Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases

Halling, Morten L; Kjeldsen, Jens; Knudsen, Torben; Nielsen, Jan; Hansen, Lars Koch

Published in:
World Journal of Gastroenterology

DOI:
10.3748/wjg.v23.i33.6137

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
World Journal of Gastroenterology

World J Gastroenterol 2017 September 7; 23(33): 6009-6196

Published by Baishideng Publishing Group Inc
EDITORIAL
6009 Helminths as an alternative therapy for intestinal diseases
Sipahi AM, Baptista DM

REVIEW
6016 Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis
Eichele DD, Kharbanda KK

6030 Autoimmune hepatitis: Standard treatment and systematic review of alternative treatments
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D

MINIREVIEWS
6049 Colorectal cancer, screening and primary care: A mini literature review
Hadjipetrou A, Anyfantakis D, Galanakis CG, Kastanakis M, Kastanakis S

6059 Behavioral gastroenterology: An emerging system and new frontier of action
Jia L, Jiang SM, Liu J

ORIGINAL ARTICLE
Basic Study
6065 Pharmacological evaluation of NSAID-induced gastropathy as a "Translatable" model of referred visceral hypersensitivity
Hummel M, Knappenberger T, Reilly M, Whiteside GT

6077 High yield reproducible rat model recapitulating human Barrett's carcinogenesis
Matsui D, Omstead AN, Kosovec JE, Komatsu Y, Lloyd EJ, Raphael H, Kelly RJ, Zaidi AH, Jobe BA

6088 Changes in expression of inhibitory substances in the intramural neurons of the stomach following streptozotocin- induced diabetes in the pig
Bulc M, Palus K, Zielonka L, Gajęcka M, Calka J

6100 HOX transcript antisense intergenic RNA represses E-cadherin expression by binding to EZH2 in gastric cancer
Chen WM, Chen WD, Jiang XM, Jia XF, Wang HM, Zhang QJ, Shu YQ, Zhao HB
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Type</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>6111</td>
<td>(Ca^{2+})/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways</td>
<td>Chen W, An P, Quan XJ, Zhang J, Zhou ZY, Zou LP, Luo HS</td>
<td>Retrospective Cohort Study</td>
<td>6111-6119</td>
</tr>
<tr>
<td>6119</td>
<td>Aberrant DNA-PKcs and ERGIC1 expression may be involved in initiation of gastric cancer</td>
<td>Wang FR, Wei YC, Han ZJ, He WT, Guan XY, Chen H, Li YM</td>
<td>Retrospective Study</td>
<td>6119-6123</td>
</tr>
<tr>
<td>6128</td>
<td>Real world treatment patterns of gastrointestinal neuroendocrine tumors: A claims database analysis</td>
<td>Benson III AB, Broder MS, Cai B, Chang E, Neary MP, Papoyan E</td>
<td>Retrospective Study</td>
<td>6128-6132</td>
</tr>
<tr>
<td>6137</td>
<td>Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases</td>
<td>Halling ML, Kjeldsen J, Knudsen T, Nielsen J, Koch-Hansen L</td>
<td>Retrospective Study</td>
<td>6137-6141</td>
</tr>
<tr>
<td>6147</td>
<td>Suspicious brush cytology is an indication for liver transplantation evaluation in primary sclerosing cholangitis</td>
<td>Boyd S, Vannas M, Jokelainen K, Isoniemi H, Mäkisalo H, Färkkilä MA, Arola J</td>
<td>Observation Study</td>
<td>6147-6151</td>
</tr>
<tr>
<td>6164</td>
<td>Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy</td>
<td>Xie G, Zhou Q, Qiu CZ, Dai WK, Wang HP, Li YH, Liao JX, Lu XG, Lin SF, Ye JH, Ma ZY, Wang WJ</td>
<td>Observation Study</td>
<td>6164-6167</td>
</tr>
<tr>
<td>6172</td>
<td>Definition of colorectal anastomotic leakage: A consensus survey among Dutch and Chinese colorectal surgeons</td>
<td>van Rooijen SJ, Jongen ACHM, Wu ZQ, Ji JF, Slooter GD, Roumen RMH, Bouvy ND</td>
<td>Observation Study</td>
<td>6172-6177</td>
</tr>
<tr>
<td>6181</td>
<td>How to treat intestinal obstruction due to malignant recurrence after Whipple’s resection for pancreatic head cancer: Description of 2 new endoscopic techniques</td>
<td>Mouradides C, Taha A, Borbath I, Deprez PH, Moreels TG</td>
<td>CASE REPORT</td>
<td>6181-6185</td>
</tr>
<tr>
<td>6187</td>
<td>Arterioportal shunt incidental to treatment with oxaliplatin that mimics recurrent gastric cancer</td>
<td>Kim HB, Park SG</td>
<td>CASE REPORT</td>
<td>6187-6189</td>
</tr>
</tbody>
</table>
LETTERS TO THE EDITOR

