke krav og forventninger virksomhederne vil blive mødt af, når de eventuelt måtte søge kapital (investor readiness).
- Der sikres stærke koblinger til eksisterende satsninger såsom StartUp Hub’en og Scale-Up Denmark i forhold til viden og erfaring om virksomhederens behov i de tidligere faser af deres udvikling.
- Mulighederne for at etablere en venture kapital fond til robot startups undersøges.
- Der gøres en indsats for at sikre, at nationale aktører (såsom Vækstfonden, Invest in Denmark m.fl.) og internationale investorer (business angels) har fokus på og godt kendskab til robotklyngen og mulighederne heri, så virksomheder i vækstfasen har tilgang til den nødvendige kapital.
- Dot fortsat sikres åbenhed og tilgængelighed til klyngen, så potentielle investorer kan opnå kendskab til klyngen og potentielle investeringsmuligheder.

ANBEFALING 3: Øget samarbejde om test og demonstration af robotløsninger

Robotløsningerne bryder hele tiden nyt land og finder indpas på nye anvendelsesområder, hvor de enten kan effektivisere eksisterende arbejdssprocesser, højne kvaliteten af processerne eller på anden måde tilføre værdi. Denne proces kræver ikke alene stærke udviklingsmiljøer, men også at der er adgang til muligheder for at afprøve løsningerne i praksis og demonstrere deres værdi – ikke mindst for de mindre virksomheder, hvis vækst er helt afhængig af, at deres kernenprodukter kan demonstrere deres værdi i praksis.

Det anbefales derfor, at:

- Der etableres samarbejder mellem uddannelsesinstitutioner om at stille faciliteter til afprøvning og dokumentation af robotløsninger til rådighed.
- Offentlige driftsenheder (hospitaler, hjemmepleje osv.) stiller sig til rådighed for demonstrationsforløb, der kan understøtte virksomhederne i commercialiseringsfasen.
- Samarbejde med klyngorganisationer og brancheforeninger på områder, hvor nye robotløsninger kan bringes i anvendelse, styrkes med henblik på at opdyrke test- og demonstrationsmuligheder.

ANBEFALING 4: Nye anvendelsesmuligheder og -områder afsges

Robotklyngen afgrænser udelukkende af robotløsningernes anvendelsesmuligheder. Det er derfor af stor betydning for den fortsatte vækst og udvikling af klyngen, at afsegningen af nye anvendelsesmuligheder til stadighed afprøves.
Det anbefales derfor, at:

- Robotløsninger kommer ud og stå hos viden- og uddannelsesinstitutioner, så fremtidens arbejdskraft bliver fortrolige med teknologien og bliver trænede i at se nye anvendelsesmuligheder, når de kommer ud på arbejdsmarkedet.
- Rådgiverleddet søges knyttet tættere til klyngeorganisationerne, så koblingen til nye brugere i nye brancher kan styrkes.
- Der er stor opmærksomhed på samspil over imod klyngeorganisationer inden for nye anvendelsesområder (landbrug, byggeri mv.).
- Der etableres mulighed for at faciliterere innovationstorløb mellem robotklyngens virksomheder og mulige nye brancher. Udgangspunktet skal være en problemstilling i den nye branche, som robotvirksomhederne skal løse. Inspiration til dette forløb kan hentes hos Offshore Energy og deres CRIF-program, og fokus kunne rettes mod sundheds- og velfærdsområdet, landbrug, fødevarer, byggeri m.fl.

ANBEFALING 5: Styrkelse af kobling til videnmiljøer inden for robotteknologi

Robotteknologi er et særligt videnintensivt forretningsområde, hvis udvikling kræver vedvarende tæt samspil mellem viden- og uddannelsesinstitutioner og virksomheder. Det er derfor vigtigt, at alle videnbroer udbygges, og at der sikres trafik i begge retninger på dem.

Det anbefales derfor, at:

- Alle parter er opmærksomme på mulighederne for at koble virksomheder og viden- og uddannelsesinstitutioner sammen gennem fælles projekter, praktikker, studentersamarbejder mv.
- At der er særlig opmærksomhed på den viden, som såvel de syddanske uddannelsesinstitutioner (SDU, EAL og SDE) som viden- og uddannelsesinstitutionerne uden for Fyn besidder, så der kan sikres match med virksomhedernes behov.
- At der er opmærksomhed på at skabe stærke relationer til øvrige danske og udenlandske viden- og uddannelsesinstitutioner, så viden herfra bliver mere tilgængelig for klyngens virksomheder.
- Udarbejde nye samarbejdsmodeller for samarbejdet mellem klyngens virksomheder og viden- og uddannelsesinstitutioner for at bringe ny viden i spil samt involvere klyngens viden- og uddannelsesinstitutioner mere i den fremtidige udvikling af klyngen.

