Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

Macieszczak, Katarzyna; Zhou, Yanli; Hofferberth, Sebastian; Garrahan, Juan P.; Li, Weibin; Lesanovsky, Igor

Published in:
Physical Review A

DOI:
10.1103/PhysRevA.96.043860

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

Katarzyna Macieszczak, YanLi Zhou, Sebastian Hofferberth, Juan P. Garrahan, Weibin Li, and Igor Lesanovsky

1School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
2Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
3College of Science, National University of Defense Technology, Changsha 410073, China
4Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark

(Received 14 June 2017; published 26 October 2017)

We investigate the dynamics of a generic interacting many-body system under conditions of electromagnetically induced transparency (EIT). This problem is of current relevance due to its connection to nonlinear optical media realized by Rydberg atoms. In an interacting system the structure of the dynamics and the approach to the stationary state becomes far more complex than in the case of conventional EIT. In particular, we discuss the emergence of a metastable decoherence-free subspace, whose dimension for a single Rydberg excitation grows linearly in the number of atoms. On approach to stationarity this leads to a slow dynamics, which renders the typical assumption of fast relaxation invalid. We derive analytically the effective nonequilibrium dynamics in the decoherence-free subspace, which features coherent and dissipative two-body interactions. We discuss the use of this scenario for the preparation of collective entangled dark states and the realization of general unitary dynamics within the spin-wave subspace.

DOI: 10.1103/PhysRevA.96.043860

I. INTRODUCTION

The phenomenon of electromagnetically induced transparency (EIT) is currently extensively studied both theoretically and experimentally [1–3]. It finds applications in the context of quantum memories [4,5] and slow light [6] as well as in the mediation of effective photon-photon interactions [7–13]. These are important ingredients for optical quantum computing and permit the creation of nonlinear optical elements such as single-photon switches and transistors [14–19], single-photon absorbers [20], as well as photon gates [21].

In the context of EIT, a common assumption is made concerning a separation of time scales between the slow propagation of the optical fields and the fast dynamics of the atomic medium. The latter is therefore assumed to be always in its stationary state and the transmission properties of the atomic medium are determined by the corresponding stationary state density matrix.

In this work, we show, however, that the dynamics of an interacting atomic medium is not necessarily fast due to the emergence of quantum metastability [22]. To illustrate this we explore analytically the long-time evolution of a generic interacting many-body ensemble under EIT conditions. We demonstrate that the effective dynamics in fact takes place within a metastable decoherence-free subspace (DFS) of spin-waves (SWs), and features both dissipative and coherent two-body interactions [23]. The emerging slow time scales lead to a violation of the typical assumption of fast system relaxation [1] which drastically affects the system’s (nonlocal) optical response. We show analytically that the effective long-time dynamics can be employed for preparing stationary pure and response. We show analytically that the effective long-time

II. THE SYSTEM

We consider the dynamics of a system of N interacting atoms with four relevant electronic levels, as depicted in Fig. 1(a): the ground state $|1\rangle$, a low-lying short-lived excited state $|2\rangle$ and two long-lived states $|3\rangle$ and $|4\rangle$. The $|1\rangle \leftrightarrow |2\rangle$-transition is driven by a (weak) probe field with Rabi frequency $\Omega_p(\mathbf{r},t)$, while the $|2\rangle \leftrightarrow |3\rangle$-transition is coupled by a (strong) control laser field with Rabi frequency $\Omega_c(\mathbf{r})$, giving rise to a typical EIT configuration. Within the dipole and rotating wave approximations, the laser-atom coupling Hamiltonian is

$$H_j = \sum_{n=2,3} \delta_n \sigma^j_{nm} + (\Omega_p(\mathbf{r},t) \sigma^j_{21} + \Omega_c(\mathbf{r}) \sigma^j_{32} + \text{H.c.}),$$

(1)

where $\sigma^j_{nm} = |a_j\rangle\langle b_j|$ and $\delta_n (n = 2, 3)$ are the detunings of the respective lasers.

Atoms interact via the density-density interaction

$$V_{jk} = \sum_{n,m=3,4} V_{nm}^{jk} \sigma^j_{nm} \sigma^k_{nm},$$

(2)
and the exchange interaction

\[U_{jk} = U_{34}^{(3)} \sigma_j^{3/2} \sigma_k^{3/2} + H.C. \] (3)

Interactions among the low-lying states, [1] and [2], are neglected. This choice is rather generic, but also motivated by recent investigations of EIT within Rydberg gases [15–17,20,30,31], where the upper states [3] and [4] correspond to two different Rydberg levels: two Rydberg atoms, located at positions \(r_j \) and \(r_k \), interact via van der Waals interaction \(V_{jk}^{(3)} = C_{\text{ex}} / |r_j - r_k|^6 \), and exchange interaction \(U_{jk}^{(3)} = C_{\text{ex}} / |r_j - r_k|^6 \), with dispersion coefficients \(C_{\text{ex}}, C_{33}, C_{44}, \text{and } C_{43} \) [18,31,32].

Coherent dynamics is supplemented by dissipative decay of the short-lived state [2] into the ground state [1] at rate \(\gamma \). The evolution of the density matrix \(\rho \) is governed by a quantum master equation, with master operator \(\mathcal{L} \), given by [33,34]

\[\frac{d}{dt} \rho = \mathcal{L} \rho = -i[H, \rho] + \gamma \sum_{j=1}^{N} D(\sigma_j^{1/2}) \rho, \] (4)

with the dissipator \(D(L) \rho := \Omega_\rho L \rho L^\dagger - \frac{1}{2} \{ L L^\dagger, \rho \} \) and the Hamiltonian \(H = \sum_{j=1}^{N} H_j + \sum_{j,k} U_{jk} + V_{jk} \).

III. METASTABLE MANIFOLDS

A. Metastable manifolds in noninteracting EIT

It is instructive to first consider the noninteracting case to get an idea of the resulting decoherence-free subspace (DFS), the emergence of metastability and the corresponding time scales. In the absence of interactions states [4] is dynamically disconnected from the remaining levels, cf. Fig. 1(a), and each atom possesses two stationary states: a mixed state \(\rho_{ss,r} \) supported on the lower three levels and the pure nondecaying excited state [4] [4].

An interesting situation occurs when both stationary states are pure, i.e. \(\rho_{ss,r} \rightarrow |\psi_r\rangle \langle \psi_r| \). It follows that \(|\psi_r\rangle \) is a so-called dark state, i.e., \(\sigma_j |\psi_r\rangle = 0 \), and also an eigensate of the local Hamiltonian, \(H_j |\psi_r\rangle = E_1 |\psi_r\rangle \) [26,27]. Therefore, also coherences between \(|\psi_r\rangle \) and [4] become stationary, so that \(|\psi_r\rangle \) and [4] span a DFS. On resonance, i.e., \(\delta_3 = 0 \), we have

\[|\psi_r\rangle = \frac{\Omega_r^*(t)|1\rangle - \Omega_{ss,r}(t)|3\rangle}{\sqrt{|\Omega_r^*(t)|^2 + |\Omega_{ss,r}(t)|^2}}. \] (5)

and the dark stationary state is reached on a timescale \(\tau_0 \), determined by the spectral gap of the master operator \(\mathcal{L} \), cf. Fig. 1(b). For small nonzero detuning \(\delta_3 \), the single-atom DFS, spanned by \(|\psi_r\rangle \) and [4], is no longer truly stationary, but becomes metastable [22], as the stationary state degeneracy is partially lifted and low-lying slow modes appear in the spectrum of \(\mathcal{L} \), see Fig. 1(b). These modes govern the longtime dynamics within the DFS at \(t > \tau \), which relaxes the system to the actual stationary state, i.e., a mixture of \(\rho_{ss,r} \) and [4] [4,35].