6194 Comment on “Effect of biofilm formation by clinical isolates of *Helicobacter pylori* on the efflux-mediated resistance to commonly used antibiotics”

Kazakos EI, Dorrell N, Polyzos SA, Deretzi G, Kountouras J
Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases

Morten L Halling, Jens Kjeldsen, Torben Knudsen, Jan Nielsen, Lars Koch Hansen

AIM
To investigate whether immune mediated diseases (IMD) are more frequent in patients with inflammatory bowel disease (IBD).

METHODS
In this population based registry study, a total of 47325 patients with IBD were alive and registered in the Danish National Patient Registry on December 16, 2013. Controls were randomly selected from the Danish Civil Registration System (CRS) and matched for sex, age, and municipality. We used ICD 10 codes to identify the diagnoses of the included patients. The IBD population was divided into three subgroups: Ulcerative colitis (UC), Crohn’s disease (CD) and Both the latter referring to those registered with both diagnoses. Subsequently, odds-ratios (OR) and 95%CI were obtained separately for each group and their respective controls. The use of Bonferroni post-test correction adjusted the significance level to \(P < 0.00125 \). \(P \)-values were estimated using Fisher’s exact test.

RESULTS
There were significantly more women than men in the registry, and a greater percentage of comorbidity in the IBD groups \((P < 0.05) \). Twenty different IMDs were all significantly more frequent in the IBD group. Sixteen
were associated with UC versus twelve with CD. In both UC and CD ORs were significantly increased (P < 0.00125) for primary sclerosing cholangitis (PSC), celiac disease, type 1 diabetes (T1D), sarcoidosis, asthma, iridocyclitis, psoriasis, pyoderma gangrenosum, rheumatoid arthritis, and ankylosing spondylitis. Restricted to UC (P < 0.00125) were autoimmune hepatitis, primary biliary cholangitis, Grave’s disease, polymyalgia rheumatica, temporal arthritis, and atrophic gastritis. Restricted to CD (P < 0.00125) were psoriatic arthritis and episcleritis. Restricted to women with UC (P < 0.00125) were atrophic gastritis, rheumatoid arthritis, temporal arthritis, and polymyalgia rheumatica. Restricted to women with CD were episcleritis, rheumatoid arthritis, and psoriatic arthritis. The only disease restricted to men (P < 0.00125) was sarcoidosis.

CONCLUSION
Immune mediated diseases were significantly more frequent in patients with IBD. Our results strengthen the hypothesis that some IMDs and IBD may have overlapping pathogenic pathways.

Key words: Immune mediated diseases; Ulcerative colitis; Risk; Prevalence; Registry; Chronic inflammatory diseases; Autoimmune diseases; Inflammatory bowel disease; Crohn’s disease; Extraintestinal manifestations

Core tip: Essential to inflammatory bowel disease (IBD) pathogenesis are environmental factors, altered gut microbiota and genetic susceptibility. The latter causing impairment of barrier function, autophagy, and Th1, 2 and 17 cell responses. Interestingly, these mechanisms are also thought important in other immune mediated diseases, as is the overlap of susceptibility genes. Besides the classic extraintestinal manifestations, we found a variety of immune mediated diseases to be more frequent in individuals with IBD. Physicians should be aware of this when treating these patients. Furthermore, these findings support the hypothesis that immune mediated diseases may have overlapping pathogeneses. Thus, understanding IBD might help us understand other immune mediated diseases and vice versa.

INTRODUCTION
Crohn’s disease (CD) and ulcerative colitis (UC) are two distinct types of chronic inflammatory bowel diseases. The insight into etiology factors and the complex pathogenetic process is not yet fully understood. The diseases are often diagnosed in young individuals and recent studies report increasing incidences of both UC and CD, not only in Denmark but globally[1]. It has been suggested that inflammatory bowel disease (IBD) may be due to an inappropriate inflammatory response to the intestinal flora in genetically susceptible individuals. So far, several susceptibility genes have been identified[2]. Many of these are also found in other immune mediated diseases (IMDs), indicating overlaps between pathogenic pathways. The identified risk genes in IBD are involved in maintaining normal microbial gut homeostasis and adequate immune response[3,4]. Mutations in these may impair mechanisms essential to innate and adaptive immune response, i.e. weakened mucosal barrier, a decrease of antibacterial agents, impaired autophagy and antigen recognition. Mutations may also cause an imbalance of pro- and anti-inflammatory cytokines related to the regulation of Th1, 2 and 17 in particular[5]. CD is considered Th1 mediated thus characterized by interferon gamma, tumor necrosis factor alpha, and IL-12. UC is associated with a Th2 response where IL-4, 5, 10 and 13 are dominant. The Th17 response is present in both CD and UC but most pronounced in CD. It is characterized by IL 17 and 23 production. Th17 can also produce interferon gamma like Th1[6-8]. It is suggested that disturbances in these mechanisms may cause a loss of self-tolerance leading towards chronic inflammation or autoimmunity[9-12].

