Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonators

Mortensen, N. Asger; Tserkezis, Christos; Dezfoli, Mohsen Kamandar; Hughes, Stephen

Published in:
Optica

DOI:
10.1364/OPTICA.4.001503

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. feb., 2019
Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonators

MOHSEN KAMANDAR DEZFOULI,1,* CHRISTOS TSERKEZIS,2,3 N. ASGER MORTENSEN,2,3,4 AND STEPHEN HUGHES1

1Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario K7L 3N6, Canada
2Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 343, DK-2800 Kgs. Lyngby, Denmark
3Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
4Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5220 Odense M, Denmark
*Corresponding author: m.kamandar@queensu.ca

Received 29 September 2017; revised 10 November 2017; accepted 13 November 2017 (Doc. ID 308257); published 4 December 2017

Nonlocal effects have been shown to be responsible for a variety of nontrivial optical effects in small-size plasmonic nanoparticles, beyond classical electrodynamics. However, it is not clear whether optical mode descriptions can be applied to such extreme confinement regimes. Here, we present a powerful quasinormal mode description of the nonlocal optical response for three-dimensional plasmonic nanoresonators. The nonlocal hydrodynamical model and a generalized nonlocal optical response model for plasmonic nanoresonators are used to construct an intuitive modal theory and to compare to the local Drude model response theory. Using the example of a gold nanorod, we show how an efficient quasinormal mode picture is able to accurately capture the blueshift of the resonances, the higher damping rates in plasmonic nanoresonators, and the modified spatial profile of the plasmon quasinormal modes, even at the single mode level. We exemplify the use of this theory by calculating the Purcell factors of single quantum emitters, the electron energy loss spectroscopy spatial maps, and the Mollow triplet spectra of field-driven quantum dots with and without nonlocal effects for different size nanoresonators. Our nonlocal quasinormal mode theory offers a reliable and efficient technique to study both classical and quantum optical problems in nanoplasmonics. © 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Fundamental studies of light-matter interactions using plasmonic devices continue to make considerable progress and offer a wide range of applications [1–7]. For spatial positions very close to metal resonators, the local Drude model is known to fail, which challenges many of the usual modeling techniques that use the classic Maxwell equations. In particular, charge density oscillations become relevant, causing frequency shifts of the localized surface plasmon (LSP) resonance, as well as the appearance of additional resonances above the plasmon frequency [8–13]. Such investigations have been performed using both density functional theory (DFT) at the atomistic level [14] and using macroscopic nonlocal Maxwell’s equations in the form of the hydrodynamical model (HDM) [13] and a generalized nonlocal optical response (GNOR) model [15]. However, so far, with the exception of the simple cases of spherical or cylindrical nanoparticles, nonlocal investigations have been primarily done using purely numerical simulations [16–18], which is not only computationally very expensive for arbitrary shaped plasmonic systems but can also lack important physical insight; most of these calculations are also restricted to 2D geometries or simple particle shapes. Thus, there is now a need for more intuitive and efficient formalisms with nonlocal effects included, for arbitrarily shaped metal resonators in a numerically feasible way.

In optics and nanophotonics, one of the most successful analytical approaches to most resonator problems is to adopt a modal picture of the optical cavity (e.g., in cavity-QED and coupled mode theory). Recently, it has been also shown that quasinormal modes (QNMs) can quantitatively describe the dissipative modes of both dielectric cavities and LSP resonances [19] and even hybrid structures of metals and photonic crystals [20]. In contrast to “normal modes,” which are solutions to Maxwell’s equations subjected to (usually) fixed or periodic boundary conditions, QNMs are obtained with open boundary conditions [21], and they are associated with complex frequencies whose imaginary parts quantify the system losses. These QNMs require a more generalized normalization [21–26], allowing for accurate mode quantities to be obtained such as the effective mode volume or Purcell factor [27], that is, the enhanced spontaneous emission (SE) factor of a dipole emitter. These QNMs are typically computed numerically from the Helmholtz equation with open boundary conditions, for example, with perfectly matched layers (PMLs), whose solution...
can then be used to construct the full photon Green function (GF) of the medium—a function that is well known to connect to many useful quantities in classical and quantum optics [28–38]. The GF can also be used (and indeed is required) to compute electron energy loss spectroscopy (EELS) maps for plasmonic nanostructures [39–40], which is a notoriously difficult problem in computational electrodynamics, especially for nanoparticles or arbitrary shape. Despite these successes with QNMs, in the presence of nonlocal effects, it is not known whether such a mode description even applies.

