Surveillance of circulating strains in Europe during 1998-2015

Barkoff, Alex-Mikael; Mertsola, Jussi; Pierard, Denis; Dalby, Tine; Høgh, Silje Vermedal; Guillot, Sophie; Stefanelli, Paola; van Gent, Marjolein; Berbers, Guy; Vestrheim, Didrik F; Greve-Ibsdahl, Margrethe; Wehlin, Lena; Ljungman, Margaretha; Fry, Norman K; Markey, Kevin; Auranen, Kari; He, Qiushui

Published in: Journal of Clinical Microbiology

DOI: 10.1128/JCM.01998-17

Publication date: 2018

Document version: Peer reviewed version

Document license: CC BY-NC

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Surveillance of circulating *Bordetella pertussis* strains in Europe during 1998-2015

Alex-Mikael Barkoff¹, Jussi Mertsola², Denis Pierard³, Tine Dalby⁴, Silje Vermedal Hoegh⁵, Sophie Guillot⁶, Paola Stefanelli⁷, Marjolein van Gent⁸, Guy Berbers⁹, Didrik F Vestrheim⁹, Margrethe Greve-Isdahl⁹, Lena Wehlin¹⁰, Margaretha Ljungman¹⁰, Norman K. Fry¹¹, Kevin Markey¹², Kari Auranen¹³ and Qiushui He¹,¹⁴

¹Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
²Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
³Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
⁴Statens Serum Institut, Infectious Disease Preparedness – Bacteria, Parasites and Fungi, Copenhagen, Denmark
⁵Department of Clinical Microbiology, Odense, University Hospital, Odense, Denmark
⁶National Reference Center of Whooping Cough and Other Bordetelloses, Institut Pasteur, Paris, France
⁷Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
Running title: *Bordetella pertussis* isolates in Europe

*Corresponding author: Prof. Qiushui He, Department of Medical Microbiology and Immunology, University of Turku, Turku 20540, Finland. Tel. +358 2 333 7429; Email, qiushui.he@utu.fi

Key words: *Bordetella pertussis*, Europe, Genotyping, PFGE, MLVA, Serotyping
Word counts:

Abstract: 146

Text: 3265 (not including abstract and materials and methods)
Abstract

One reason for increased pertussis incidence is the adaptation of *Bordetella pertussis* to vaccine-induced immunity by modulating its genomic structure. This study, EUpert IV, includes 265 isolates collected from nine European countries during 2012 to 2015 (n=265) and compares the results to previous EUpert I-III studies (1998-2009). The analyses included genotyping, serotyping and pulsed-field gel electrophoresis (PFGE) and multi-locus variable-number tandem repeat analysis (MLVA). Genotyping results showed only small variation among the common virulence genes of *B. pertussis*. Frequencies of serotypes Fim2 and Fim3 varied among the four collections. Genomic analyses showed that MLVA type 27 increased to 80% between the periods of 1998-2001 and 2012-2015. Two PFGE profiles, BpSR3 (29.4%) and BpSR10 (27.2%), constituted more than 50% of the circulating isolates in the present collection. Our study indicates that the European *B. pertussis* population is changing more homogenous after the introduction of acellular pertussis vaccines.
Introduction of whole-cell pertussis vaccines (WCVs) dropped the number of reported pertussis cases significantly during the 1950s. Since the mid-1990s WCVs have been gradually replaced by acellular pertussis vaccines (ACVs) in many European countries. Although vaccines and vaccination schedules vary, vaccination coverage is high (>90%) (1, http://vaccine-schedule.ecdc.europa.eu/pages/scheduler.aspx. Accessed 04/04, 2017). However, pertussis remains endemic, and many outbreaks have occurred during the past ten years including Australia, the UK and the USA (2-4). One explanation is adaptation of *Bordetella pertussis* to vaccine induced immunity. Therefore, monitoring of *B. pertussis* populations is essential for evaluating the impact of bacterial changes on vaccine efficacy.