The gut microbiota of patients with IBD has been shown to contain less diversity, a reduced number of bacteria, and an altered microbial metabolite profile compared to healthy individuals[13]. Environmental factors, i.e. medication (antibiotics, non-steroid anti-inflammatory drugs and hormones), diet, geography, and previous infections might influence this[4]. A similar etiology is believed to exist in other IMDs, i.e. rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, type 1 diabetes (T1D), and celiac disease[14,15].

It has become clear, that patients with an existing IMD are more likely to develop other IMDs, this is more evident in females than in males[16]. Apart from the extraintestinal manifestations of IBD, little is known about the association between IBD and other IMDs.

Only a few large population based studies on the subject exist. The results of these suggest that IBD is associated with asthma, rheumatoid arthritis, psoriasis, multiple sclerosis, autoimmune thyroiditis, T1D, and vasculitis[17-22]. Different study designs, varying validity of diagnoses, population sizes and confounders, i.e. ethnicity, economic and social status, all make the findings of these studies difficult to interpret.

In Denmark healthcare is free and all contacts to hospitals are registered on an individual basis based on a civil registration number together with diagnosis.
and procedural codes. This allows a unique access to information not confounded by economic and social status.

The aim of this study was to examine if IMDs are more frequent among patients with CD and UC compared to the background population.

MATERIALS AND METHODS

This was a cross-sectional study including all living patients with IBD who were matched with a control group to compare the point-prevalence of specific IMDs.

Identification of patients and controls

The Danish National Patient Registry include all contacts within the healthcare system both in-hospital, since 1977, and in outpatient settings since 1994. Data were retrieved on December 16, 2013 and included all patients alive registered with a diagnosis compatible with CD and UC. Patients were identified using the ICD 10 codes: CD K50.0-K50.9; UC, K51.0-K51.9). ICD 10 codes including "other" or "unspecified" were excluded to avoid inclusion of non-specific diseases and incorrect diagnosis codes.

The Danish Civil Registration System (CRS) includes all Danish inhabitants and each person has a unique 10-digit identification number. The CRS includes demographic data e.g. name, sex, date of birth, and death[^23^]. All IBD patients were paired (2:1) with random controls identified in the CRS and matched by sex, age (± 1 year) and municipality. Demographic data presented are based on data from the CRS.

The selected forty IMDs are all considered to be of either autoimmune or inflammatory origin. The same criteria were used for the IMDs. ICD 10 codes for the IMDs are listed in the Supplementary Table 1.

To assess comorbidity we used the Charlson comorbidity index which has been developed to estimate 1-year mortality in cancer patients. It is also useful in research to identify possible confounding diseases. It includes a number of systemic diseases associated with increased mortality, i.e. organ failure, AIDS, and cancer[^24^].

Ethics

This study was approved by the Danish Data Protection Agency (approval # 2013-41-1596). Approval from the Ethics Committee was not needed as this is a registry study.

Statistical analysis

The occurrence of IMDs was obtained separately for each group. Then OR and 95%CI were calculated. Fisher’s exact test was used to calculate P-values.

We used the Bonferroni post-test correction to reduce the likelihood of false positives. We did 40 comparisons (the 40 IMDs investigated) and adjusted the significance level accordingly to $P < 0.00125$. Calculations was made using STATA version 13.0 (StataCorp LP, TX, United States).

RESULTS

A total of 47325 patients were alive and registered with IBD on December 16, 2013. A total of 92839 controls were identified.

CD was registered in 13343 patients, UC in 31066, and 2916 were registered with both diagnoses. A total of 92839 controls were found for the IBD group, 26172 for CD, 60951 for UC and 5716 for those with both diagnoses. Due to the matching criteria, five IBD patients had only one or no controls.

There was an excess of women in all IBD groups, most pronounced in CD ($P < 0.05$). The mean age at onset of disease was significantly higher in UC.

