Syphacia obvelata and Radfordia affinis infection in mice
Treatment strategy, implementation of a new health monitoring system and establishment of improved quarantine procedures
Harslund, Jakob le Fèvre; Mandrupsen, Karina; Bollen, Peter

Publication date: 2016

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Syphacia obvelata and Radfordia affinis infection in mice

Treatment strategy, implementation of a new health monitoring system and establishment of improved quarantine procedures

Jakob le Fèvre Harslund, Karina Mandrupsen & Peter Bollen
Biomedical Laboratory, University of Southern Denmark, DK-5000 Odense C, Denmark

In 2014 we experienced an infection with Syphacia pinworms. Subsequent health monitoring revealed positive findings of Radfordia and Tritrichomonas. Activities were initiated in an attempt to eliminate the infections and to prevent future similar events.

Materials & methods

Steps in diagnosis and prevention of Syphacia obvelata and Radfordia affinis at the central animal facility of the University of Southern Denmark are presented graphically.

Syphacia obvelata infection was initially diagnosed by perianal tape tests from clinically infected mice and subsequently also by PCR on feces samples.

Radfordia affinis infection was initially diagnosed by microscopy of fur smears from clinically affected mice, demonstrating live fur mites.

Results

After fenbendazole treatment mice were screened by perianal tape tests and PCR analysis of feces samples. All samples negative for pinworms.

Treatment with selamectin has led to complete eradication of fur mites in the facility. Screenings by microscopy and PCR of fur swaps, as well as samples from exhaust manifolds of IVC, were negative.

Discussion and conclusion

Previously imported animals were accepted after evaluation of a recent health monitoring report only. Due to growth of an average population of 2,594 mice in 2008 to 4,957 in 2012, the number of imports and staff movements has increased drastically, resulting in a higher risk for infections.

The infections with pinworms and fur mites were eliminated and successive health monitoring demonstrated continuous absence of these pathogens.

Treatment strategies for eliminating Tritrichomonas muris have not yet been established, and protozoa are diagnosed on irregular basis by PCR and microscopy on intestinal smears.