ANBEFALING 6: Organiseringen af robotklyngen bør genovervejes

Det anbefales derfor, at:

- Der gennemføres en analyse af, hvilke fordele og ulemper der knytter sig til forskellige mulige organiseringer af indsatser på området, så den bliver så effektiv og overskuelig som mulig, uden at eksisterende viden eller kompetence sættes over styr – alternativt at den nuværende arbejdsdeling tydeliggøres.
- Sammenhængen til øvrige relevante parter uden for Fyn styrkes med henblik på at videreudvikle positionen som en samlet national aktør.
- Undersøge, hvordan satsningen på droner kan indtænkes i en eventuel ny organisering.
ANBEFALING 7: Lobby for en national robotstrategi

Den hurtige fremvækst af robotklyngen har betydet, at mange behov har måttet imødekommes, efterhånden som de har vist sig. Det har på mange måder sikret en tæt kobling mellem behov og løsninger, der er meget effektfuld. Det er også klart, at ikke alle udfordringer og behov kan løses på Fyn og i Region Syddanmark alene. Der er behov for en stærkere national kobling, hvor mere overordnede problemstillinger kan håndteres.

Det anbefales derfor, at:

- Der sættes fokus på behovet for udvikling af en samlet national robotstrategi, som alle aktører kan forholde deres rolle og indsats til, og hvor rammevilkår og nye udfordringer og muligheder kan drøftes.
Bilag 1: Referencer

- Christiansen, Jakob H. (2016): Kubo producerer 100 procent fynske robotter (link)
- Christiansen, Jakob H. (2017): Lokal underleverandør skaber ro: Fynske Kubo på vej ud i hele Europa og USA (link)
- Dansk Industri (2016): Knaster i samarbejde om forskning – men også positive tendenser (link)
- ECHORD++ (2018): About RIFs - Robotics Innovation Facilities (link)
- Hildebrandt & Brandi (2018): Roboterne er kommet på topdelsens agenda (link)
- International Federation of Robotics (2017): World Robotics 2017 Industrial Robots (link)
- LT Automation (2015): Ny velfærdsteknologi skal gøre borgere selvhjulpne (link)
- Mobile Industrial Robots (2015): Mobile Robots deliver chemotherapy (link)
- Mobile Industrial Robots (2016): Robotten tager skraldet på plejehjemmet (link)
- Napier, Glenda og Camilla Hansen (2012): Ecosystems for Scalable Firms
- Porter, Michael E. (1990): The Competitive Advantage of Nations
- RegLab (2017): Videnbroer til vækst (link)
- Region Syddanmark (2017a): Robotter og automatisering – Styrkepositioner, udfordringer og udviklingspotentiale (link)
- Region Syddanmark (2017b): Syddansk OPI-pulje (link)
- Region Syddanmark og Syddansk Vækstforum (2017): Robotteknologi og automation i Region Syddanmark
- Steno, Carsten (2016): En klynge, der virker
- Væksthus Syddanmark (2018): Kompetenceudvikling til robotbranchen (link)
Bilag 1: Interviewliste

Interviewpersoner fremgår af nedenstående tabel.