Comorbidity was most frequent in those with either UC or CD ($P < 0.05$). The mean age at onset of disease was significantly higher in UC.

Comorbidity was most frequent in those with either UC or CD ($P < 0.05$). See Table 1.

Twenty out of forty IMDs had significantly increased ORs in the IBD groups compared to their controls ($P < 0.00125$). Sixteen IMDs were associated with UC and twelve with CD. See Tables 2 and 3.

Seven of the IMDs were considered rheumatologic diseases, included ankylosing spondylitis, rheumatoid arthritis, psoriatic arthritis, polymyalgia rheumatic, temporal arteritis, polyarteritis nodosa, and Churg

<table>
<thead>
<tr>
<th>Table 1 Participants’ demographic data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Mean age at entry, yr</td>
</tr>
<tr>
<td>Mean age at onset of IBD, yr</td>
</tr>
<tr>
<td>Mean duration of IBD at entry, yr</td>
</tr>
<tr>
<td>Comorbidity 0</td>
</tr>
<tr>
<td>Comorbidity 1-2</td>
</tr>
<tr>
<td>Comorbidity ≥ 3</td>
</tr>
</tbody>
</table>

[^1^]Patients registered with both CD and UC; [^2^]No. of comorbidities at onset of IBD according to the Charlson comorbidity index. CD: Crohn’s disease; UC: Ulcerative colitis; IBD: Inflammatory bowel disease.
Table 2 Number of immune mediated diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>IBD</th>
<th>Control</th>
<th>CD</th>
<th>Control</th>
<th>UC</th>
<th>Control</th>
<th>Both</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary sclerosing cholangitis</td>
<td>257</td>
<td>4</td>
<td>35</td>
<td>1</td>
<td>192</td>
<td>2</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Pyoderma gangrenosum</td>
<td>193</td>
<td>8</td>
<td>60</td>
<td>1</td>
<td>97</td>
<td>7</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>Autoimmune hepatitis</td>
<td>124</td>
<td>35</td>
<td>15</td>
<td>11</td>
<td>96</td>
<td>22</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>280</td>
<td>92</td>
<td>133</td>
<td>30</td>
<td>132</td>
<td>58</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>431</td>
<td>151</td>
<td>189</td>
<td>32</td>
<td>201</td>
<td>102</td>
<td>41</td>
<td>17</td>
</tr>
<tr>
<td>Churg Strauss syndrome</td>
<td>14</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Primary biliary cholangitis</td>
<td>71</td>
<td>32</td>
<td>11</td>
<td>6</td>
<td>53</td>
<td>25</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Epidermitis</td>
<td>56</td>
<td>33</td>
<td>25</td>
<td>9</td>
<td>23</td>
<td>21</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Iridocyclitis</td>
<td>419</td>
<td>295</td>
<td>148</td>
<td>82</td>
<td>230</td>
<td>188</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>Atrophic gastritis</td>
<td>60</td>
<td>47</td>
<td>16</td>
<td>11</td>
<td>42</td>
<td>34</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>378</td>
<td>345</td>
<td>148</td>
<td>99</td>
<td>209</td>
<td>229</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>Polyarteritis nodosa</td>
<td>42</td>
<td>38</td>
<td>15</td>
<td>9</td>
<td>24</td>
<td>27</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>446</td>
<td>401</td>
<td>119</td>
<td>110</td>
<td>250</td>
<td>311</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>1682</td>
<td>1464</td>
<td>359</td>
<td>431</td>
<td>1002</td>
<td>1180</td>
<td>103</td>
<td>71</td>
</tr>
<tr>
<td>Sarcoïdisis</td>
<td>141</td>
<td>122</td>
<td>29</td>
<td>38</td>
<td>79</td>
<td>94</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Asthma</td>
<td>1140</td>
<td>981</td>
<td>337</td>
<td>363</td>
<td>568</td>
<td>695</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>Giant cell arteritis</td>
<td>193</td>
<td>156</td>
<td>37</td>
<td>46</td>
<td>116</td>
<td>141</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>316</td>
<td>249</td>
<td>81</td>
<td>93</td>
<td>147</td>
<td>206</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>Grave’s disease</td>
<td>817</td>
<td>581</td>
<td>141</td>
<td>207</td>
<td>394</td>
<td>561</td>
<td>46</td>
<td>49</td>
</tr>
<tr>
<td>Polymyalgia rheumatic</td>
<td>468</td>
<td>320</td>
<td>72</td>
<td>122</td>
<td>242</td>
<td>324</td>
<td>6</td>
<td>22</td>
</tr>
</tbody>
</table>