When using EIT to control light fields, e.g., for quantum memories or light storage, the response of the atomic ensemble to the incident field \(\Omega_{sp} \), determined by the coherence between the low-lying states [1] and [2], \(\sigma_{12,ss} \), calculated in the stationary state \(\rho_{ss,r} \) [1]. This implicitly assumes that the timescale \(\tau_p \) connected to the probe field dynamics, is significantly longer than the relaxation time \(\tau_0 \) of the atomic ensemble, defining an adiabaticity condition. At resonance, \(\delta_3 = 0 \), the ensemble then remains in the dark state \(|\psi_r\rangle \) by adiabatically following \(\Omega_{sp} \), therefore \(\sigma_{12,ss} = 0 \), leading to transparency of the ensemble [1]. However, one might wonder why the adiabaticity condition can be met also in the non-resonant case, \(\delta_3 \neq 0 \), where the relaxation time \(\tau \) can in principle become arbitrarily long. The answer is that the coherence relaxes to its stationary value, \(\sigma_{12} \), at the fast time scale \(\tau_0 \ll \tau_p \), as the slow dynamics related to \(\tau \) corresponds to dephasing of coherences between \(|\psi_r\rangle \) and [4], which are irrelevant for the optical response. Thus, although the noninteracting system for \(\delta_3 \neq 0 \) becomes in fact metastable, this does not invalidate the adiabaticity condition.

B. Metastable manifolds of the interacting system

In the presence of interactions, in particular the long-range exchange interaction \(U_{jk} \), this no longer holds true. Here a slow collective dynamics within a metastable DFS emerges which
affects the optical response by introducing a new timescale that becomes relevant for EIT.

To study this in detail, we note that in the absence of the probe field, the ground level \(|1\rangle \) is disconnected from the dynamics, as shown in Fig. 1(a). For a single atom also the level \(|4\rangle \) is disconnected. For many atoms this is no longer the case, but the exchange and density-density interactions connect \(|4j\rangle \) only to \(|3k\rangle \) or \(|4k\rangle \), and thus states \(|1,4k\rangle \) are left invariant, \(U_{jk}|1,4k\rangle = 0 = V_{jk}|1,4k\rangle \), while \(|4j,4k\rangle \) gain phase due to \(V_{jk}|4j,4k\rangle = iV_{jk}|4j,4k\rangle \) and \(U_{jk}|4j,4k\rangle = 0 \). Therefore, the manifold of nondecaying states of \(N \) interacting atoms is a \(2^N \)-dimensional DFS of atoms either in \(|1\rangle \) or \(|4\rangle \). In this work, we consider the case in which initially only a single atom is found in state \(|4\rangle \), which is particularly relevant in the context of recent experiments with Rydberg gases [15–17,20,30,31]. Here, since the dynamics Eq. (4) conserves the number of atoms in \(V \), noninteracting case above.

\[
\alpha_{jk} = i\frac{W_{jk}|\Omega|_{0}^{2} + \eta (W_{jk}^2 - |U_{jk}|^2)}{(|\Omega|_{0}^{2} + \eta W_{jk}^2 - \eta^2 |U_{jk}|^2)},
\]

where

\[
\beta_{jk} = i\frac{U_{jk}^2 |\Omega|_{0}^{2}}{(|\Omega|_{0}^{2} + \eta W_{jk}^2 - \eta^2 |U_{jk}|^2)},
\]

with \(\eta := -\delta_2 + i\frac{\omega_r}{2} \) and \(W_{jk} := \delta_3 + V_{jk}^3 \). These parameters also enter the jump operators,

\[
L_j = \sqrt{N} \sum_{k \neq j} (e^{i k_j r_j} \Omega_p (r_j, t) \alpha_{kj} |k \rangle |k \rangle + e^{i k_j r_j} \Omega_p (r_j, t) \beta_{kj} |k \rangle |j \rangle),
\]

which correspond to a dissipative decay of an \((jth)\) atom to its ground state after a low-energy excitation is introduced to the system by the probe field. Note that effective dissipative processes within the DFS are in general dependent on coherences between distant sites.

When the exchange interaction is zero, \(U_{jk} = 0 \), we have \(\beta_{jk} = 0 \) and the jump operators Eq. (12) lead to dephasing between localised excitations, similarly as in the noninteracting case, but with the rates modified by density-density interactions. In contrast, a finite exchange interaction introduces nonlocal dynamics, through both coherent and dissipative processes. To illustrate this, we study the evolution of the local density \(d(j, t) = |\langle j | \rho (t) | j \rangle| \), of atoms in state \(|4\rangle \) under the action of a probe field propagating in the direction perpendicular to an atom chain (\(z \) axis), as shown in Fig. 2(a). The field has a stationary Gaussian profile. The exchange interaction leads to spatially dependent dynamics of excitations, as the nonuniform field breaks the translation symmetry. As a consequence, for moderate interaction strengths the excitation density dynamically develops a double peak structure from an initially uniform distribution when \(V_{jk}^3 + \delta_3 > U_{jk}^3 \) [Fig. 2(b)], while for strong interactions classical detailed balance dynamics emerges, see Appendix C, leading to the stationary state approximately following the probe field profile, \(\rho_{st} \approx N^{-1} \sum_{j=1}^{N} |\Omega_p (r_j)|^2 |j \rangle \langle j| \), where \(N = \sum_{j=1}^{N} |\Omega_p (r_j)|^2 \); see Fig. 2(c).