In this work, we show that, somewhat surprisingly, QNMs can indeed be obtained and used to construct the full system GF for complex 3D plasmonic nanostructures with nonlocal effects, and even a single mode description is accurate over a wide range of frequencies and spatial positions. We start by redefining the Helmholtz equation that is usually solved to obtain the local QNMs [37], and then we extend this approach to the case of nonlocal systems using a generalized Helmholtz equation, which is applicable to both HDM and GNOR models. A semi-analytical modal GF is then used to perform Purcell factor calculations of dipole emitters positioned nearby plasmonic gold nanorods (a structure for which there is no known analytical GF). We then show the accuracy of the modal Purcell factors against fully vectorial dipole calculations, also computed in the presence of the nonlocal corrections. The calculated QNMs are also used to accurately quantify the effective mode volume associated with coupling to quantum emitters and can be used, for example, for quantifying single photon source figures of merit [6,51]. Additionally, we examine the size dependence of the nonlocal behavior by investigating nanorods of different sizes, verifying the anticipated LSP blueshifts [11], and damping with decreasing nanoparticle size [15].

Next, we use our QNM technique to efficiently calculate the EELS maps for different sizes of nanoparticles [40,47,48]. Finally, to more rigorously show the benefit of our nonlocal modal picture for use in quantum theory of light-matter interaction, we study the behavior of the Mollow triplets of field-driven quantum dots (QDs) coupled to plasmonic resonators [52], under the influence of nonlocal effects.

2. CAVITY MODE APPROACH TO NONLOCAL PLASMONICS

Without nonlocal corrections to the metal, the QNMs, \(\tilde{f}_\mu(r) \), can be defined as the solution to the Helmholtz equation with open boundary conditions (such as PMLs),

\[
\nabla \times \nabla \times \tilde{f}_\mu(r) - \left(\frac{\omega_\mu^2}{c} \right)^2 \epsilon(r, \omega) \tilde{f}_\mu(r) = 0,
\]

where \(\epsilon(r, \omega) \) is the relative dielectric function of the system, and \(\omega_\mu = \omega_{\mu} - i\gamma_\mu \) is the complex resonance frequency that can also be used to quantify the QNM quality factor, \(Q_\mu = \omega_{\mu}/2\gamma_\mu \). For metallic regions, the dielectric function can be described using the local Drude model, \(\epsilon_{\text{LSP}}(r, \omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)} \), with \(\hbar\omega_p = 8.29 \text{ eV} \) and \(\hbar\gamma_p = 0.09 \text{ eV} \) for the plasmon frequency and collision rate of gold [53], respectively. However, when considering the nonlocal nature of the plasmonic system, the electric field displacement relates to the electric field through an integral equation rather than a simple proportionality [12,54]. In this nonlocal case, a modified set of equations [13,15] can be used to define nonlocal QNMs, \(\tilde{f}_\mu^{nl}(r) \), from

\[
\nabla \times \nabla \times \tilde{f}_\mu^{nl}(r) - \left(\frac{\omega_\mu^{nl}}{c} \right)^2 \tilde{f}_\mu^{nl}(r) = \frac{\omega_\mu^{nl}}{c} \tilde{f}_\mu^{nl}(r),
\]

where \(\omega_\mu^{nl} \) is the complex resonance frequency that can also be defined as the solution to the Helmholtz equation with metallic regions, the dielectric function can be described using the local Drude model, \(\epsilon_{\text{LSP}}(r, \omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)} \), with \(\hbar\omega_p = 8.29 \text{ eV} \) and \(\hbar\gamma_p = 0.09 \text{ eV} \) for the plasmon frequency and collision rate of gold [53], respectively. However, when considering the nonlocal nature of the plasmonic system, the electric field displacement relates to the electric field through an integral equation rather than a simple proportionality [12,54]. In this nonlocal case, a modified set of equations [13,15] can be used to define nonlocal QNMs, \(\tilde{f}_\mu^{nl}(r) \), from

