Microarray of programmable electrochemically active elements

McCaskill, John; Maeke, Thomas; Straczek, Lukas; Oehm, Jürgen; Funke, Dominic; Mayr, Pierre; Sharma, Abhishek; Müller, Asbjørn; Tangen, Uwe; H. Packard, Norman; Rasmussen, Steen

Publication date: 2016

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
MICREAgents Project 2012-2016
Future Emerging Technologies
Coordinator: Prof. John S. McCaskill
Ruhr Universität Bochum, Germany
Web Site http://www.micreagents.eu

Microarray of programmable electrochemically active elements
John S. McCaskill1, Thomas Maeke1, Lukas Straczek2, Jürgen Oehm2, Dominic Funke3, Pierre Mayr3, Abhishek Sharma1, Asbjørn Müller4, Uwe Tangen1,4, Norman Packard4,5, Steen Rasmussen4,5

Possible applications of the MICREAgents Dock, a two dimensional array of programmable electrochemically active elements, to Alife.

Device Origin and Design
The dock is a part of a larger project, MICREAgents (McCaskill et al., 2012). The original vision of the project included two major technological components: tablets and the dock. Tablets are small (~100 x 100 x 50µm), autonomous electronic elements, comprising a form of smart, programmable, electrochemically active ‘dust’, and unlike conventional smart dust communicating via pairwise interactions rather than wireless radiation. Tablets are poured into a solution, and can interact with the surrounding solution, with each other, and with smart surfaces. A dock is such a static two dimensional array of 256 x 256 microelectrodes (see Fig. 1) beneath a fluid film and connected to a host computer, from which each of the sites may be independently controlled. One goal of MICREAgents was to develop this technology to enable a new form of evolution through the interaction of chemistry with these new hybrid informational-electrochemical elements.

Experimental examples
Electrochemiluminescence (ECL). See Fig.2

Application to ALife
The dock should be useful for novel origin of life experiments, to discover chemistry that enables the transition from nonliving to living matter. A version of the Miller-Urey experiment could be implemented, with the dock’s spatial separation and control giving far more experimental range. Redox potentials provide a specific source of energy, and specifically coated electrodes provide a programmable distribution of mineral or organic catalysts that can allow controlled investigation of complex spatially resolved chemical evolution.

The dock is also able to interact in programmable ways with microparticles, including the tablets discussed previously. Such interplay between autonomous programmable mobile electrochemical elements and smart docking surfaces may allow the construction of artificially self-reproducing systems with both electronic and chemical facets, see e.g. (Tangen et al., 2015). Further, McCaskill has proposed electronic genomes that can direct chemistry and are heritable. Wills and McCaskill have conceived the construction of artificially self-reproducing systems with both electrochemical elements and smart docking surfaces.

The dock is a part of a larger project, MICREAgents (McCaskill et al., 2012). The original vision of the project included two major technological components: tablets and the dock. Tablets are small (~100 x 100 x 50µm), autonomous electronic elements, comprising a form of smart, programmable, electrochemically active ‘dust’, and unlike conventional smart dust communicating via pairwise interactions rather than wireless radiation. Tablets are poured into a solution, and can interact with the surrounding solution, with each other, and with smart surfaces. A dock is such a static two dimensional array of 256 x 256 microelectrodes (see Fig. 1) beneath a fluid film and connected to a host computer, from which each of the sites may be independently controlled. One goal of MICREAgents was to develop this technology to enable a new form of evolution through the interaction of chemistry with these new hybrid informational-electrochemical elements.

Experimental examples
Electrochemiluminescence (ECL). See Fig.2

Application to ALife
The dock should be useful for novel origin of life experiments, to discover chemistry that enables the transition from nonliving to living matter. A version of the Miller-Urey experiment could be implemented, with the dock’s spatial separation and control giving far more experimental range. Redox potentials provide a specific source of energy, and specifically coated electrodes provide a programmable distribution of mineral or organic catalysts that can allow controlled investigation of complex spatially resolved chemical evolution.

The dock is also able to interact in programmable ways with microparticles, including the tablets discussed previously. Such interplay between autonomous programmable mobile electrochemical elements and smart docking surfaces may allow the construction of artificially self-reproducing systems with both electronic and chemical facets, see e.g. (Tangen et al., 2015). Further, McCaskill has proposed electronic genomes that can direct chemistry and are heritable. Wills and McCaskill have conceived the construction of artificially self-reproducing systems with both electrochemical elements and smart docking surfaces.