IV. EFFECTIVE EQUATIONS OF MOTION

In the following, we characterize the dynamics within the metastable DFS, which we calculate analytically to leading order in the probe field strength [22,36]; see Appendices B and A. For the sake of simplicity we consider here a control field of the form \(\Omega (r) = e^{i k_j r} \Omega (r) \) and isotropic density-density interactions, \(V_{jk} = V_{jk}^3 \). Within the metastable DFS the density matrix \(\rho \) evolves according to the master equation

\[
\frac{d}{dt} \rho = \sum_{j=1}^{N} \left(-i \sum_{k>j}^{N} H_{jk}, \rho \right) + D(L_j) \rho).
\]

The perturbative Hamiltonians are given by

\[
H_{jk} = \omega_{jk}^0 |j \rangle \langle j| + \omega_{jk}^+ |k \rangle \langle k| + \omega_{jk}^{-1} |j \rangle \langle j| + \text{H.c.},
\]

with the frequencies

\[
\omega_{jk}^0 = |\Omega_p (r_j, t)|^2 \text{Im}(\alpha_{jk}),
\]

\[
\omega_{jk}^+ = e^{i k_j (r_j - r_k)} \Omega_p (r_j, t) \Omega_p (r_k, t) \beta_{jk} - \beta_{kj}^{*} \frac{\beta_{jk}}{2i},
\]

where

\[
\sigma_{12}^j(t) = -i \Omega_p (r_j, t) \sum_{k \neq j} \alpha_{jk} \rho_{kk} - i \sum_{k \neq j} \omega_{jk}^+ \text{e}^{i k_j (r_j - r_k)} \times \Omega_p (r_j, t) \beta_{jk} \rho_{jk} + O(|\Omega_p (r_j, t) \rho_{0\text{int}}|^3),
\]

with \(\rho_{jk} = |j \rangle \langle j| \langle k| \rangle \) are coherences between \(|4\rangle \) excitations of different atoms, cf. [18,32]. Compared to the response encountered in conventional EIT [1], there are two differences. First, there are nonlocal contributions, i.e., the response of one atom generally depends on all others. Second, the coherence
The stationary state of the long-time dynamics of Eq. (6) corresponds to the stationary state ρ_{ss} of the full dynamics of Eq. (4) [22]. Without exchange interactions, the long-time dynamics leads to dephasing of coherences between localized excitations $|j\rangle$. For an initial state with a single excitation in state $|4\rangle$ there are thus N possible stationary states, with any SW decaying to the fully mixed state, $\rho_{ss} = N^{-1}\sum_{j=1}^{N} |j\rangle\langle j| + O(\Omega_p(t)^2\gamma_0)$ [38].

To gain some analytic insights into the case of nonzero exchange interactions, we consider the cases of all-to-all and nearest-neighbor (NN) interactions. In the former case, $\alpha_{jk} = \alpha$ and $\beta_{jk} = \beta$, which in the presence of the uniform probe field, $\Omega_p(r,t) = e^{i(k_r r + k_j r')}|\Omega_p(r)|$, leads to the unique and uniform stationary state,

$$\rho_{ss} = N^{-1}\sum_{j=1}^{N} |j\rangle\langle j| + c_N\sum_{k\neq j} e^{i(k_r r + k_j r')}|j\rangle|k\rangle,$$

where $c_N = (|N-2|/2 - 2Re(\alpha^*\beta))/(|N-1|/2 + |\alpha|^2)$. For a finite number $N > 2$ of atoms, ρ_{ss} is mixed unless the resonance $\alpha = -\beta$ takes place. In an atom chain with only nearest neighbors interacting, a more general pure stationary state is reached at the interaction resonance $|U_{j,j+1}| = |V_{j,j+1}|$, $\delta_3 = 0$,

$$|\Psi_{ss}\rangle = N^{-1/2}\sum_{j=1}^{N} (-1)^j \tilde{\Omega}_p(r_j)|j\rangle,$$

where the normalization $N = \sum_{j=1}^{N} |\Omega_p(r_j)|^2$ and $\tilde{\Omega}_p(r_j) = e^{i(k_r r + i\psi)}\Omega_p(r_j)$ with $\psi_j = -\sum_{k=1}^{j-1} \phi_{jk} + \frac{i}{\gamma_1}$ determined by the phase of $U_{j,j+1}^4|V_{j,j+1}^4|^2$. The stationary state is pure [up to $O(\Omega_p(t)^2\gamma_0)$] as a collective dark state of the long-time dynamics which read, cf. Eqs. (7)-(12),

$$H_{j,j+1} = \frac{\omega_{jj+1}}{2} |\rangle\langle +|^j + |\rangle\langle +|^j,$$

$$L_j = \sqrt{\Gamma^R_j}|j| + \sqrt{\Gamma^I_j}|j| + \sqrt{\Gamma^R_j}|j+1| + \sqrt{\Gamma^I_j}|j+1|,$$

where $|\rangle\langle +|^j = \tilde{\Omega}_p(r_{j+1})|j\rangle + \tilde{\Omega}_p(r_j)|j+1\rangle$ and $\omega_{jj+1} = |\Omega_p|^2 Im\phi_{j,j+1}$, with $|\Omega_p|$ being the maximum amplitude of the probe field (see Refs. [26,27] and similar schemes in Refs. [39,40]). It follows that the stationary polarization $<\sigma_{zz}| = 0$ in the first order, cf. Eq. (13). For the uniform probe field, numerical results for up to $N = 100$ equally spaced atoms suggest that the stationary state of a SW is achieved at times $t \approx N^2/\gamma_1$, where $\gamma = \gamma_1|\Omega_p|^2/2|U_{j,j+1}^4|$; see Fig. 3(a). For a Rydberg system with van der Waals (vdW) interactions, although the stationary state is in general mixed, it is closely approximated by Eq. (14) when setting $\delta_3 \approx |\Omega_p|^2/2|U_{j,j+1}^4|$; see Figs. 3(b) and 3(c). This choice maximizes the gap of the system with NN interactions, see Fig. 3(d), so that the vdW interactions act as a perturbation of the NN case, cf. Fig. 3(a) and Appendix D. Last, we note that in the special case of the resonance $U_{j,j} = -V_{j,j}^4$ (and thus $\alpha_{jk} = -\beta_{jk}$), the stationary state is
FIG. 3. Spectral gap and pure stationary state: (a) Scaling of the spectral gap for an open chain of N atoms with nearest-neighbor (NN) and van der Waals (vdW) interactions (black) at δ1 = 0. The gap is compared with the scaling \(\pi^2 \Gamma / N^2 \) (red dashed lines) and \(\pi^2 \Gamma / N^2 + 8 \gamma^{(N)} \) (blue dashed lines), where \(\Gamma = \gamma |\Omega_p|^2 |\alpha_{j,j+1}|^2 \) and \(\gamma^{(N)} = \gamma |\Omega_p|^2 |\alpha_{j,j+1}|^2 \); see Appendix D for discussion. (b) The overlap (\(\langle \Psi_{\text{ss}} | \Psi_{\text{st}} \rangle \)) of the stationary state with Eq. (14) for a system with vdW interactions. The overlap decays with growing \(N \) due to the tails in vdW interactions, but for each \(N \) the detuning \(\delta_1 \) can be chosen to maximise the overlap. Vertical cut through panel (b) at \(\delta_1 = 3 \gamma / r_0 \) is shown in (c). (d) The spectral gap dependence on the detuning \(\delta_1 / \gamma \) for \(N = 20 \) atoms (black with NN, orange with vdW interactions). The largest spectral gap, which is well approximated by \(\pi^2 \Gamma / N^2 \) and \(\pi^2 \Gamma / N^2 + 8 \gamma^{(N)} \) (red and blue dashed lines), corresponds to the maximal overlap in (b), thus giving the optimal \(\delta_1 \approx |\Omega_p|^2 / 2 |U|_{j,j+1}^N \) when \(\gamma \approx |\Omega_p|^2 / \gamma \). In these simulations the dispersion coefficients are \(C_{34} = C_{43} = 1.3 \times \gamma a^6 \) and the lattice spacing is \(\sqrt{2a} \). The fields are uniform \(\Omega_p = \Omega / \sqrt{2} = \gamma / 20 \) and \(\delta_1 = 0 \).