To investigate changes in *B. pertussis* populations in Europe with different vaccination history, vaccines and schedules and to evaluate the effect of switch from whole cell pertussis vaccine (WCV) to acellular vaccines (ACV), “European Research Programme for Improved Pertussis Strain Characterization and Surveillance” (EUpertstrain) was established (5). So far, three panels of *B. pertussis* isolates (named as EUpert I-III) have been collected. EUpert I (1998-2001) included 102 strains from five countries, EUpert II (2004-2005) included 154 strains from eight countries and EUpert III (2007-2009) included 140 strains from seven countries. Results from these studies have been published earlier, including multi-locus antigen sequence typing (MAST), fimbrial serotyping, pulsed-field gel electrophoresis (PFGE) profiling and multi-locus variable-number tandem repeat analysis (MLVA) (6, 7). Results showed that specific allelic types of the genes coding for pertactin (*prn*), pertussis toxin (*ptxA*), *ptxA1* and the pertussis toxin promoter (*ptxP*) *ptxP3*, and of the fimbrial antigen (Fim) Fim3 were dominant. For *fim3* genotyping, both *fim3*-1 and *fim3*-2 have been common in all studies. In addition, dominant PFGE profiles BpSR3, BpSR5 and BpSR10 increased (BpSR3: from 0% to 22%; BpSR5 from 6% to 10% and BpSR10 from 10% to 20%) in EUpert III collection, whereas BpSR11, the most prevalent profile in EUpert...
I and II collections started to decrease (from 26% to 13%). With MLVA types (MT), MT27 has been dominant throughout all studies.

In this study, a fourth panel (EUpert IV) of 265 *B. pertussis* clinical isolates was collected from nine European countries during 2012-2015. All study countries are using ACVs (Table 1). Finland, France, The Netherlands and Sweden also participated in all of the previous three studies. The selection criteria of clinical isolates have remained unchanged for all collections. The typing methods used were as described above. This study provides a unique opportunity to systemically evaluate the changes in the *B. pertussis* bacterial populations over the last 15 years in European countries with different vaccination strategies.

MATERIAL AND METHODS

Isolates

265 *B. pertussis* isolates were collected during 2012-2015. Most of the isolates were collected during 2013-2014 (N = 236). Isolates were collected from nine European countries and the target number of isolates for each country to submit was set at n=30. However, in Denmark, Finland and Italy the total number of isolates was less than 30 during 2013-2014. The following number of isolates were received: Belgium (N = 38), Denmark (N = 27), Finland (N = 28), France (N = 29), Italy (N = 20), The Netherlands (N = 32), Norway (N = 32), Sweden (N = 29) and the United Kingdom (N = 30). For Italy, all isolates were collected from the Rome area as no other isolates were available.
Selection criteria and collection of patient data

The selection criteria for EUpert IV study were the same as those used in the previous EUpert I-III studies:

1. *B. pertussis* isolates should be selected from different geographical regions and be epidemiologically unrelated

2. An equal number of isolates from vaccinated (N=15) and unvaccinated individuals (N=15) should be collected. Selection of isolates should be made from individuals younger than 5 years of age where possible.

3. For those countries with large numbers of isolates in their collections, isolates should be randomly selected in addition to the above criteria.

Data collection included original code of isolate, country, date of collection, city and characteristics of patients from whom *B. pertussis* was isolated. The patient characteristics included gender, age, vaccination status, number of doses received and hospitalization status (7).

Culture

Isolates were first cultured in local laboratories and were then shipped in frozen storage tubes to University of Turku, Finland. All isolates were cultured on Regan-Lowe medium (without cephalaxin) at +35°C for 48h.
Polymorphisms in the genes encoding proteins included in the current ACVs (ptxA, prn and fim3) and the pertussis toxin promoter (ptxP) were analyzed as described previously (8-11). Bacterial suspension in deionized H2O (Ultrapure) was used as a template. In brief, bacterial growth harvested (10 μl loop) from culture plate was suspended in 300μl of deionized H2O (Ultrapure), vortexed and then heated at + 95°C for 30 minutes. This template was used in the polymerase chain reaction (PCR) assays. Reference strains with known alleles were included as positive controls in each run of each assay. Different alleles of genes mentioned above were determined with size comparison or by sequencing the specific targets in the gene.

Serotyping

Fimbrial serotyping (Fim2 or Fim3) was done with specific ELISA as described previously (11). Shortly, specific monoclonal antibodies against Fim2 or Fim3 were used to detect the serotype of each isolate. Reference strains S1 (Fim2) and S3 (Fim3) and monoclonal antibodies [06/124 (Fim2) and 06/128 (Fim3)] (mAbs) were obtained from the National Institute for Biological Standards and Control (NIBSC), Potter’s Bar, England (12).

