On the dynamics of the preference-performance relation for hearing aid noise reduction

Fischer, Rosa-Linde; Wagener, Kirsten C.; Vormann, Matthias; Neher, Tobias

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
On the dynamics of the preference-performance relation for hearing aid noise reduction

Fischer, R.-L.1, Wagener, K.C.2, Vormann, M.2 and Neher, T.3

1Sivantos GmbH, Erlangen, Germany, 2Hörzentrum Oldenburg GmbH, Oldenburg, Germany, 3Institute of Clinical Research, University of Southern Denmark, Odense, Denmark

Motivation

- Speech understanding in noise (SiN) is an important but demanding daily-life situation, especially for hearing impaired people
- Noise reduction (NR) algorithms are supposed to be helpful in such situations
- However, there are indications that some hearing impaired like NR – the stronger the better – while other people dislike this kind of signal processing
- Furthermore, the relation between preference for and performance with NR algorithms is not clear (e.g., Neher 2014; Gorman et al. 2016)

Results

- Main effect of NR condition (F(1,35) = 39.073, p < .001): In general, P2 is preferred over P1
- Interaction NR condition & Preference group (F(1,35) = 21.178, p < .001): “Indifferent” people have a stronger preference for P1 than NR-losers, for P2 vice versa (post-hoc t-tests with Bonferroni correction; p < .01)

Performance results (ANOVA with covariates Age and PTA4)

Conclusions

- Although NR-losers clearly prefer a setting with single-channel noise reduction and directional microphone, they show same performance in an omni-directional setting as the group with no preference for either hearing aid setting
- New and experienced hearing aid users do not differ in their performance and preference relation
- In general, people perform worse the higher their hearing threshold is and the older they are
- Future focus: evaluation of long-term stability of preference & performance

Subjects

Tab: Means and ranges for age, PTA and hearing aid experience data used in the statistical analyses.

<table>
<thead>
<tr>
<th>Preference group</th>
<th>Indifferent</th>
<th>NR-losers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=19; 10.9)</td>
<td>(N=20; 8.9)</td>
</tr>
<tr>
<td>M</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Age [years]</td>
<td>68</td>
<td>53</td>
</tr>
<tr>
<td>PTA4 [dB HL]</td>
<td>45</td>
<td>27</td>
</tr>
<tr>
<td>HA experience [years]</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Predictor variables

- Experimental group (novice vs. experienced HA users)
- Preference group (initially measured preference with spatial dynamic SiN task: Indifferent vs. NR-losers)
- Age, PTA

Hearing Aid conditions

- KEMAR recordings with Signia Pure 7px devices in experimental setups (detailed description below)
 - P1: Omni-directional
 - P2: Combination of single-channel noise reduction and directional microphone (speech-weighted SNR improvement of 7.7dB with respect to P1)
 - Post processing of recordings: individual amplification to provide insertion gain target of NAL-NL1-3dB
 - Playback via headphones

Preference measure: Spatially dynamic SiN task (after Getzmann et al., 2015)

- Three-loudspeaker-setup: -45, 0, +45° in spatially diffuse cafeteria noise (65dB)
- Oldenburg sentence material (Wagener et al. 1999; Hochmuth et al. 2015)
- Target: female German speaker (71dB)
- Distractors: male Russian and Spanish speakers (71dB)
- Target and distractors switched their spatial positions from trial to trial
- Subjects are instructed to follow the German speaker while ignoring the distractors

Performance measures

- Listening span test (LST): N correct final word recognition and recall
- Spatially dynamic SiN task: N correct repeated numbers (1 per sentence)
- Speech intelligibility (OLSA): SRT in dB

References:

Corresponding author: rosa-linda.fischer@sivantos.com