Tabel 4: Interviewpersoner

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Interviewperson</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOREAN Innovation</td>
<td>Morten Bitsch Janik</td>
<td>Porteføljechef</td>
</tr>
<tr>
<td>CenSec</td>
<td>Martin Søndergaard</td>
<td>Programleder</td>
</tr>
<tr>
<td>Cluster Excellence Denmark</td>
<td>Merete D. Nielsen</td>
<td>Direktør og ECEI Assessor</td>
</tr>
<tr>
<td>COWI</td>
<td>Morten Brunø</td>
<td>Projektleder</td>
</tr>
<tr>
<td>Easyfood</td>
<td>Flemming Paasch</td>
<td>CEO</td>
</tr>
<tr>
<td></td>
<td>Svend Østergaard</td>
<td>Teknisk Chef</td>
</tr>
<tr>
<td>Eltronic</td>
<td>Lars Jensen</td>
<td>President</td>
</tr>
<tr>
<td>Erhvervsakademi Lillebælt</td>
<td>Maria Windt Jul</td>
<td>Lektor</td>
</tr>
<tr>
<td>EU South Denmark Office</td>
<td>Else Dyekjær Mejer</td>
<td>Konsulent</td>
</tr>
<tr>
<td>Gain & Co.</td>
<td>Mette Klausen</td>
<td>Konsulent</td>
</tr>
<tr>
<td>Gibotech</td>
<td>Henrik Anker</td>
<td>CEO</td>
</tr>
<tr>
<td>Hannemann Engineering</td>
<td>Palle Hannemann</td>
<td>CEO & Ejer</td>
</tr>
<tr>
<td>Inrotech</td>
<td>Gert Jergensen</td>
<td>CEO & Ejer</td>
</tr>
<tr>
<td>Invest in Denmark</td>
<td>Jesper Algren</td>
<td>Special Advisor</td>
</tr>
<tr>
<td>Invest in Odense</td>
<td>Michael Hansen</td>
<td>Investment Manager</td>
</tr>
<tr>
<td>Life Science Innovation North Jutland</td>
<td>Finn Allan Larsen</td>
<td>Direktør</td>
</tr>
<tr>
<td>MADE</td>
<td>Merete Norby</td>
<td>International chefkonsulent</td>
</tr>
<tr>
<td></td>
<td>Nigel Edmondson</td>
<td>Direktør</td>
</tr>
<tr>
<td>Mobile Industrial Robots</td>
<td>Niels Jul Jacobsen</td>
<td>CSO</td>
</tr>
<tr>
<td>Odense Robotics</td>
<td>Henrik Brændstrup</td>
<td>Project Manager</td>
</tr>
<tr>
<td></td>
<td>Mikkel Christoffersen</td>
<td>Business Manager</td>
</tr>
<tr>
<td></td>
<td>Peter Falk</td>
<td>Business Developer</td>
</tr>
<tr>
<td>On Robot</td>
<td>Ebbe Fuglsang</td>
<td>CTO & Co-founder</td>
</tr>
<tr>
<td>Regional Udvikling, Region Midtjylland</td>
<td>Niels Dahl</td>
<td>Chefkonsulent</td>
</tr>
<tr>
<td>Regional Udvikling, Region Nordjylland</td>
<td>Gorm Simonsen</td>
<td>Projektleder</td>
</tr>
<tr>
<td>Regional Udvikling, Region Sjælland</td>
<td>Lars Tomlinson</td>
<td>Chefkonsulent</td>
</tr>
<tr>
<td>Organisation</td>
<td>Name</td>
<td>Position</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>RoboCluster</td>
<td>Morten Nielsen</td>
<td>Cluster Manager</td>
</tr>
<tr>
<td></td>
<td>Mette Klausen</td>
<td>Netværksleder</td>
</tr>
<tr>
<td>Robot at Work</td>
<td>Anders Martiny</td>
<td>CEO</td>
</tr>
<tr>
<td>Robotdalen, Sverige</td>
<td>Erik Lundqvist</td>
<td>General Manager</td>
</tr>
<tr>
<td>Robotool</td>
<td>Leif Thomsen</td>
<td>Direktør</td>
</tr>
<tr>
<td>Syddansk Universitet</td>
<td>Arne Bilberg</td>
<td>Lektor</td>
</tr>
<tr>
<td></td>
<td>Henrik Gordon Petersen</td>
<td>Professor</td>
</tr>
<tr>
<td></td>
<td>Kasper Hallenborg</td>
<td>Institutleder</td>
</tr>
<tr>
<td>Sønderborg Vækstråd</td>
<td>Gustav Nebel</td>
<td>Projektchef</td>
</tr>
<tr>
<td>Teknologisk Institut</td>
<td>Kurt Nielsen</td>
<td>Centerchef</td>
</tr>
<tr>
<td>UAS Denmark</td>
<td>Søren Land</td>
<td>Forretningsudvikler</td>
</tr>
<tr>
<td>Universal Robots</td>
<td>Esben Østergaard</td>
<td>CTO</td>
</tr>
<tr>
<td>Vækstfonden</td>
<td>Lars Ravn</td>
<td>Partner</td>
</tr>
<tr>
<td>Wallmo</td>
<td>Lars Andresen</td>
<td>Managing Director</td>
</tr>
<tr>
<td>Welfare Tech</td>
<td>Karen Lindegaard</td>
<td>Seniorkonsulent</td>
</tr>
<tr>
<td>Aalborg Universitet</td>
<td>Ole Madsen</td>
<td>Professor</td>
</tr>
</tbody>
</table>