MLVA

For MLVA, the variable number of tandem repeats in six loci (VNTR1, VNTR3a, VNTR3b, VNTR4, VNTR5 and VNTR6) was defined as described previously and named according to MLVA profiles described by Schouls et al (13, 14). Results were expressed as MLVA type (MT) e.g. MT18, MT27 etc. Reference strains with known MT were included as positive controls.
controls in each run. New MTs were submitted for MLVA database
(http://www.mlva/bpertussis/default.asp) administrator for nomenclature.

PFGE

All isolates were analyzed according to the standardized recommendations for typing of *B. pertussis* with minor modifications using XbaI (#R0145S, New England Biolabs, the USA) as a restriction enzyme (7, 15, 16). PFGE profiles were defined as individual profiles with distinct DNA band patterns (at least one band difference) and were designated as BpSR1, BpSR2, BpSR3, etc. (17, 18). Isolates with new profiles were designated as EU4_1, EU4_2 etc. according to the study name. A cluster analysis was performed with the unweighted-pair group method with arithmetic mean (UPGMA) with 1% band tolerance and 1% optimization settings. The same band tolerance and optimization settings were used in the previous EUpert I-III studies (7). For cluster group analysis, UPGMA with 2% band tolerance and 1.5% optimization settings was used as in the previous EUpertstrain studies. Strains 18323 (PFGE cluster I), Tohama I (PFGE cluster II), Bp134 (PFGE cluster III), B902 (PFGE cluster IVα), FIN6 (PFGE cluster IVβ), FIN12 (PFGE cluster IVγ), FR287 (PFGE cluster V) and FINR21 (PFGE cluster VII) were included in the dendrogram as reference strains (7, 16).

Pertactin (PRN) deficiency

Pertactin deficiency was measured by specific ELISA as described earlier (19). In short, whole bacterial lysate was used as a coating antigen. Production of PRN was detected with specific mAbs, kindly provided by the National Institute for Public Health and the
Environment (RIVM), The Netherlands. French strain FR3693 (negative for PRN) and purified PRN were used as controls.

Vaccination status

During the period 2012-2015, 130 (49.1%) of the infected individuals were vaccinated and 135 (50.9%) were unvaccinated.

Statistical analysis

BioNumerics software version 6.6 (Applied Maths, Sint-Martens-Latem, Belgium) was used to calculate PFGE cluster analysis. Chi-square tests for p-values between vaccinated and unvaccinated subjects were calculated using GraphPad prism 4.0 version (San Diego, CA, USA). Two tailed P values < 0.05 were considered significant. The Simpson diversity index (SDI) was calculated based on the formula $D = 1 - \Sigma n(n-1)/N(N-1)$ where n indicates number of individual profiles and N number of all profiles.

RESULTS

A summary of EUpert IV study results and isolate characteristics are presented in Table 2. Below, these results are described and compared to previous EUpert I-III studies.
Strains used for production of ACVs contain ptxA2 and ptxA4 alleles as described previously (20). In this study, all 265 isolates harbored the ptxA1 allele (Table 2). All isolates included in EUpert I-III studies also harbored the ptxA1 allele (6).

In this study, 253 isolates (95.5%) carried the ptxP3 allele and 12 (4.5%) carried the ptxP1 allele. In the EUpert I study 1998-2001, the frequency of ptxP1 and ptxP3 allele were similar (39% vs. 50%). Since then ptxP3 has become clearly dominant and from the EUpert III study onwards the frequency has been > 95% (6).

Strains used for production of ACVs contain prn1 or prn7 (20). In this study, four prn alleles were detected: prn1, prn2, prn3 and prn9. For two isolates the allele could not be defined, because of partial or complete deletion of the prn gene. The most common allele was prn2 with 255 (96.2%) isolates. Prn1 and prn9 were both found with three isolates (1.1%) and prn3 with two isolates (0.8%). The prn2 allele has been dominant (>75% of tested isolates for prn) in the previous EUpert I-III studies (6).

Fim serotype and fim3 alleles
The Fim3 serotype predominated (>67%) in earlier EUpert I-III studies (6). In the current EUpert IV study, 141 (53.2%) isolates were Fim3, 120 (45.3%) Fim2, three (1.1%) were Fim2,3 and one (0.4%) isolate was deficient for Fim2 and Fim3 (Figure 1). In Denmark (22/27, 81.5%) and Finland (22/28, 78.6%) Fim2 was dominant, whereas in France (27/29, 93.1%), Sweden (24/29, 82.8%) and the UK (19/30, 63.3%) Fim3 was prevalent. In other study countries distribution between the two serotypes was close to equal. We also compared serotype with vaccination status of the subject. No correlation between serotypes and vaccination status was found ($p = 0.709$).

