Speech-in-noise processing in elderly hearing-impaired listeners with or without hearing aid experience: Eye-tracking and fMRI measurements

Habicht, Julia; Behler, Oliver; Kollmeier, Birger; Neher, Tobias

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
INTRODUCTION

Wendt et al. (2014) developed an eye-tracking paradigm for estimating how quickly a participant can grasp the meaning of an acoustic sentence-in-noise stimulus that is presented concurrently with two similar pictures, only one of which depicts the sentence meaning correctly (the ‘processing time’). Previously, we found that hearing-impaired (HI) listeners with hearing aid (HA) experience had shorter processing times than HI listeners without HA experience, despite no differences in speech intelligibility (Habicht et al., 2016, 2017). Peelle and Wingfield (2016) suggested that HI listeners recruit regions outside the core speech processing network (comprising middle temporal and inferior frontal gyri) to achieve speech comprehension. Here, we adapted the eye-tracking paradigm for functional magnetic resonance imaging (fMRI) measurements to address the following research question: Is HA experience associated with reduced recruitment of brain regions outside the core speech comprehension network?

EYE-TRACKING MEASUREMENTS

Speech material (Uslar et al. 2013)
Two sentence structures with different levels of linguistic complexity (‘low’ and ‘high’).

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
</tr>
</thead>
</table>

Picture sets
One picture illustrates the situation described in the spoken sentence (→ target). The other picture illustrates the same situation with interchanged roles (→ competitor).

Task “Select the picture that matches the acoustic stimulus by pressing a button as fast as possible after the acoustic presentation!”

Outcome Eye-fixation rate over time allows estimating when the participant must have grasped the sentence meaning.

FMRI MEASUREMENTS

Stimuli Sentence-in-noise stimuli with corresponding picture sets from eye-tracking (SPIN, SPINLR): Stationary speech-shaped noise with only one picture as baseline.

Task “Select the target picture by pressing a left or right button after the acoustic presentation!”

Outcome Brain activation as inferred via blood oxygenation level dependent (BOLD) contrasts.

AMPLIFICATION

All stimuli spectrally shaped according to the National Acoustic Laboratories-Revised’ (Byrne et al. 2001) prescription rule using the Master Hearing Aid (Grimm et al. 2006) and presented via earphones.

RESULTS

Eye-tracking measurements Table 1: Significant effects from novel model/ANOVA.

<table>
<thead>
<tr>
<th>Factor</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ling. complexity</td>
<td>21.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Listener group</td>
<td>5.5</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Figure 2: Mean processing times for the two listener groups and levels of linguistic complexity.

fMRI measurements

4. A Stimulus type: As expected, relative to the noise-only stimuli, the SPIN stimuli led to more activation in bilateral superior temporal gyrus, left superior and inferior frontal gyrus, right middle frontal gyrus, left precentral gyrus and bilateral middle occipital gyrus (cf. Lee et al. 2016).

4. B Ling. complexity: As expected, relative to the SPIN>0 stimuli, the SPIN<0 stimuli led to more activation in bilateral inferior and middle frontal gyri, left precentral, right middle occipital and left superior temporal gyrus (cf. Lee et al. 2016).

5. A Listener group x stimulus type: As expected, relative to the eHA group, the iHA group showed more activation for the SPIN stimuli relative to the noise-only stimuli in left precentral gyrus, left cerebellum, right medial frontal gyrus, and left superior temporal gyrus (cf. Peelle et al. 2011).

5. B Listener group x ling. complexity: Consistent with our eye-tracking results (above), no interaction between listener group and linguistic complexity observable.

CONCLUSIONS

Our results support the idea that HA experience (1) positively influences the ability to process noisy speech quickly and (2) reduces the recruitment of brain regions outside the core speech comprehension network, regardless of linguistic complexity.