The role of SP-D in human colonic inflammatory bowel disease and in murine DSS induced colitis

Nexøe, Anders Bathum; Pilecki, Bartosz; Leicht von Huth, Sebastian ; Husby, Steffen; Pedersen, Andreas A; Detlefsen, Sönke; Marcussen, Niels; Holmskov, Uffe; Sørensen, Grith Lykke

Publication date: 2017

Document version
Også kaldet Forlagets PDF

Citation for published version (APA):
The Role of SP-D in Human Colonic Inflammatory Bowel Disease and in Murine Dextran Sodium Sulfate Induced Colitis

Anders B. Nexø1, Bartosz Płecki2, Sebastian von Huth1, Steffen Husby2, Andreas A. Pedersen2, Sönke Detlefsen3, Niels Marcussen2, Jesper B. Møller2, Uffe Holmskov1, Grith L. Sorensen1

1Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark. 2Department of Pathology, Odense University Hospital, Odense, Denmark. *Department of Surgery, Odense University Hospital, Denmark. 3Weill Cornell Medicine, New York, USA.

BACKGROUND

SP-D is a collectin widely distributed on mucosal surfaces of the body including the gastrointestinal tract (1). It is part of the innate immune system and mediates control of pro-inflammatory mechanisms.

Genetic variations of SP-D have recently been associated to inflammatory bowel disease (IBD) in a Japanese population and showed association to ulcerative colitis (UC) (2). In contrast, an American case-control analysis revealed a significant association between a specific SP-D genetic variant and susceptibility to Crohn’s disease (CD), but not to UC (3).

Together these two studies suggest that SP-D is involved in IBD and warrant in vivo studies of the related pathophysiological mechanisms.

AIM

We aimed to investigate the expression of SP-D in IBD patients and compared it to the intestinal inflammatory activity, and we compared the inflammatory response between Sftpd−/− (WT) and Sftpd−/− (KO) mice in a dextran sodium sulfate (DSS) model of colitis.

We hypothesized that SP-D dampens intestinal inflammation by reducing innate inflammatory signaling and facilitate clearance of apoptotic cells.

METHODS

Surgical specimens from IBD patients (n=27) including Crohn’s disease (CD) (n=9) and ulcerative colitis (UC) (n=18) were immunohistochemically stained for SP-D. The tissue specimens was scored for SP-D expression and inflammatory activity.

Colitis was induced in WT and KO littermates by supplementing the ad libitum water with DSS.

Day 0:
Start of treatment with DSS

Day 7:
Mice receiving 1.5% DSS are terminated with water

Colon tissue were stained with hematoxylin & eosin to estimate the histological damage, and immunohistochemical staining’s were used to analyze levels of apoptosis, necrosis and inflammatory infiltration.

Colon tissue samples were analyzed for inflammatory markers (TNF-α, IL-6, INF-γ and CCL-2) by ELISA analysis.

RESULTS

- We found a significant correlation between the expression of intestinal SP-D and inflammatory activity in IBD patients (Fig. 1).
- Mice treated with DSS did experience a notable weight loss and increased disease activity index (DAI) score (Fig. 2), but there were no difference between WT and KO.
- ELISA analysis showed a significant difference in the levels of TNF-α between WT and KO in the restitution phase and qRT-PCR did show a tendential upregulation of Sftpd in WT mice treated with DSS (Fig. 3, A-B).
- There were no difference in histologic damage or colon length between WT and KO (Fig. 3, C-D).

CONCLUSION

- Limited anti-inflammatory effects of SP-D in DSS-induced inflammation in mice.
- Positive correlation between inflammatory activity and immunoscore for SP-D observed in surgical specimens from IBD patients.
- SP-D is upregulated in clinical disease.

REFERENCES

1. Madsen et al., J Immunol, 2000;164(11):5866–70

This work was supported by The A.P. Møller Foundation for the Advancement of Medical Science and OUH’s Prægraduat Pulje

Correspondence: anexoe@health.sdu.dk