For fim3 alleles, 190 (71.7%) isolates carried fim3-1, 72 (27.2%) carried fim3-2, two (0.8%) carried fim3-4 and one (0.4%) fim3-3. In France, Sweden and the UK, the distribution between fim3-1 and fim3-2 were equivalent, whereas in other countries fim3-1 was dominant.

MLVA

MT27 was dominant in the EUpert I and III studies (MLVA not performed in EUpert II). In the EUpert IV, 20 MTs (20/265, 7.5%) were identified. In the EUpert I study 18 MTs (17.6%) out of 102 isolates and in EUpert III 15 MTs (10.7%) among the 140 isolates were identified (Table 3). In the current study, 214 (80.8%) isolates harbored MT27. The second most common type with 18 isolates (6.8%) was MT28 and third most common with seven (2.6%) isolates was MT18. In addition, 15 other MTs (12, 25, 29, 32, 33, 36, 38, 55, 60, 77, 95, 114, 158, 312 and 324) were found among 26 (9.8%) isolates, and two new MTs were detected (MT335 and MT336). In all countries, except Denmark, MT27 was dominant. In Denmark, 48.2% carried MT27, whereas other types such as MT28 (29.6%) constituted more than half of the circulating isolates. However, MT27 and MT28 are close to each other as...
there is only one difference in number of repeats of variable number of tandem repeat (VNTR) 6. MT18 however, has seven repeats in VNTR3-2, whereas MT27 has none. Otherwise the structures are identical.

PFGE profiles and association to Fim serotype and genotype

42 PFGE profiles were identified among EUpert IV study. The number of different profiles identified in earlier studies is as follows: EUpert I, 33 of 102 (32.4%), in EUpert II, 36 of 154 (23.4%) and in EUpert III, 29 of 140 (20.7%) isolates (Table 3). Throughout the studies, five most common PFGE profiles have been BpSR3, BpSR5, BpSR10, BpSR11 and BpSR12. In the previous EUpert I and II studies BpSR11 was the dominant profile and the number of isolates with profiles other than the five most common profiles was high (Figure 2). However, in the EUpert III study, the frequencies of BpSR3 and BpSR10 started to increase, whereas frequencies of BpSR11 and other profiles decreased. In the current study, the frequency of BpSR3 (78/265, 29.4%) and BpSR10 (72/265, 27.2%) further increased and number of isolates with BpSR11 (39/265, 14.7%) and other (19.6%) profiles decreased or remained the same as previously reported (6, 7). The most common profile BpSR3 belongs to the cluster IV, BpSR10 to the cluster IVα, BpSR11 to the cluster IVβ, BpSR5 to the cluster IV and BpSR12 to the cluster IVg. From the other PFGE profiles, 21 new profiles were detected (Figure 4). These new profiles belonged mainly to cluster VII, but were also found from clusters IV, IVα, IVβ, IVg and III. When we analyzed country-based data, BpSR3 was dominant in Denmark (18/27, 66.7%), Finland (16/28, 57.1%) and Norway (14/32, 43.8%). However, no BpSR3 profile was found from Sweden. BpSR10 was dominant in The Netherlands (14/32, 43.8%) and Sweden (11/29, 37.9%). In Belgium, the frequencies of both BpSR3 (12/38, 31.6%) and BpSR10 (14/38, 36.8%) were high. Figure 3 shows distribution of
main PFGE profiles by country and Figure 4 shows all 42 PFGE-profiles identified in the EUpert IV study.

When we compared the two most common PFGE profiles BpSR3 and BpSR10 found in the EUpert IV study with Fim2 and Fim3 serotypes, we observed that most of the isolates with BpSR3 profiles were Fim2 (66/78, 84.6%) serotype, whereas BpSR10 represented both Fim3 (37/64, 57.8%) and Fim2 (25/64, 39.1%). In previous EUpert I-III studies, however, isolates belonging to profile BpSR3 were associated with Fim3 serotype (Range: 74.2-100% of the isolates), whereas BpSR10 was linked to Fim3 (96.6-100%). With PFGE profiles BpSR5, BpSR11 and BpSR12, 59 out of 60 isolates carried the Fim3 serotype in the current study. With fim3 genotype, interestingly all BpSR3 and BpSR10 isolates carried fim3-1 genotype and almost all BpSR5, BpSR11 and BpSR12 isolates carried fim3-2 (60/63, 95.2%).