\[
\xi^2 \nabla[\nabla \cdot \mathbf{J}_\mu] + \omega_\mu^{nl}(\omega_\mu^{nl} + i\gamma_\mu) \mathbf{J}_\mu = \frac{\omega_\mu^{nl}}{c} \tilde{f}_\mu^{nl}(r),
\]

where \(\mathbf{J}_\mu \) is the induced current density and \(\xi \) is a phenomenological length scale associated with the nonlocal corrections [15].

Traditionally in cavity physics, the concept of effective mode volume, \(V_{\text{eff}} \), plays a key role in characterizing the mode properties; historically, \(V_{\text{eff}} \) quantifies the degree of light confinement in optical cavities, and it is normally defined at the modal antinode where, for example, a quantum emitter is typically placed. Even though for plasmonic dimers one can reasonably choose the gap center as the place to calculate the mode volume, for plasmonic resonators in general, this simple picture of mode volume is ambiguous. However, one can still quantify an effective mode volume, \(V'_{\text{eff}}(r) = \text{Re}[1/\mu^2 \tilde{f}_\mu^r(r)^2] \) (same definition holds for the local QNM, only one uses \(\tilde{f}_\mu^r \) [19], for rigorous use in Purcell’s formula, which is associated with coupling to emitters at different locations outside (but typically near) the metal nanoparticle within a background medium of refractive index \(n_b \). Such a position-dependent mode volume can then be used in a generalized Purcell factor,

\[
F_{P}(r) = \frac{3}{4\pi} \left(\frac{1}{n_b^3} \right) \frac{Q}{V'}_{\text{eff}}(r),
\]

to obtain the SE enhancement rate of a dipole emitter placed at \(r \) around a cavity with the resonance wavelength of \(\lambda_c \) and quality factor of \(Q \). The quantum emitter is assumed to be on resonance and aligned in polarization with the LSP mode.

Recent work has shown that QNMs, when obtained in normalized form (as done in this work), accurately describe lossy plasmonic resonators using the local Drude model [20,37,56]. Here, we extend such an approach to include the nonlocal effects by introducing the expansion

\[
G_{\text{sc}}^{nl}(\mathbf{r}_1, \mathbf{r}_2; \omega) = \sum_{\mu} \frac{\alpha(\omega)}{2\omega_\mu^{nl}(\omega_\mu^{nl} - \omega)} \tilde{f}_\mu^{nl}(\mathbf{r}_1) \tilde{f}_\mu^{nl}(\mathbf{r}_2),
\]

for the scattered GF, which is extremely useful, as it can be immediately used to obtain the full position and frequency dependence of the generalized Purcell factor (SE enhancement factor) for a dipole emitter polarized along \(\mathbf{n} \) [32]

\[
F(\mathbf{r}; \omega) = 1 + \frac{6\pi c^3}{\omega^3 n_b} \mathbf{n} \cdot \text{Im} \{G_{\text{sc}}^{nl}(\mathbf{r}, \mathbf{r}; \omega)\} \cdot \mathbf{n},
\]

where we include a factor of 1 for emitters outside the resonator [37]. Note that in a single mode regime, if at the peak of the resonance frequency, \(\omega = 2\pi c/\lambda_c \), then Eq. (6) reduces to Eq. (4).

3. RESULTS AND EXAMPLE APPLICATIONS

In this section, a selection of applications are presented to demonstrate the power and reliability of the QNM theory for light-matter investigations of plasmonic resonators, into the
nonlocal regime. We emphasize that, once the QNMs are calculated, as discussed in subsection A, all example studies are performed in seconds, owing to the analytical power of the technique.