1 Patients registered with both CD and UC. CD: Crohn’s disease; UC: Ulcerative colitis; IBD: Inflammatory bowel disease.

Table 3 Odds-ratios for immune mediated diseases, in patients with inflammatory bowel disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>IBD</th>
<th>95%CI</th>
<th>UC</th>
<th>95%CI</th>
<th>CD</th>
<th>95%CI</th>
<th>Both</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary sclerosing cholangitis</td>
<td>126.7</td>
<td>47.2-340.3</td>
<td>189.5</td>
<td>47.0-763.4</td>
<td>68.8</td>
<td>9.4-302.6</td>
<td>39.4</td>
<td>8.4-436.2</td>
</tr>
<tr>
<td>Pyoderma gangrenosum</td>
<td>47.5</td>
<td>23.4-96.4</td>
<td>27.3</td>
<td>12.7-58.7</td>
<td>11.8</td>
<td>16.4-853.3</td>
<td>36.0</td>
<td>9.4-990.0</td>
</tr>
<tr>
<td>Autoimmune hepatitis</td>
<td>7.0</td>
<td>4.8-10.1</td>
<td>8.6</td>
<td>5.4-13.6</td>
<td>2.7</td>
<td>1.2-5.8</td>
<td>12.8</td>
<td>2.9-56.8</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>6.0</td>
<td>4.7-7.6</td>
<td>4.5</td>
<td>3.3-6.1</td>
<td>8.8</td>
<td>5.9-13.0</td>
<td>7.4</td>
<td>2.4-22.3</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>5.6</td>
<td>4.7-6.8</td>
<td>3.9</td>
<td>3.1-4.9</td>
<td>11.7</td>
<td>8.1-17.1</td>
<td>4.8</td>
<td>2.7-8.4</td>
</tr>
<tr>
<td>Churg Strauss syndrome</td>
<td>5.5</td>
<td>2.0-15.3</td>
<td>3.9</td>
<td>1.2-13.0</td>
<td>0.0</td>
<td>0.0-0.0</td>
<td>0.0</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td>Primary biliary cholangitis</td>
<td>4.4</td>
<td>2.9-6.6</td>
<td>4.2</td>
<td>2.6-6.7</td>
<td>3.6</td>
<td>1.3-9.7</td>
<td>13.8</td>
<td>1.7-111.9</td>
</tr>
<tr>
<td>Epidermitis</td>
<td>3.3</td>
<td>2.2-5.1</td>
<td>2.1</td>
<td>1.2-3.9</td>
<td>5.5</td>
<td>2.5-11.7</td>
<td>5.2</td>
<td>1.4-19.8</td>
</tr>
<tr>
<td>Iridocyclitis</td>
<td>2.8</td>
<td>2.4-3.3</td>
<td>2.4</td>
<td>2.0-2.9</td>
<td>3.6</td>
<td>2.7-4.7</td>
<td>3.2</td>
<td>2.0-5.4</td>
</tr>
<tr>
<td>Atrophic gastritis</td>
<td>2.5</td>
<td>1.7-3.7</td>
<td>2.4</td>
<td>1.5-3.8</td>
<td>2.9</td>
<td>1.3-6.2</td>
<td>3.6</td>
<td>1.9-9.7</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>2.2</td>
<td>1.9-2.5</td>
<td>1.7</td>
<td>1.4-2.1</td>
<td>3.0</td>
<td>2.2-3.6</td>
<td>3.5</td>
<td>1.9-6.5</td>
</tr>
<tr>
<td>Polyarteritis nodosa</td>
<td>2.2</td>
<td>1.4-3.4</td>
<td>1.7</td>
<td>1.0-3.0</td>
<td>3.3</td>
<td>1.4-7.5</td>
<td>3.7</td>
<td>1.8-17.6</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>1.8</td>
<td>1.5-2.0</td>
<td>1.6</td>
<td>1.3-1.9</td>
<td>2.1</td>
<td>1.6-2.8</td>
<td>2.5</td>
<td>1.5-4.2</td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>1.7</td>
<td>1.6-1.9</td>
<td>1.7</td>
<td>1.6-1.8</td>
<td>1.7</td>
<td>1.4-1.9</td>
<td>2.9</td>
<td>2.2-3.9</td>
</tr>
<tr>
<td>Sarcoïdisis</td>
<td>1.7</td>
<td>1.3-2.2</td>
<td>1.7</td>
<td>1.2-2.2</td>
<td>0.0</td>
<td>0.0-0.0</td>
<td>0.0</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td>Asthma</td>
<td>1.7</td>
<td>1.6-1.9</td>
<td>1.6</td>
<td>1.4-1.8</td>
<td>1.8</td>
<td>1.6-2.1</td>
<td>1.8</td>
<td>1.3-2.5</td>
</tr>
<tr>
<td>Giant cell arteritis</td>
<td>1.6</td>
<td>1.3-2.0</td>
<td>1.6</td>
<td>1.3-2.1</td>
<td>1.6</td>
<td>1.0-2.4</td>
<td>1.7</td>
<td>1.2-3.6</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>1.5</td>
<td>1.3-1.8</td>
<td>1.4</td>
<td>1.1-1.7</td>
<td>1.7</td>
<td>1.3-2.3</td>
<td>2.4</td>
<td>1.3-4.6</td>
</tr>
<tr>
<td>Grave’s disease</td>
<td>1.4</td>
<td>1.3-1.6</td>
<td>1.4</td>
<td>1.2-1.6</td>
<td>1.3</td>
<td>1.1-1.7</td>
<td>1.9</td>
<td>1.2-2.8</td>
</tr>
<tr>
<td>Polymyalgia rheumatic</td>
<td>1.3</td>
<td>1.2-1.5</td>
<td>1.5</td>
<td>1.2-1.7</td>
<td>0.0</td>
<td>0.0-0.0</td>
<td>0.0</td>
<td>0.0-0.0</td>
</tr>
</tbody>
</table>