Combined analyses of MAST, MLVA and PFGE profiles and their association with vaccination status of study subjects

The most common profile among the study isolates was ptxP3/prn2/Fim2/MT27/BpSR3 with 50 (18.9%) of 265 isolates. Second was ptxP3/prn2/Fim3/MT27/BpSR10 with 37 (13.9%) isolates. Third was ptxP3/prn2/Fim3/MT27/BpSR11 with 34 (12.8%) isolates and fourth ptxP3/prn2/Fim2/MT27/BpSR10 with 20 (7.5%) isolates.

We compared these main profiles with vaccination status of the subject. We did not find any significant difference (all \(p > 0.1 \)) between vaccinated and unvaccinated individuals, e.g. the most common profile ptxP3/prn2/Fim2/MT27/BpSR3 was found in isolates from 30 vaccinated and 20 unvaccinated subjects \((p = 0.1184) \).
Pertactin deficiency

Of the 265 isolates included in the EUpert IV collection, 66 (24.9%) were found to be PRN negative, whereas the corresponding frequency was only 6.4% in EUpert III collection (data not shown).

DISCUSSION

In this study we analyzed 265 B. pertussis isolates collected from nine European countries during the period 2012-2015, and compared the results to three previous EUpert studies starting in late 1990s. Although the number of participating countries in each study varied, Finland, France, The Netherlands and Sweden have participated in all four studies. Our study showed that the dominant alleles ptxA1, ptxP3 and prn2 in circulating strains are different from those used for production of ACVs in European countries (for Denmark data not available) (20). However, country based genetic differences of B. pertussis isolates were identified especially with PFGE analyses. Serotype has also changed from Fim3 to Fim2 in several countries, although ACVs used in many of these countries do not contain any fimbrial antigens.

ACVs contain purified components from strains carrying ptxA2/4, ptxP1 and prn1/7 alleles (excluding Denmark) (20, 21). In this study we found that almost all circulating isolates harbored different alleles (ptxA1, ptxP3 and prn2) (Table 1). These alleles have been dominant in the previous EUpert I-III studies, suggesting that circulating B. pertussis with
these alleles may have advantages in ACV vaccinated populations. This may have an effect on the vaccine effectiveness (20). Similar findings with the dominant genotypes have been reported in Australia, Japan and the USA (22-24).

In Europe many countries use ACVs without the Fim2/Fim3 antigens (Table 1). We found that the frequency of Fim2 isolates has markedly increased in several countries compared to previous EUpert II and III studies (Figure 1 and Table 2). Both Denmark and Finland had mostly Fim2 isolates circulating, whereas Fim3 was continuously prevalent in France, Sweden and the UK (Table 1). In Denmark, a mono-component PT vaccine has been used for more than 15 years (25). In Finland, ACV was introduced in 2005 and the vaccine used from 2005 to 2009 contained only PT and FHA. Therefore, the change in frequency from Fim3 to Fim2 is most likely caused by natural infection. It remains to be shown why a high frequency of Fim2 isolates is only observed in certain countries. In Japan, where Fim3 allele has been highly dominating since the 21st century (24), two out of four ACVs in use includes Fim2, which may partly explain why Fim3 is dominant in this country. Similar to Japan, in France and UK where ACVs containing Fim2/3 are in use (Table 1) and prevalent serotype of Fim3 was observed. When we compared these findings to previous EUpert III collection, seven countries were included in both and in Denmark and Finland almost all isolates were Fim3 in EUpert III collection. In addition, similar, but less dramatic increase of Fim2 isolates were noticed in Norway and in the UK (although, Fim3 is still prevalent). This indicates that the numbers are not biased by country changes in different collections, yet they reflect actual change in the circulating strains.