A. Local Versus Nonlocal Quasinormal Modes

To obtain the system QNMs for the nonlocal HDM/GNOR model defined via Eqs. (2) and (3), we employ the frequency domain technique discussed in Ref. [25] (used for the local Drude model), where an inverse GF approach is used to return the QNM in normalized form without having to carry out any spatial integral. We extend this method by incorporating nonlocal corrections, both for the HDM method [57], as well as the more complete GNOR model [15,58]. While the system GF using the notation of [25] finds a different form, for consistency, we follow the approach of Eq. (5) to briefly explain the technique.

The basic idea is to use a dipole excitation at the location of interest, \(\mathbf{r}_0 \), having a dipole moment of \(\mathbf{d} \), to numerically obtain the scattered GF (as explained in more detailed later), \(\mathbf{G}_s(\mathbf{r}_0, \mathbf{r}_0; \omega) \), and then reverse Eq. (5) to obtain

\[
\tilde{f}_s(\mathbf{r}_0) \cdot \mathbf{d} = \int \frac{\mathbf{d} \cdot \mathbf{G}_s(\mathbf{r}_0, \mathbf{r}_0; \tilde{\omega}) \cdot \mathbf{d}}{A(\tilde{\omega})}, \tag{7}
\]

where a single QNM, \(\tilde{f}_s(\mathbf{r}) \), with the complex frequency \(\tilde{\omega} \), is considered, and we have defined \(A(\omega) = \omega^2 / 2 \tilde{\omega}(\tilde{\omega} - \omega) \) for convenience. The above quantity is in fact all one needs to perform an integration-free normalization for the QNM, and in practice, it is calculated at frequencies very close to the QNM frequency [so is the QNM of Eq. (8)] [25]. When inserted back into Eq. (5), one arrives at

\[
\tilde{f}_s(\mathbf{r}) = \frac{\mathbf{G}_s(\mathbf{r}, \mathbf{r}_0; \tilde{\omega}) \cdot \mathbf{d}}{\sqrt{A(\tilde{\omega}) |(\mathbf{d} \cdot \mathbf{G}_s(\mathbf{r}_0, \mathbf{r}_0; \tilde{\omega}) \cdot \mathbf{d}|}}, \tag{8}
\]

which provides the full spatial profile of the QNM, given that one also keeps track of the system response at all other locations, \(\mathbf{G}_s(\mathbf{r}, \mathbf{r}_0; \omega) \), within the same simulation.

The numerical implementation is done using the frequency domain finite-element solver COMSOL [59], where an electric current dipole source is used to excite the system and iteratively search for the QNM frequencies by monitoring the strength of the system response [25]. To obtain the QNM, one obtains the scattered GF as the difference between two dipole simulation GFs at frequencies very close to the QNM frequency, with and without the metal nanoparticles [25], either in local or nonlocal case. The computed QNM can then provide the full spectral and spatial shape of the resonances involved. In our calculations, a computational domain of 0.5 \(\mu \)m \(^3\) was used for all simulations with a maximum element size of 0.2 nm on the nanoparticle surface and 0.6 nm inside. The maximum element size elsewhere is set to 33 nm to ensure convergent results over a wide range of frequencies, and 10 layers of PML were used. We have checked that these parameters provide accurate numerical convergence for both local and nonlocal simulations done in this work.

Depicted in Fig. 1 are the computed QNMs for three different gold cylindrical nanorods with the same aspect ratio, varying from 20 nm to 4 nm in length (see figure caption for details). The left panels represent the local Drude model QNMs, while the right panels show the QNMs using the nonlocal GNOR model. As seen, the main QNM shapes are similar but a redistribution of the localized field clearly occurs due to the inclusion of the nonlocal corrections. While the local Drude model predicts a similar mode shape for the different nanoparticle sizes, the nonlocal corrections introduce a pronounced degree of mode reshaping for smaller nanoparticles. Indeed, even for the largest nanoparticle shown in Figs. 1(a) and 1(b), higher field values are seen both inside as well as outside (but near) the metallic region.