1 P < 0.00125; 2 P = 0.00125-0.05; 3 P > 0.05; 4 Patients registered with both CD and UC; 6 No. of cases in IBD cohort/No. of cases in control cohort. CD: Crohn’s disease; UC: Ulcerative colitis; IBD: Inflammatory bowel disease.

Strauss Syndrome.

Five IMDs were gastrointestinal including celiac disease, atrophic gastritis, primary sclerotic cholangitis, primary biliary cholangitis, and autoimmune hepatitis.

The remaining IMDs were T1D, Grave’s disease, pyoderma gangrenosum, psoriasis, iridocyclitis, epidermitis, sarcoïdisis, and asthma.

There was a trend towards significance (P = 0.00125-0.05) for Wegener’s granulomatosis, choriorretinitis, vitiligo, lichen ruber planus, scleroderma, and multiple sclerosis.

Seven IMDs were only significant in women. While only one was restricted to men. See Table 4. In general, the same pattern is seen in those registered with both CD and UC.

We did not observe any OR below one, neither did we record any cases of Sjögren’s syndrome, inclusion body myositis, eosinophilic esophagitis, or autoimmune adrenalitis.

DISCUSSION

In this study, we documented an increased frequency
of twenty IMDs in patients with IBD compared to matched cohorts.

Although most of the IMDs are considered to be Th1 mediated, UC was associated with more IMDs than CD. The presence of Th17 cells in UC and their ability to induce a Th1 response might explain this.Another explanation might be that certain susceptibility genes can act differently depending on the setting[25-27]. A gene might increase the risk of one disease while reducing the risk of others[25-27].

Extraintestinal manifestations

Ankylosing spondylitis, pyoderma gangrenosum, psoriasis, iridocyclitis, episcleritis, and primary sclerosing cholangitis (PSC) are all well described in IBD[28]. Thus the significant associations were expected. Except from PSC, these will not be discussed further.

Primary sclerosing cholangitis and gastrointestinal immune mediated diseases

PSC is predominant in men and most frequent in UC[29]. We found PSC to be associated with both types of IBD and both genders. Most striking is the association with CD which is less often described. Studies suggest that PSC is more frequent when colon is affected and a distinct subtype, PSC-IBD has been suggested[30-33]. This study does not include data on localization, severity or extension. Several PSC risk genes are shared with IBD and other IMDs[33,34]. Gene mutations influencing IL 10 signaling are identified in CD, UC and PSC. The absence of IL 10 can cause severe CD due to lack of Th1 and macrophage inhibition[33-35]. Interestingly, hepatobiliary inflammation is thought to be induced by microbial metabolites and changes in the microbiota and this inflammation is linked to the FUT2 gene, which is also found in CD[33,34,36].