In addition to the serotype of the isolates (Fim3), fim3-1 allele became prevalent. However, in France, Sweden and the UK where Fim3 isolates were prevalent, both genotypes fim3-1 and fim3-2 were common. It is known that the strains used for production of ACVs
harbor fim3-1. As stated above, in France and the UK, ACVs containing Fim2/3 are in use, which could partly explain why strains with fim3-2 were circulating. In addition, natural infections caused by B. pertussis with different genotypes of fim3-1 and fim3-2 can also have a selective pressure on circulating isolates. Fim3-1 has also been dominant in the USA during the recent outbreaks (26). Since expression of Fim2 or Fim3 of B. pertussis might be different between in vivo and in vitro (13,22), further studies are needed to show whether expression of Fim3 or Fim2 is related to certain alleles of fim3, fim2 or both. However, according to our results, it seems that fim3-1 allele is frequently found with Fim2 serotype in Denmark and Finland. In addition, in the Netherlands during the period 1995-2008, 99% of the fim3-2 strains expressed Fim3 (27).

We noticed that MT27 is becoming more dominant in Europe, whereas number of other MTs and SDI, which shows the probability to randomly pick a different isolate from the whole strain population, (Table 3) clearly decreased compared to previous EUpert I and III studies. However, this is not the case in Denmark, the only country in these studies where monocOMPonent PT vaccine has been used (25). In contrast to other countries, more than 50% of the Danish isolates did not carry MT27. This finding may indicate that effect of population immunity provided by monocOMPonent and multicomponent vaccines on bacterial populations may differ. In the current study, isolates with MT27 was found equally from vaccinated (N=106) and unvaccinated (N=108) individuals. However, second most common profile MT18 was found in 12 unvaccinated and in six vaccinated individuals, whereas third most common profile MT28 was equal between vaccinated (N=3) and unvaccinated (N=4) individuals.

The most common PFGE profiles observed were BpSR3 and BpSR10, showing an increase in Europe. In contrast, the number of other profiles is decreasing (Figure
Interestingly, the most common profile BpSR3 was not found in Sweden, whereas other profiles were commonly found among the Swedish isolates, suggesting a shift in the *B. pertussis* population in this country. When we compared present findings to earlier results, PFGE profiles BpSR11 and BpSR10 were dominant in Sweden during the EUpert II and III collections (7). Pertussis vaccination was stopped in Sweden in 1979 and was reintroduced in 1996 (28). Therefore, the population immunity may be different compared to other countries in which vaccinations have been continuously used. Similar to Sweden, PFGE profiles BpSR11 and BpSR10 were common in France and the Netherlands. However, in other Nordic countries Denmark, Finland and Norway, BpSR3 was the most prevalent PFGE profile. Denmark and Finland have high similarity within the strains excluding MLVA results (Table 2). In addition, no outbreaks have been reported in these two countries ten years prior to 2015 (a country wide epidemic occurred in Denmark in 2016) (29, 30). In the Netherlands, there has been a shift from BpSR3 to BpSR10, which is currently dominating. This finding is interesting as similar change was not detected e.g. in France or Sweden. However, in Belgium, both BpSR3 and BpSR10 were prevalent. This may indicate transmission of the isolates from neighboring countries or country specific differences in ACVs or in vaccination policies. In addition, outbreaks prior to 2015 most likely affected on the circulating isolates in the EUpert IV collection. Association between PFGE profiles and fimbrial serotype revealed that isolates with BpSR3 and BpSR10 were no longer only associated with Fim3, but were moving towards Fim2 serotype. We also compared vaccination status and three most common PFGE profiles, BpSR10, BpSR3 and BpSR11. These profiles were found almost equally among vaccinated and unvaccinated individuals. Still, we noticed that the number of profiles were decreasing and BpSR3 and BpSR10 were clearly dominant. In addition, the SDI was decreasing for PFGE (Table 3), which also indicates that the strains are more similar than previously.
Although, we did not find any significant differences in the B. pertussis strains isolated from vaccinated and unvaccinated individuals, it does not signify that vaccination has not guided the strains to evolve more homogenously. However, it seems that PFGE and serotyping have the most discriminating power in this study, whereas MLVA is losing its power as shown by the SDI. Therefore the use of whole genome sequencing (WGS), should be considered to have more insight on the strains. Indeed, one WGS study from the UK showed that mutations in the ACV antigen genes have significantly increased after the introduction of ACVs, but variations in other surface antigen genes are minor (2). Another recent WGS study from Australia have identified five single nucleotide polymorphisms which were common in the epidemic isolates and differentiated them from pre-epidemic isolates, stressing the role of WGS in studying of B. pertussis (23). However, little is still known about the impact of all mutations in the B. pertussis genome.