B. Purcell Factors from Coupled Dipole Emitters

Figure 2 shows the computed QNM Purcell factors using the local Drude model and the two different nonlocal models for the \(h = 20 \) nm nanorod. As can be seen, both HDM and GNOR models predict the known blueshift of the plasmonic resonance [12–14]. However, the nonlocal prediction of the peak enhancement strongly depends on the model chosen. The GNOR model, in particular, predicts a considerably lower Purcell factor due to the inclusion of diffusion, which accounts for surface-enhanced Landau damping [15]. Indeed, as will be discussed shortly, including the nonlocal effects modifies both the quality factor and the mode volume associated with QNMs. The inset also shows the validity of our Purcell factor calculations against full dipole numerical calculations, only shown here for the nonlocal GNOR response. However, a similar degree of very good agreement is observed for all other calculations both in Fig. 2 and what follows.

In Fig. 2, in the bottom panel, we additionally plot the corresponding effective mode volume for a range of dipole locations, from the nanorod surface (at \(z = 10 \) nm) up to 10 nm away. A comparison between the local Drude model (solid-blue) and the nonlocal GNOR (dashed-red) is shown, where a nontrivial difference is observed. Closer to the metallic surface, smaller...
effective mode volumes are predicted by the nonlocal corrections, while further away, the opposite takes place. The difference at larger distances, however, is mainly due to nonlocal corrected resonant wavelengths that are used to normalize the mode volumes.

We also consider enhanced SE from the three different gold nanoparticles discussed in Fig. 1. Plotted in Fig. 3 are the QNM calculations of the Purcell factors for dipole emitters located 10-nm away from nanorods, on the z-axis. In each case, the local Drude results are compared with the nonlocal GNOR results. Clearly, nonlocal corrections result in larger resonance blueshifts and larger damping rates (lower quality factors).

C. Computing EELS Spatial Maps

For our next application of the nonlocal QNM theory, we calculate the spatial maps associated with EELS experiments that are obtained by nanometer-scale resolution in microscopy of LSP resonances [40,41,44,49,50]. Since the GF is available at all locations (near the resonator) through QNM expansion of Eq. (5), the EELS spectra in the xz plane subjected to an electron beam propagating along the y axis can be easily obtained from [40,48]

\[
\Gamma(x, z; \omega) = -\frac{4e^2v^2}{\hbar} \int \int \text{Im}\{e^{i\omega(t'-t)}G_{yy}(r_x(t), r_y(t); \omega)\},
\]

where \(v\) is the speed of electrons, and the single mode expansion for our Green function—that is already confirmed to be very accurate—is used. The EELS calculations for all three nanoparticles (of Fig. 1) are shown in Fig. 4, all computed at the
corresponding plasmonic peak frequencies. Note that there are some noticeable numerical issues around the sharp corners of the metallic nanorod when using the conventional Drude model theory on the left (which is a known problem [60,61]). Using the same meshing scheme, however, the nonlocal description evidently helps to avoid such nonphysical effects. More importantly, as the nanoparticle size decreases, the EELS map becomes brighter at the maximum location which originates from the higher modal amplitudes of the QNMs discussed in Fig. 1. We stress again that with the computed QNMs, such EELS maps are calculated instantaneously, which is a far cry from the many brute force numerical solvers.

D. Field-Driven Mollow Triplets and Quantum Optics Regime

Finally, in addition to the previous discussions on Purcell factor and mode volume that are important for building quantum optical models of light-matter interaction [62], we discuss the quantum regime of field-driven Mollow triplets for QDs coupled to plasmonic nanoparticles. In the dipole and rotating wave approximations, the total Hamiltonian of the coupled system is [52,63]

\[
H = \hbar \int d\mathbf{r} \int_0^\infty d\omega d^3 \mathbf{E}(\mathbf{r}, \omega) \mathbf{E}(\mathbf{r}, \omega) + h\hbar \omega \sigma^+ \sigma^-
- \left[\frac{\sigma^+}{\hbar} \int_0^\infty d\omega \mathbf{d} \cdot \mathbf{E}(\mathbf{r}, \omega) + H.c. \right]
+ \frac{\hbar \Omega}{2} (\sigma^+ e^{-i\omega t} + \sigma^- e^{i\omega t}),
\]