VII. UNITARY OPERATIONS WITHIN THE METASTABLE DFS

When the detuning \(\delta_1 \) and interactions are sufficiently small, we have that \(\alpha_{jk} \approx i (V_{jk}^A + \delta_1 |\Omega_p|^2 |\alpha_{j,j+1}|^2 \), \(\beta_{jk} \approx i U_{jk}^A |\Omega_p|^2 |\alpha_{j,j+1}|^2 \), and thus the coherent part of the dynamics Eq. (6) is considerably faster than the rate of the two-body dissipation Eq. (12), i.e., \(|\alpha_{jk}|, |\alpha_{jk}^A| \gg \Gamma_j \approx \gamma \) (|\alpha_{jk}|^2 + |\Omega_p|^2 |\alpha_{j,j+1}|^2)^2). Actually, even for arbitrary probe and control fields, when the metastable noninteracting DFS is spanned by \(|\text{jj}⟩ = |\psi_{r_1}, \ldots, \psi_{r_{j-1}}, \psi_{r_{j+1}}, \ldots, \psi_{r_N}⟩ \), \(j = 1, \ldots, N \), cf. Eq. (5), the long-time dynamics is unitary in the leading order [28,29,41] and governed by the Hamiltonian

\[
\tilde{H}_{jk} = \tilde{\alpha}_{jk} |\text{jj}⟩⟨\text{jj}| + \tilde{\alpha}_{jk}^A |\text{kk}⟩⟨\text{kk}| + \tilde{\alpha}_{jk}^{yy} |\text{kk}⟩⟨\text{kk}| + \text{H.c.,}
\]

\[
\tilde{\alpha}_{jk} = |\alpha_{jk}|^2 \left(\delta_1 + V_{jk}^A + \sum_{I \neq k, I \neq j} |\alpha_{II}^A|^2 V_{II}^{33} \right),
\]

\[
\tilde{\alpha}_{jk}^{yy} = c_{jk} c_{jk}^* U_{jk}^A.
\]

where \(c_{rk} = \Omega_p (r_j, t) / \sqrt{|\Omega_p (r_j, t)|^2 + |\Omega_p (r_j)|^2} \). This can be used to design a fully general unitary evolution in the metastable DFS, assuming it is possible to tune strength of the interactions between pairs of atoms (for dissipative corrections, see Appendix E). In such a setup, unitary gates could be performed on the quantum information encoded in collective excitations of SWs [42,43].

VIII. SUMMARY AND CONCLUSIONS

We have shown that EIT in an interacting many-body system gives rise to a rather intricate dynamics, featuring a metastable DFS and consequently long time scales. We have derived analytic expressions for the equations of motion in the metastable regime where the open system dynamics feature collective SW dark states. This interesting physics determines the dynamics of both the atomic ensemble and the probe light transmission for example in Rydberg quantum optics experiments and could be probed in detail by Rydberg EIT experiments utilizing two interacting Rydberg states [15–17,20,30,31,44]. Moreover, the dynamics of the atomic ensemble could be applied in the context of all-optical quantum computing, i.e., for the creation of entangled many-body states and the realization of unitary operations on collectively encoded qubits. An interesting future problem concerns the investigation of the coupled collective dynamics of the ensemble and a propagating probe field.

ACKNOWLEDGMENTS

K.M. acknowledges discussions with M. Müller and D. Viscom. Y.L.Z. acknowledges discussions with A. P. Mandoki. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (Grant No. FP/2007-2013/ERC Grant Agreement No. 335266 (ESCQUMA), the EPSRC Grant No. EP/M014266/1, the H2020-FETPROACT-2014 Grant No. 640378 (RYSQ), the German Research Foundation (Emmy-Noether-Grant HO 4787/1-1, GiRyd Project HO 4787/1-3, SFB/TRR21 Project C12), the Ministry of Science, Research and the Arts of Baden-Württemberg (RiSc Grant No. 33-7533-30-10/37/1), and National Natural Science Foundation of China (Grants No. 11304390 and No. 61632021), and National Basic Research Program of China (Grant No. 2016YFA0301903).

APPENDIX A: DERIVATIONS OF LONG-TIME DYNAMICS AND OPTICAL RESPONSE

Here we derive the long-times dynamics and optical response given in Eqs. (6)–(13). We use perturbation theory for linear operators [45] and consider a weak probe field \(\Omega_p (r) \) as a perturbation for dynamics of \(N \) four-level atoms with exchange and density-density interactions in the presence of a uniform control field, i.e., \(\frac{d}{dt} \rho = \mathcal{L} \rho = (\mathcal{L}_0 + \mathcal{L}_1) \rho \),

043860-5
where

$$L_0 \rho = -i \sum_{j=1}^{N} \left[\delta_2 \sigma_{22}^j + \delta_3 \sigma_{33}^j + (\Omega_e e^{i k \cdot r_j} \sigma_{32}^j + \text{H.c.}) + \sum_{k>j}^{N} (U_{jk} + V_{jk}) \right] \rho + \gamma \sum_{j=1}^{N} \left[\sigma_{12}^j \rho \sigma_{21}^j - \frac{1}{2} \{ \sigma_{22}^j, \rho \} \right]. \quad (A1)$$

$$L_1 \rho = -i \sum_{j=1}^{N} \left[\Omega_p(r_j) \sigma_{21}^j + \text{H.c.}, \rho \right]. \quad (A2)$$

Long-time dynamics. As the weak probe field perturbs the stationary DFS of L_0, slow dynamics are induced inside, which can be approximated by the first- and second-order corrections of the perturbation theory for low-lying eigenmodes of $L_0 + L_1$ [22].

The first-order correction, $P_0 L_1 P_0$ with P_0 denoting the projection of an initial state on the stationary DFS, corresponds to the unitary dynamics [22,28,29]. For Eqs. (A1) and (A2), we have $P_0 L_1 P_0 = 0$, as the weak probe field creates coherences to the outside of the DFS, which decay to 0 according to the effective Hamiltonian H_0^{eff}, i.e., from $P_0 = \lim_{t \to -\infty} e^{i H_0 t}$, we have $P_0 L_1 P_0 = \sum_{j=1}^{N} \lim_{t \to -\infty} (i e^{-i H_0 t} \sigma_{12}^j + i \rho \sigma_{21}^j e^{i H_0 t}) = 0$, where $H_0^{\text{eff}}(0) = \sum_{j=1}^{N} H_0^{j,\text{eff}}$ and $H_0^{j,\text{eff}} = V_{jk} + U_{jk} + (\delta_2 - i \delta_3) (\sigma_{32}^j + \sigma_{23}^j) + \delta_3 (\sigma_{33}^j + \sigma_{22}^j) + [\Omega \langle e^{i k \cdot r_j} \sigma_{32}^j + e^{i k \cdot r_j} \sigma_{23}^j \rangle + \text{H.c.}], \text{cf. Ref. [41].}$