In contrast to most other studies[18,36,37], we found celiac disease to be more frequent in those with IBD regardless of type, as did another Danish study[16]. Other studies found IBD to be more common in patients with celiac disease but not vice versa[38-40]. Similarities and differences in pathogeneses might explain these conflicting results. Celiac disease is like IBD an inflammatory disorder of the intestine, often diagnosed in young individuals, more common in women, and Th1 mediated. Changes in microbiota and dysfunctional IL 18 receptor are also noted in both conditions[47,41]. Risk genes of celiac disease shared with CD relates to adaptive immunity while those shared with UC primarily relates to barrier function. Different from IBD is the absence of Th17 response, impaired autophagy and while important in celiac disease, IL 15 is not that important in IBD[41].

We found autoimmune hepatitis, primary biliary cholangitis, and atrophic gastritis to be more common in UC only. Again, results from previous studies conflict[18,19,49]. Little is known about the association with atrophic gastritis, which to our knowledge is unique to this study. Th1, 2 and 17 responses are important in IBD, PSC and primary biliary cholangitis pathogenesis. Primary biliary cholangitis and IBD have overlapping susceptibility genes, which is not the case with autoimmune hepatitis[46,47]. The pathogenesis of primary biliary cholangitis resembles those of autoimmune hepatitis and CD, dysfunctionalities in IL 12 signaling promotes a Th1 and possibly also a Th17 response, causing a granulomatous inflammation[47,48].

Endocrine diseases

UC is reported to occur more frequently in family members of patients with T1D[18,10,49]. However, three studies did not find any association[16,20,21]. This study found T1D associated with both UC and CD. Confounding due to treatment with corticosteroids is unlikely, as the mechanisms in steroid induced diabetes resemble those in type 2 diabetes[50,51]. Levels of IL 18 are elevated in CD and T1D, but not in UC. IL 18 causes a Th1 response and is likely to affect mucosal barrier function too[27,52]. PTPN2 is one of many shared risk genes[27,53]. It promotes beta cell apoptosis in T1D while causing intestinal barrier dysfunction, impaired autophagy, and inhibition of Th17 in IBD[25,54]. Changes in the gut microbiota are also suggested to trigger T1D[27].

Data on autoimmune thyroiditis and IBD is sparse, similarities to IBD limited and only few risk genes overlap[55-57]. Restricted to UC only, we found OR significantly increased for Grave’s disease. None was
detected for Hashimoto’s thyroiditis. Similar results are reported in two other studies\cite{18,58}. One study reports hypothyroidism more common in CD\cite{19}. In addition, three other studies did not find any association at all\cite{16,17,21}.

Rheumatic diseases

Rheumatoid arthritis was associated with both UC and CD while psoriatic arthritis was restricted to CD. Previously published data support this\cite{18,20,21,59}. The microbiome of the gut and skin are possible triggers in rheumatoid arthritis and psoriatic arthritis\cite{65}. Both types of arthritis share characteristics with CD in particular. Th1 and 17 are essential in all three pathogenesis\cite{26,64}.

ORs for polymyalgia rheumatica and temporal arteritis were significantly increased in the IBD and UC group, not in CD. This is supported by one study while refuted by another\cite{16,18}. Overlapping susceptibility genes suggest that Th1, Th17 and regulatory T cells are of importance to the pathogenesis\cite{65}.

ORs for Churg Strauss Syndrome and polyarteritis nodosa were significantly increased in the overall IBD group but not in the subgroups. The low number of cases calls for careful interpretation and future studies.

Other disorders

In this study, asthma was more common in both UC and CD. Both UC and allergic asthma are considered Th2 mediated. Also, a Th17 response is described in severe asthma\cite{66}. Risk genes are associated with IL 13 and 17 production, dysfunctional regulatory T cells and regulation of Th1, 2 and 17 responses\cite{26,66}.

Studies have not found that asthma reduces the risk of IBD\cite{67,68}, rather the opposite seems more likely\cite{17,18,20,21}.

The association of sarcoidosis and IBD were restricted to UC and males with CD. Another study confirms the linkage to UC\cite{18}. There is not much documentation for this association. The inflammation in sarcoidosis is similar to CD; granulomatous; Th1 and 17 driven; and mutations in NOD2 and IL 23 receptor gene are identified\cite{69,71}.

There were no cases of Sjögren’s syndrome, inclusion body myositis, eosinophilic esophagitis, or autoimmune adrenalitis. This is unexpected. Some case reports have described the coexistence of Sjögren and primary adrenocortical insufficiency in IBD patients\cite{16,72,74}. One case report describes eosinophilic esophagitis and CD\cite{75}. While to our knowledge, no association between inclusion myositis and IBD has been reported. Although specific ICD 10 codes were used misclassification is still possible e.g. autoimmune adrenalitis might be registered as Addison’s disease.