(10)

where \(\Omega = (\mathbf{E}_{pump}(\mathbf{r}_D)) \cdot \mathbf{d} / \hbar \) is the effective Rabi field, \(\sigma^+ , \sigma^- \) are the Pauli operators of the two-level atom (or exciton), \(\omega_0 \) is the resonance of the exciton, \(\mathbf{d} \) is the dipole of the exciton, and \(\mathbf{E}, \hat{\mathbf{E}} \) are the boson field operators. Following the approach in Ref. [52] and using the interaction picture at the laser frequency \(\omega_0 \), one can derive a self-consistent generalized master equation in the 2nd-order Born–Markov approximation:

\[
\frac{dp}{dt} = \frac{1}{\hbar} [H_S, p] + \int_0^t d\tau \int_{\mathbf{r}_D} \rho_s^{(0)} (\mathbf{r}, \tau) \cdot [\sigma^+ \sigma^- (\tau) \rho + \sigma^-(\tau) \rho (\tau)] + H.c.,
\]

(11)

where \(\rho_s^{(0)}(\mathbf{r}, \tau) = \int_0^\infty d\omega f_\rho(\omega) e^{i\omega (\mathbf{r}, \tau)} \), with the photon-reservoir spectral function given by \(f_\rho(\omega) = \frac{1}{\pi} \frac{\epsilon_0}{\sqrt{\epsilon_0^2 - \omega^2}} \), and the time-dependent operators are defined through \(\sigma^\pm (\tau) = e^{iH_S t / \hbar} \sigma^\pm e^{-iH_S t / \hbar} \), with \(H_S = \hbar \omega (\sigma^+ - \sigma^-) + \hbar \Omega / 2 (\sigma^+ + \sigma^-) \), which results in a complex interplay between the values of the local density of states at the field-driven dressed states. Solving the master equation and exploiting the quantum regression theorem, one can compute the incoherent spectrum of the QD emission from [52]

\[
S_0(\omega) = \lim_{\tau \to \infty} \text{Re} \left[\int_0^\infty d\tau (\langle \sigma^+ (t - \tau) \sigma^- (t) \rangle - \langle \sigma^+ (t) \rangle \langle \sigma^- (t) \rangle) e^{i(\omega - \omega_0) \tau} \right],
\]

(12)

as well as the detected spectrum, which includes quenching and propagation from QD at \(\mathbf{r}_0 \) to a point detector at \(\mathbf{r}_D \) from [52]

\[
S(\omega) = \frac{2}{\epsilon_0} |G(\mathbf{r}_D, \mathbf{r}_0; \omega) \cdot \mathbf{d}|^2 S_0(\omega).
\]

(13)

For example calculations, we assume a QD with the dipole moment of \(|\mathbf{d}| = 50 \) Debye at 10-nm away from the nanoparticle surface, at \(x = 0 \). In particular, as with the calculations above, we compare the local Drude model versus the nonlocal GNOR model, as shown in Fig. 5. As can be recognized, including the nonlocal effects, in general, predicts narrower linewidths for the Mollow triplets (see Table 1), where the relative strength of the side peaks are also increased. This is attributed to the modified plasmonic enhancement in the nonlocal description as confirmed in Fig. 3, which can be also rigorously confirmed using analytical equations for the linewidths derived in Ref. [52]. It should be noted that, in general, the detected spectrum \(S \) for the Mollow triplet problem can be different than the emitted \(S_0 \), as discussed in Ref. [52]; however in our particular case, under the resonant excitation, we find that they have the same qualitative shape (and differ only quantitatively). We also stress that these spectral calculations, at any detector position, can be trivially performed using a standard desktop through use of semi-analytical GF of

\[
\begin{array}{ccc}
|b| (\text{nm}) & \text{Drude FWHM (meV)} & \text{GNOR FWHM (meV)} \\
20 & 1.28 & 1.21 \\
10 & 0.74 & 0.61 \\
5 & 0.45 & 0.42 \\
\end{array}
\]

Same trend holds for the side peaks.