The second-order correction is $-(P_0 L_1 S_0 L_1 P_0) \rho = \text{the reduced resolvent of } L_0 \text{ at } 0, \Sigma_{0} L_0 \Sigma_{0} = L_0 = I - P_0 [45].$ It corresponds to completely positive trace-preserving dynamics [22,28,29,36]. For Eqs. (A1) and (A2) the perturbation creates coherences to the outside of the DFS, whose decay is described by the effective Hamiltonian H_0^{eff}. Thus, the resolvent $S_0 = \lim_{t \to -\infty} \int_{0}^{t} \text{d} t' \langle e^{i L_0 t'} - P_0 \rangle$ is replaced by the reduced resolvent S_0^{eff} of H_0^{eff} at 0,

$$-(P_0 L_1 S_0 L_1 P_0) \rho = -(P_0 L_1 \sum_{j=1}^{N} \Omega_p(r_j) S_0^{\text{eff}} \sigma_{21}^j \rho + \text{H.c.).} \quad (A3)$$

as $S_0(-i \sigma_{21}^j \rho) = \lim_{t \to -\infty} \int_{0}^{t} \text{d} t' (-i) e^{-i H_0^{\text{eff}} t'} \sigma_{21}^j \rho = S_0^{\text{eff}} \sigma_{21}^j \rho$, \text{cf. Ref. [41].}$ Furthermore, for an initial single excitation to $|4\rangle$, the probe field $\Omega_p(r_j)$, excites only the eigenmodes of two-body dynamics between the jth atom and the atom excited to $|4\rangle$, $e^{L_0}(-i \sigma_{21}^j \rho) = \lim_{t \to -\infty} \sum_{\text{exc.}} e^{i H_0^{\text{eff}} t} \sigma_{21}^j \rho$, so that $S_0(-i \sigma_{21}^j \rho) = \sum_{\text{exc.}} S_0^{\text{eff}} \sigma_{21}^j \rho$, with S_0^{eff} being the reduced resolvent of H_0^{eff}. Consider now the second perturbation by the probe field, $\Omega_p(r_j)$ in Eq. (A3). All atoms except j, k, and lth are found in the ground level $|1\rangle$, which is disconnected from the dynamics L_0, and thus the field $\Omega_p(r_j)$ introduces dynamics of at most $N = 3$ atoms, so that P_0 is replaced in Eq. (A3) by the projection on the DFS of those atoms, $P_0^{(kl)}$. Furthermore, note that for $l \neq j, k$ we have $\sigma_{12}^{(k,l)} S_0^{(k,l)} \sigma_{21}^{(k,l)} = 0$, while $\sigma_{21}^{(l)} S_0^{(k,l)} \sigma_{21}^{(k,l)} = S_0^{(k,l)} \sigma_{21}^{(k,l)}$, and (their conjugations) decay to 0, i.e., $P_0(\sigma_{21}^{(l)} S_0^{(k,l)} \sigma_{21}^{(k,l)}) = \lim_{t \to -\infty} e^{-i H_0^{\text{eff}} t} S_0^{(k,l)} \sigma_{21}^{(k,l)} = 0$, \text{cf. Ref. [41].}$ Therefore, for $l \neq j, k$ only terms $P_0(\sigma_{21}^{j,k} S_0^{(j,k)} \sigma_{21}^{j,k})$ contribute, and $P_0^{(kl)}$ can be replaced by the corresponding projection from the

subspace featuring only two excitations. Equations (6)–(12) of the main text follow.

Optical response. The metastable states up to second-order corrections are given by [22,45]

$$\rho - S_0 L_1 P_0 \rho = \sum_{j=1}^{N} \Omega_p(r_j) \sum_{k \neq j}^{N} S_0^{(j,k)} \sigma_{21}^{(j,k)} + \text{H.c.}. \quad (A4)$$

where ρ is in the stationary DFS, and we assumed a single $|4\rangle$-excitation in the system, cf. discussion below Eq. (A3). In particular, coherence between the levels $|1\rangle$ and $|2\rangle$ is induced,

$$\langle \sigma_{12}^{(j)} \rangle \approx - \sum_{j=1}^{N} \Omega_p(r_j) \sum_{k \neq j}^{N} S_0^{(j,k)} \sigma_{21}^{(j,k)}$$

$$\langle \sigma_{12}^{(j)} \rangle \approx - \sum_{j \neq l}^{N} \Omega_p(r_j) \sigma_{12}^{(j,l)} + \text{H.c.).} \quad (A5)$$

where the equality follows from the fact that for $S_0^{(j,k)} \sigma_{21}^{(j,k)}$ all atoms except j, k, and lth are found in the ground level $|1\rangle$. The local and nonlocal contributions to the polarization lead directly to Eq. (13) by solving the first-order corrections for $N = 2$ atoms.

APPENDIX B: EFFECTIVE DYNAMICS Versus FULL DYNAMICS For Few Atoms

For $N = 3$ atoms we compare the effective dynamics in the N-dimensional DFS, Eqs. (6)–(12), with the dynamics on the full Hilbert space of a dimension 4^N. In Table I we show the excitation density, $d(j) = |j| |j|$, and the polarization,

| TABLE I. Stationary excitation density, polarization, and fidelity for the stationary states of $N = 3$ atoms with vdW interactions, $C_\text{34} = 1.3 \times 10^4 a^6$, $C_\text{ex} = 1.0 \times 10^4 a^6$, in a lattice with spacing a and open boundaries. The fields are uniform $\Omega_p = \Omega_e/\gamma = 50$, and detunings $\delta_3 = \delta_5 = 0$. |
| --- | --- | --- |
| Dynamics | Effective | Full |
| $d(1) = d(3)$ | 0.3515570 | 0.3512607 |
| $d(2)$ | 0.296886 | 0.296615 |
| $\langle \sigma_{12}^{(1)} \rangle \times 10^3$ | 1.70451 - i 0.379854 | 1.70697 - i 0.379947 |
| $\langle \sigma_{12}^{(2)} \rangle \times 10^3$ | 5.33015 - i 1.39312 | 5.33241 - i 1.39369 |
| F | 0.9996 |
$\langle \sigma_{12}^j \rangle$, for the stationary states of the effective dynamics in the DFS, ρ_{FS}, and the exact solution on the full system space, ρ_{full}, together with fidelity between those states, $F = |\text{Tr}(\rho_{DFS} \rho_{full})|^{1/2}$. Results of Table 1 agree with predictions of higher order corrections in the probe field: quadratic for the density, cubic for the polarizability, and quadratic for the infidelity $1 - F$. \[\text{[45]} \]

APPENDIX C: DYNAMICS IN THE LIMIT OF STRONG INTERACTIONS

In the limit of the strong interactions, $|U_{jk}^{34}| \to \infty$ or $|V_{jk}^{34}| \to \infty$, we have
\[
\alpha_{jk} \to \frac{i}{\eta} \frac{-i \delta_j + \gamma/2}{\delta_j^2 + \gamma^2/4}, \quad \beta_{jk} \to 0, \quad (C1)
\]
cf. Eqs. (10) and (11), which is analogous to the noninteracting EIT with large detuning $\delta_j \to \infty$. The stationary state is N-degenerate, $\rho_{ss} = \sum_{j=1}^{\infty} p_j \ket{j} \bra{j}$, with the probability distribution determined by the initial excitation density, $p_j = \ket{j} \bra{j}$. Note that at the interaction resonance, $U_{jk}^{34}/V_{jk}^{34} \to e^{i\phi}$, Eq. (C1) is not valid, as $\alpha_{jk} \to \frac{i}{\eta}$ and $\beta_{jk} \to \frac{i}{\eta} e^{i\phi}$, which leads to the unique stationary state [see, e.g., Eq. (14)].