Strengths and limitations

The strength of this study is that it includes all patients alive with CD or UC in Denmark. The Danish population is homogenous regarding ethnicity and religion. Health care is free to all residents; thus, NPR is not biased by inclusion of specific hospitals, age groups, insurance policies, social, or financial status. As the general practitioners do not provide data, diseases not requiring hospital treatment could be underrepresented i.e. asthma, Grave’s disease, Hashimoto’s thyroiditis, and atrophic gastritis\cite{76}.

A limitation of the study is possible bias caused by varying validity of the ICD 10 codes. Only few Danish studies have addressed this issue. The average positive predictive value (PPV) of an ICD 10 diagnosis for any medical condition in the NPR varies from 65.5% to 81%\cite{76}.

However, the completeness is 94% for both UC and CD while the PPV of UC and CD is 90% and 97% respectively\cite{77}.

The validity of T1D is like that of IBD, very high\cite{24,78}. The PPV of asthma among hospitalized children is 85% while 65% among adults. However, a sensitivity analysis did not find the PPV in adults, low enough to nullify the hypothesis\cite{79,80}. As a collective group the PPV of connective tissue diseases is reported as high\cite{24}.

The PPV of rheumatoid arthritis is low\cite{81}.

Despite varying validity of ICD 10 codes, most of our findings are in alignment with those of the studies using algorithms to increase the validity. Important to this study, is the occurrence of the classic extraintestinal manifestations which indicates that our results are not too biased.

Detection bias is another concern. Patients seen on regular basis by a physician such as those with IBD are more likely to be diagnosed.

To eliminate confounders like sex, age and geography in the IBD group, we used these as matching criteria. Information regarding smoking status was not available to us, thus no correction was made.

Another confounder is drug induced autoimmunity. A wide variety of drugs are suggested to induce autoimmunity. Among these are antibiotics, statins, methotrexate, thiopurines, and biological agents (anti-TNF-α agents)\cite{82,88}. Biological agents, which are often used to treat IBD, ankylosing spondylitis, psoriasis, and rheumatoid arthritis, are paradoxically suggested to induce IMDs. No correction was made since we do not have data regarding patients’ use of prescribed drugs.

While Bonferroni post-test correction reduced the risk of false positives, the risk of false negatives simultaneously increased. Knowing this, a low number of false positives were still preferred in this study.

In conclusion, our study emphasizes that immune mediated diseases are more frequent among patients with CD or UC. Our results strengthen the thesis of partially overlapping pathogeneses among some immune mediated diseases including IBD and emphasized the complexity of IBD pathogenesis. Our most important findings are the increased risk of...
celiac disease and T1D in both UC and CD, but also the increased risk of primary sclerosing cholangitis in CD although not being limited to CD. Finally, when treating patients with UC or CD one should be aware of the strong association with other immune mediated diseases.

COMMENTS

Background
Extraintestinal manifestations in Crohn’s disease (CD) and ulcerative colitis (UC) are well described. The authors aimed to investigate whether other immune mediated diseases were associated with inflammatory bowel disease (IBD).

Research frontiers
Most studies on the subject are small or case reports. Only few larger studies have been conducted. The authors aimed to estimate odds-ratios of developing an immune mediated diseases (IMD) in patients with IBD compared individuals without IBD.

Innovations and breakthroughs
This is one of few larger studies on the subject. It includes all patients alive and with CD or UC in Denmark. Due to free health care to all residents the study is unbiased by inclusion of specific hospitals, age groups, insurance policies, social or financial status. The authors found several IMDs not considered classic extraintestinal manifestations to be significantly associated with IBD.

Applications
Physicians treating patients with IBD should be aware of the increased risk of developing other IMDs than the classic extraintestinal manifestations. The findings support the hypothesis that shared pathogenic pathways among IMDs may exist.

Peer-review
It’s a well-written and interesting manuscript.

REFERENCES

6. Zhu J. The helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75: 14-24 [PMID: 26044597 DOI: 10.1016/j.cytog.2015.05.010]
24. Thygesen SK, Christiansen CF, Christensen S, Lash TL, Sørensen HT. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions

72 Qiu Y, Mao R, Chen MH. A De Novo Arisen Case of Primary Adrenal Insufficiency in an Adolescent Patient With Crohn Disease: A Case report. Medicine (Baltimore) 2015; 94: e818 [PMID: 26601303 DOI: 10.1097/MD.0000000000000818]

84 Buchhari M. Drug-induced rheumatic diseases: a review of published case reports from the last two years. Curr Opin Rheumatol 2012; 24: 182-186 [PMID: 22301868 DOI: 10.1097/BOR.0b013e32835959e9]