The number of PRN deficient isolates is alarming. In this study we found that approximately 25% of the study strains did not produce this antigen. How this will affect to vaccine efficacy and to opinions towards pertussis vaccination remains to be seen. A detailed description of PRN deficient isolates and the mechanisms behind the deficiency observed in this study is currently under consideration for publication elsewhere.

The strengths of this study are, 1) We have a serial collection of isolates during the last 15 years, 2) Selection criteria has been the same for all collections, 3) isolates have been isolated from infants, young children and adults (range: 0·01 – 62·30 years), 4) the place of origin is known for all isolates and shows that they were not collected from local outbreaks and 5) all analyses for the EUpert IV panel strains were done by one laboratory. The limitations included 1) the number of isolates from each country was relatively low (range: 20-38). However, they do comprise almost all available isolates in many countries such as
Denmark, Finland and Italy, where the use of culture is diminishing, 2) The epidemiological pressure of pertussis varies in European countries, which could have an effect on the spread of new emerging strains, and 3) Even though the total number of vaccinated and unvaccinated individuals included in this study was comparable (Table 2), the difference in numbers between vaccinated and unvaccinated subjects in individual countries existed. To avoid such effect, a study with a large number of isolates and equal number of those from vaccinated and unvaccinated individuals in participating countries is needed.

In conclusion, common MLVA types and PFGE profiles were identified in \textit{B. pertussis} populations circulating in European countries with different vaccination programs. The prevalent MT types and PFGE profiles contain the ptxA1/prn2/ptxP3 alleles. However, in contrast to the high prevalence (78.9-90.6\%) of MT27 in most European countries using two and three components ACVs, the prevalence in Denmark (PT monocomponent ACV) represented only 48.1\% of the circulating strains, suggesting a difference in selection pressure induced between these ACVs. In addition, the shift in serotype from Fim3 and Fim2 is ongoing in several countries. This study suggests that the \textit{B. pertussis} population is moving towards homogeneity in European countries. To get more deep insight of the \textit{B. pertussis} strain diversity in Europe, whole genome sequencing could be applied for surveillance of \textit{B. pertussis}.
Acknowledgements

We thank Päivi Haaranen and Mari Virta for their great help in the laboratory work. Randi Føns Petersen, Kirsten Olsson and Lene Berthelsen for their help with strain collections.

The EUpertstrain II, III and IV studies were jointly funded by GlaxoSmithKline Biologicals, Wavre, Belgium and Sanofi Pasteur MSD, Lyon, France.

Alex-Mikael Barkoff is a PhD student at the University of Turku, Finland. His main research interests include diagnostics, molecular typing and surveillance of *B. pertussis* and other related respiratory bacteria.

Role of the funding source

The funders of the study (GlaxoSmithKline Biologicals and Sanofi Pasteur MSDP) had no role in study design, data collection, data analysis, data interpretation, or in report writing.
The corresponding (QH) and first (AMB) author had full access to all data. In addition, the corresponding author had the final decision where to submit the data for publication.

Declaration of interests

We declare no competing interests

References

TABLES AND FIGURES

Table 1. Pertussis vaccines currently used in European countries*

<table>
<thead>
<tr>
<th>Country</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>ACV3</td>
</tr>
<tr>
<td>Denmark</td>
<td>ACV1</td>
</tr>
<tr>
<td>Finland</td>
<td>ACV3</td>
</tr>
<tr>
<td>France</td>
<td>ACV2, ACV3 or ACV5</td>
</tr>
<tr>
<td>Italy</td>
<td>ACV3</td>
</tr>
<tr>
<td>Norway</td>
<td>ACV3</td>
</tr>
<tr>
<td>Sweden</td>
<td>ACV2 or ACV3</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>ACV3</td>
</tr>
<tr>
<td>UK</td>
<td>ACV3 or ACV5</td>
</tr>
</tbody>
</table>
Vaccine compositions: ACV1: PT; ACV2: PT and FHA; ACV3: PT, FHA and PRN; ACV5: PT, FHA, PRN, Fim2 and Fim3.
Table 2. Overview of the isolate characteristics in EUpert IV study countries