Away from the resonance the degeneracy of a stationary state ρ_{ss} is lifted by the nonlocal corrections to Eq. (C1) as follows. First, an initial state dephases into a mixture of localised excitations, and coherence $\ket{j} \ket{k}$, $j \neq k$, decays at a rate $\Gamma_j + \Gamma_k$ and oscillation frequency $\omega_j^2 - \omega_k^2$, where $\Gamma_j = \gamma \sum_{j' \neq j} |\Omega_p(r_j)|^2 |\alpha_{jj'}|^2/2$ and $\omega_j^2 = \sum_{j' \neq j} |\Omega_p(r_j)|^2 \text{Im} \alpha_{jj'}$. At later times $t \gg \tau_a = \max_{j,k,k \neq k}(\Gamma_j + \Gamma_k)^2 + (\omega_j^2 - \omega_k^2)^2/2$, this is followed by classical evolution, $\rho(t) = \sum_{j=1}^{\infty} p_j(t) \ket{j} \bra{j}$, with
\[
\frac{d}{dt} p_j(t) = \sum_{k=1}^{N} ((T_1)_{jk} + (T_2)_{jk}) p_k(t), \quad (C2)
\]
where $j \neq k$,
\[
(T_1)_{jk} = \gamma |\Omega_p(r_j)|^2 |\beta_{jk}|^2, \quad (T_2)_{jk} = |\Omega_p(r_j)|^2 |\Omega_p(r_k)|^2 |\beta_{jk}|^2 \times \text{Re} \Gamma_j + \Gamma_k + i(\omega_j - \omega_k),
\]
and $(T_{1,2})_{jj} = -\sum_{k \neq j} (T_{1,2})_{kj}$. The first contribution T_1 is due to exchange-interactions terms in jumps J_j, see Eq. (12), and obeys the detailed balance condition, so that its stationary state follows the probe field intensity profile, $\rho_{ss} = N^{-1} \sum_{j=1}^{N} |\Omega_p(r_j)|^2 |\beta_{jk}|^2$, where $N = \sum_{j=1}^{N} |\Omega_p(r_j)|^2$. The second contribution T_2 represents density fluctuations due to coherences created between the localised excitations. For strong interactions T_1 dominates and the stationary state approximately follows the field intensity profile, cf. Fig. 2(e). We have assumed that the classical dynamics, Eqs. (C2) and (C3), dominate higher-order corrections in the probe field neglected in Eq. (6), which is true for a weak enough probe field.

Derivation of Eqs. (C2) and (C3) is based solely on the fact that $|\alpha_{jk}| \gg |\beta_{jk}|$ and $|\gamma| |\alpha_{jk}|^2 \gg |\beta_{jk}|$. Therefore, classical dynamics of Eqs. (C2) and (C3) also arise when the density-density interaction or δ_j-detuning, although finite, dominate the exchange interaction, $|U_{jk}^{34}| \approx |V_{jk}^{34} + \delta_j|$ (unless the interactions are weak and the unitary motion cannot be neglected).

APPENDIX D: TIME SCALE OF RELAXATION TO PURE STATIONARY STATE

For nearest-neighbor (NN) interactions at the resonance, $|V_{jk}^{34} + \delta_j| = |\epsilon_{jk}|$ and $\delta_j = 0$, the stationary state of the long-time dynamics is pure; see Eq. (14). In Fig. 3(a) the spectral gap for chains of up to $N = 100$ equally spaced atoms in the uniform probe field, follows the scaling $(-\text{Re}\lambda_2) \approx \pi e^{\gamma}/N^2$, where the nearest-neighbor dissipation rate $\Gamma = \gamma (\Omega_p)^2 |\alpha_{jj+1}|^2$. Below we show analytically that the spectral gap is asymptotically bounded, \[(-\text{Re}\lambda_2)_\text{b.c.} \leq 4\pi^2 \Gamma/N^2, \quad (D1) \]
for chains with periodic boundary conditions, and \[(-\text{Re}\lambda_2)_\text{b.c.} \leq 12\Gamma/N^2, \quad (D2) \]
for open boundary conditions.

Dynamics of coherences to the dark state, $|\Psi \rangle \langle \Psi_{ss}|$, are governed by the effective Hamiltonian, $-i \hat{H}_\text{eff} = \sum_{j=1}^{N} (-i \sum_{k} \hat{J}_j \hat{J}_k - \frac{i}{\eta} \hat{L}_j \hat{L}_j)$, i.e., $\frac{d}{dt} |\Psi \rangle = -i \hat{H}_\text{eff} |\Psi \rangle$. For NN interactions and the uniform probe field, $-i \hat{H}_\text{eff} = -|\Omega_p|^2 \sum_{j=1}^{N} |\alpha_{jj+1}|^2 |\alpha_{jj+1}| |\gamma_j + 1 |j + 1\rangle \langle j + 1| + \beta_{jj+1} |e^{i(k_j + k_{j+1})(r_j - r_{j+1})}|j + 1\rangle \langle j + 1| + \text{H.c.}]$. Considering equally spaced atoms at the interaction resonance $\beta_{jj+1} = \alpha_{jj+1} = \alpha$, further gives $-i \hat{H}_\text{eff} = -|\Omega_p|^2 \sum_{j=1}^{N-1} |\alpha_{jj+1}| |j + 1\rangle \langle j + 1|$, where $|j + 1\rangle = e^{i(k_j + k_{j+1})r_j}|j\rangle + e^{i(k_j + k_{j+1})r_{j+1}}|j+1\rangle$.

For p.b.c. and an even number N of atoms, the spin waves $|\Psi(k_j)| = \frac{1}{2} \sum_{j=1}^{N} e^{ik_j r_j}|j\rangle$, with $k_j = k + k_p + k_{N/2} n$ and $a_n = r_{j+1} - r_j$, $k = 1, \ldots, N$, are the eigenmodes of $-i \hat{H}_\text{eff}$ with the eigenvalues $-2\alpha(1 + \cos\frac{2\pi n}{N})$. The choice $k = \frac{N}{2} \pm 1$ leads to Eq. (D1) by noting that $\text{Re}(\alpha) = \gamma |\alpha|^2$.

For a system with o.b.c., we use a variational principle for Hermitian $i\alpha^{-1} \hat{H}_\text{eff}$ to find its second eigenvalue above the known minimum, which equals 0 and corresponds to $|\Psi_{ss}\rangle = \frac{1}{2} \sum_{j=1}^{N} e^{i(k_j + k_{j+1})r_j}|j\rangle$, cf. (14). For the variational set reduced to the spin waves, we then have
\[
\min_{|\Psi\rangle} \frac{\alpha^{-1} \langle \psi | iH_{\text{eff}} | \Psi \rangle}{|\langle \Psi | \Psi \rangle|^2} - |\langle \Psi | \Psi \rangle|^2 \leq |\Omega_p|^2 \min_k \frac{\frac{N-1}{N} \left[1 + \cos \cos \frac{2\pi n}{N} \right]}{1 - \frac{1}{2} e^{-2\gamma N/\eta}} \approx 12 |\Omega_p|^2 N^2, \quad (D2)
\]
where the last approximation follows from $k = \frac{N}{2} + x$ and $x \to 0$ and gives Eq. (D2).

Approximately pure state preparation with van der Waals interactions. In Fig. 3(a) we also show the scaling with N of the gap for the system van der Waals (vdW) interactions, which features a characteristic slowing down absent for NN interactions. For moderate N this is a consequence of van der Waals interactions being a weak next-nearest-neighbor (NNN) perturbation to NN interactions,
as \(U_{jk}^{34} = C_{34}/|r_j - r_k|^6 \), \(V_{jk}^{34} = C_{34}/|r_j - r_k|^6 \). For \(C_{34} = C_{34} \), the NNN perturbation is at the opposite resonance to the fulfilled by \(|\psi_{ss}\rangle\). For p.b.c. and even \(N \) this leads to the eigenvalue shift by \(\frac{4}{N} \sqrt{|\Gamma_{1c}|[1 + \cos(\frac{\pi k}{N})]| + \frac{4}{N} \Gamma_{1p}[1 + \cos(\frac{2\pi k}{N})]| - 2\alpha(1)|\Omega_p|^2| - 4\alpha(1)^2|\Omega_p|^2| \), where \(\alpha(1) = \sigma_{j,j+2} \) and \(k \neq N/2 \) [45]. Therefore, for moderate \(N \) the bound is modified as
\[
(\text{Re}\lambda_{2})_{\text{p.b.c.}} \leq 4\pi^2 \Gamma/N^2 + 8\Gamma^{(1)}. \tag{D3}
\]

In Figs. 3(a) and 3(d) such a shift describes well the gap scaling also for o.b.c. The influence of NNN interactions can be minimised by the choice of detuning \(\delta_2 = |\Omega_p|^2/(2U_{jj+1}) \), which corresponds to the maximal gap of the system with NN interactions and \(\Gamma = \Omega_{p}^2/\gamma \); see Figs. 3(b) and 3(d). In this case, the stationary state \(\rho_{ss} \), although mixed, is close to the pure state of Eq. (14); see Figs. 3(b) and 3(c).

For the van der Waals interactions at the opposite resonance, \(C_{34} = -C_{34} \), the stationary state is pure, \(|\psi_{ss}\rangle = \frac{1}{\pi} \sum_{j=1}^{N} e^{i(k_j + k_0)/2}\langle j| \) for o.b.c. The gap scales at least as fast as \((\Gamma + 4\Gamma^{(1)})/N^2 \), since \(-\langle \Psi(k_0)|i[H^{(1)}]1|\Psi(k_0)\rangle = -2\alpha(1)[1 - \cos(\frac{2\pi k}{N})]\Gamma_{1c} + 2\alpha(1)^2[1 - \cos(\frac{2\pi k}{N})]\Gamma_{1p}^2 + ... \). For p.b.c. we arrive at \(4\pi^2(\Gamma + 4\Gamma^{(1)})/N^2 \).

APPENDIX E: DERIVATION OF UNITARY DYNAMICS IN THE LIMIT OF SMALL INTERACTIONS AND DISSIPATIVE CORRECTIONS

Consider noninteracting dynamics of \(N \) 4-level atoms,

\[
\mathcal{L}_{0}\rho = -i \sum_{j=1}^{N} \left(\delta_{2} \sigma_{j}^{32} + (\Omega_{p}(r_{j})\sigma_{j}^{21} + \Omega_{r}(r_{j})\sigma_{j}^{34} + \text{H.c.})\rho \right) + \gamma \sum_{j=1}^{N} \left(\sigma_{j}^{12} \rho \sigma_{j}^{21} - \frac{\gamma}{2} \sigma_{j}^{22} \rho \right) . \tag{E1}
\]

perturbed by small detuning \(\delta_3 \) and weak density-density, \(V_{jk} \), and exchange interactions, \(U_{jk} \),

\[
\mathcal{L}_{1}\rho = -i \sum_{j=1}^{N} \left[\delta_{3} \sigma_{j}^{33} + \sum_{k>j} U_{jk}^{34} \sigma_{j}^{k} \sigma_{k}^{34} + \text{H.c.} + \sum_{n,m=3,4} V_{jm}^{nm} \delta_{n} \delta_{m} \right] . \tag{E2}
\]

The stationary DFS of noninteracting \(\mathcal{L}_{0} \) is a tensor product of two-dimensional DFS of individual atoms spanned by dark \(|\psi_r\rangle = (\Omega_{r}^{*}(r_{1})1 - \Omega_{p}(r_{1})3)/\sqrt{\Omega_{r}^{2}(r_{1}) + |\Omega_{p}(r_{1})|^2} \) and disconnected \(|4\rangle \). Let \(P_{0} \) denote the projection of an initial state onto the stationary DFS.

Unitary dynamics inside the stationary DFS of \(\mathcal{L}_{0} \) are governed by the first-order correction, \(P_{0}\mathcal{L}_{1}P_{0} [22,28,29,45] \). As the perturbation \(\mathcal{L}_{1} \) creates coherences to a dark DFS, whose dynamics is described by the effective Hamiltonian, we have \(P_{0}(-i(U_{jk} + V_{jk})\rho) = -i \lim_{\gamma \to \infty} e^{-i(H^{(1)}_{0} + H^{(1)}_{\text{eff}})(U_{jk} + V_{jk})\rho} \) where \(H^{(1)}_{0} = \delta_{2} - i \gamma_{2} \sigma_{2}^{12} + (\Omega_{p}(r_{j})\sigma_{2}^{1} + \Omega_{r}(r_{j})\sigma_{2}^{3} + \text{H.c.}) \) and \(P_{0}^{j} \) is the orthogonal projection on the \(j \)th atom DFS, cf. Ref. [41] and Appendix A. Therefore,

\[
(P_{0}\mathcal{L}_{1}P_{0})\rho = -i \sum_{j=1}^{N} \left[\left(\epsilon_{r} \right)^{2} \delta_{3} |\psi_{r}\rangle \langle \psi_{r}| + \sum_{k=1,k\neq j}^{N} \left(\epsilon_{r} c_{r}^{k} U_{jk}^{34} |4_{j}\psi_{r}\rangle \langle 4_{k}| + V_{jk}^{44} |4_{j}4_{k}| \right)
+ \left(\epsilon_{r} \right)^{2} V_{jk}^{34} |\psi_{r}\rangle \langle 4_{j}4_{k}| \right] , \tag{E3}
\]

where \(\epsilon_{r} := (3)|\psi_{r}\rangle/|\Omega_{p}(r_{1})|^{1/2} + |\Omega_{r}(r_{1})|^{1/2} \) and \(U_{jk}^{34} = (U_{jk}^{44})^{*} \). Equation (E3) for the case of an initial state with a single \(|4\rangle\)-excitation gives Eq. (15).