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>Belgium</th>
<th>Denmark</th>
<th>Finland</th>
<th>France</th>
<th>Italy</th>
<th>Netherlands</th>
<th>Norway</th>
<th>Sweden</th>
<th>UK</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Strains</td>
<td>38</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>20</td>
<td>32</td>
<td>32</td>
<td>29</td>
<td>30</td>
<td>265</td>
</tr>
<tr>
<td>Vaccination status</td>
<td></td>
</tr>
<tr>
<td>Vaccinated</td>
<td>14</td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>2</td>
<td>24</td>
<td>24</td>
<td>11</td>
<td>13</td>
<td>130</td>
</tr>
<tr>
<td>Unvaccinated/unknown</td>
<td>24</td>
<td>16</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>8</td>
<td>8</td>
<td>18</td>
<td>17</td>
<td>135</td>
</tr>
<tr>
<td>PtsA genotype</td>
<td></td>
</tr>
<tr>
<td>PtsA1</td>
<td>38</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>20</td>
<td>32</td>
<td>32</td>
<td>29</td>
<td>30</td>
<td>265</td>
</tr>
<tr>
<td>PtsP genotype</td>
<td></td>
</tr>
<tr>
<td>PtsP1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>PtsP3</td>
<td>37</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>19</td>
<td>32</td>
<td>31</td>
<td>27</td>
<td>29</td>
<td>253</td>
</tr>
<tr>
<td>Serotype</td>
<td></td>
</tr>
<tr>
<td>Fim2</td>
<td>17</td>
<td>22</td>
<td>22</td>
<td>2</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>5</td>
<td>11</td>
<td>120</td>
</tr>
<tr>
<td>Fim3</td>
<td>21</td>
<td>5</td>
<td>6</td>
<td>27</td>
<td>9</td>
<td>15</td>
<td>16</td>
<td>24</td>
<td>19</td>
<td>141</td>
</tr>
<tr>
<td>Fim2,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fim3-allele</td>
<td></td>
</tr>
<tr>
<td>Fim3-1</td>
<td>30</td>
<td>24</td>
<td>22</td>
<td>14</td>
<td>15</td>
<td>24</td>
<td>27</td>
<td>17</td>
<td>17</td>
<td>190</td>
</tr>
<tr>
<td>Fim3-2</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>12</td>
<td>13</td>
<td>72</td>
</tr>
<tr>
<td>Fim3-3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fim3-4 (1b)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Prn genotype</td>
<td></td>
</tr>
<tr>
<td>Prn1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Prn2</td>
<td>35</td>
<td>26</td>
<td>25</td>
<td>27</td>
<td>20</td>
<td>32</td>
<td>31</td>
<td>29</td>
<td>30</td>
<td>255</td>
</tr>
<tr>
<td>Prn3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Prn9</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>PFGE profile</td>
<td></td>
</tr>
<tr>
<td>BpSR3</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>7</td>
<td>78</td>
</tr>
<tr>
<td>BpSR5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>BpSR10</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>16</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>BpSR11</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>BpSR12</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>MLVA type</td>
<td></td>
</tr>
<tr>
<td>MT27</td>
<td>30</td>
<td>13</td>
<td>24</td>
<td>23</td>
<td>18</td>
<td>29</td>
<td>26</td>
<td>24</td>
<td>27</td>
<td>214</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>51</td>
</tr>
</tbody>
</table>
Table 3. Number of PFGE profiles and MLVA types identified in the four study periods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PFGE</td>
<td>32.4 (33/102)</td>
<td>23.4 (36/154)</td>
<td>18.8 (29/140)</td>
<td>15.8 (42/265)</td>
</tr>
<tr>
<td>MLVA</td>
<td>17.6 (18/102)</td>
<td>N/A†</td>
<td>10.7 (15/140)</td>
<td>7.5 (20/265)</td>
</tr>
</tbody>
</table>

*The Simpson diversity index calculated for each study period was 0.91, 0.88, 0.88 and 0.83 for PFGE and 0.70, 0.47 and 0.34 for MLVA.

†N/A, not available.
Figure legends

Figure 1. Frequency of fimbrial serotypes among the EUpert I-IV studies
Figure 2. Distribution of PFGE profiles among the EUpert I-IV studies (1998-2015)
Figure 3. Distribution of PFGE profiles among the EUpert IV study countries (2012-2015)
Figure 4. Dendogram of PFGE profiles identified in the EUpert IV study
Figure 1.
Figure 3.