Dissipative corrections are given by [22,28,29]

\[
\rho(t) = e^{i\mathcal{L}_{1}\rho} \approx e^{P_{0}\mathcal{L}_{1}P_{0}}\rho_{0} + O(t \mathcal{L}) , \tag{E4}
\]

where the generator of the second-order dynamics

\[
\mathcal{L} \rho = \sum_{j=1}^{N} \left(-i[\tilde{H}_{j}, \rho] + D(\tilde{L}_{j})\rho + \sum_{k>j} D(\tilde{L}_{jk})\rho \right) , \tag{E5}
\]
with
\[
\hat{L}_j = \sqrt{\frac{\Omega_\epsilon(r_j)}{|\rho(r_j)|^2 + \Omega_\epsilon(r_j)^2}} \left(c_r \delta_3 \langle \psi_r | \psi_r \rangle + \sum_{k \neq j}^N c_r V_{jk}^{\text{eff}} | \psi_r, 4_k \rangle \langle \psi_r, 4_k | + \sum_{k \neq j}^N c_r U_{jk}^{\text{eff}} | \psi_r, 4_k \rangle \langle 4_j | \psi_r \rangle \right),
\]
(E6)
\[
\hat{L}_{jk} = \sqrt{\frac{2 \Re(s_{jk})}{\gamma}} c_r c_r V_{jk}^{\text{eff}} | \psi_r, \psi_r \rangle \langle \psi_r, \psi_r |,
\]
(E7)
\[
\hat{H}_j = \delta_3 \frac{\gamma}{2} \hat{L}_j^\dagger \hat{L}_j - \sum_{k \neq j}^N \frac{\Im(s_{jk})}{2 \Re(s_{jk})} \hat{L}_{jk} \hat{L}_{jk}^\dagger.
\]
(E8)

The parameter \(s_{jk} = -i (3j, 3k) | S_0^{\text{eff}} | 3j, 3k \rangle \), where \(S_0^{\text{eff}} \) is the resolvent of \(H_0^{\text{eff}} + H_{0'}^{\text{eff}} \). When the control and probe fields are uniform, \(s_{jk} = (\Omega_\epsilon |^2 ((\gamma/2 + i \delta_j)^2 + |\Omega_\epsilon|^2 + |\Omega_\epsilon|^2)/[2(\gamma/2 + i \delta_j)(|\Omega_\epsilon|^2 + |\Omega_\epsilon|^2)^2] \). The jump operators \(\hat{L}_j \) correspond to a dissipative decay of a single \(j \)th atom, while \(\hat{L}_{jk} \) to a coincident decay of \(j \)th and \(k \)th atom.

Derivation. For initial state \(\rho \) inside the DFS, the dynamics is approximated in the second order by \([22,45]\)
\[
\hat{L} \rho = -(\mathcal{P}_0 \mathcal{L}_1 S_0 \mathcal{L}_1 \mathcal{P}_0) \rho = -\mathcal{P}_0 \mathcal{L}_1 \sum_{j=1}^N \left(\delta_3 S_0^{\text{eff}} \sigma_{j3} \rho + \sum_{k \neq j}^N S_0^{\text{eff}} (U_{jk} + V_{jk}) \rho + \text{H.c.} \right),
\]
(E9)
where \(S_0 \) is the reduced resolvent for \(\mathcal{L}_1 \) at 0, and the last equality follows the fact that the perturbation \(\mathcal{L}_1 \) creates coherences to the DFS evolving with the effective Hamiltonian, so that \(S_0[-i(U_{jk} + V_{jk}) \rho] = -i \lim_{t \to \infty} \int_0^t dt' \langle \psi_r \rangle (e^{-i[H_0^{\text{eff}} + H_{0'}^{\text{eff}}]t'} - \mathcal{P}_0 \otimes \mathcal{P}_0^0) (U_{jk} + V_{jk}) \rho = S_0^{\text{eff}} (U_{jk} + V_{jk}) \rho \).

The only nonzero contributions in Eq. (E9) come from the second \(\mathcal{L}_1 \) acting again on the atom perturbed outside the DFS (see below), i.e., \(j \)th atom in \(U_{jk}^{\text{eff}} \) and \(V_{jk}^{\text{eff}} \) terms, or \(k \)th atom in \(U_{jk}^{\text{eff}} \) and \(V_{jk}^{\text{eff}} \) terms, or both atoms in \(V_{jk}^{\text{eff}} \) terms. Thus, Eqs. (E5)–(E8) follow from the solution for \(N = 3 \) atoms.

When the second \(\mathcal{L}_1 \) acts on the atom inside DFS, there are terms of two types (and their conjugates), e.g., \(X_{lm} (S_0^{\text{eff}} \sigma_{j3}^{l3}) \sigma_{4k}^{l4} \rho = (S_0^{\text{eff}} \sigma_{j3}^{l3}) X_{lm} \sigma_{4k}^{l4} \rho \) and \((S_0^{\text{eff}} \sigma_{j3}^{l3}) \sigma_{4k}^{l4} \rho X_{lm} \) for the first perturbation in Eq. (E9) due to \(V_{jk}^{\text{eff}} \). When \(l, m \neq j \) these terms decay to 0, since \(\mathcal{P}_0 (S_0^{\text{eff}} \sigma_{j3}^{l3}) X_{lm} \sigma_{4k}^{l4} \rho = \lim_{t \to \infty} e^{-i(H_0^{\text{eff}} + H_{0'}^{\text{eff}})t} (S_0^{\text{eff}} \sigma_{j3}^{l3}) X_{lm} \sigma_{4k}^{l4} \rho = (P_{l} \otimes \mathcal{P}_0^0) (P_{l} \otimes \mathcal{P}_0^0) X_{lm} \sigma_{4k}^{l4} \rho = 0 \) as \(P_{l} \sigma_{44}^{l4} \rho = 0 \). Similarly, \(\mathcal{P}_0 (S_0^{\text{eff}} \sigma_{j3}^{l3}) \sigma_{4k}^{l4} \rho X_{lm} = (P_{l} \otimes \mathcal{P}_0^0) (P_{l} \otimes \mathcal{P}_0^0) \sigma_{4k}^{l4} \rho X_{lm} \rho = 0 \).

As $\delta_1 \neq 0$ perturbs a DFS, the long-time dynamics timescale τ is actually determined with nondissipative relaxation time $\tau'_0 \leq \tau_0$ given by the inverse of the imaginary gap of the effective Hamiltonian of the single-atom dynamics L at $\delta_1 = 0$, i.e., $H_{j} - \frac{1}{2} \sigma_{j2}^{2}$ instead of τ_0 [41]; see Appendix E.

This structure is not changed by higher order corrections, as all the eigenmodes of the full dynamics in Eq. (4) are separable, thus guaranteeing locality of the dynamics.