Time-resolved SANS study of structure formation in a solution of the globular protein Lysozyme

Christensen, Christian Kolle; Lindner, Peter; Tanaka, Shinpei; Klösgen, Beate

Publication date:
2014

Document version
Publisher's PDF, also known as Version of record

Document license
Unspecified

Citation for published version (APA):
Introduction

Protein crystallization has been studied widely for many years, and still remains a bottleneck in solving the structure of proteins. As a part of a study on protein crystallization under confinement, the stability of solutions of the globular protein lysozyme was studied by small angle neutron scattering (SANS). The solutions were probed by time-resolved SANS experiments and the recorded data report on the development of a structure.

Method

Instrument

The samples were studied by SANS at D11 at the ILL. The instrument is shown schematically in Fig. 1.

Sample composition

Lysozyme aqueous solutions of 1, 2, 4, and 8% (wt/wt) with 2 or 4% NaCl were measured for up to 7.5h after preparation, in 1.5h intervals. These initial compositions cover a range of stable and supersaturated conditions as illustrated in Fig. 2.

Results

- **Lysozyme form and size**

 SANS data from a pure dilute (3.4 wt%) protein solution were used to confirm the prolate ellipsoidal shape of the lysozyme, with R_p=11 Å and R_a=18 Å. The best fit (Fig. 4) was obtained using the ellipsoidal form factor and a structure factor calculated for charged, spheroidal particles in a dielectric medium, using the Hayter model.

- **Bragg peaks**

 In one case, 4% (wt/wt) lysozyme solution with 4% (wt/wt) NaCl, two peaks (at q=0.21 Å⁻¹ and q=0.28 Å⁻¹) forming over time were observed. Simultaneously, at low q (q<0.02 Å⁻¹) the signal decreased. The peaks correspond to real space distances of 30Å and 22Å, respectively. The peaks resemble Bragg peaks, suggesting that tiny crystals were formed.

Conclusion

The size and shape of lysozyme was confirmed by SANS on a dilute lysozyme solution. The effective structure factor shows a nearest neighbor peak. In one sample two sharp peaks as well as a decrease in low q scattering were observed. These Bragg-like peaks probably originate from growing small crystallites, at the expense of monomers in solution. The observation was made only in the sample 4% protein/4%NaCl. Possibly the crystal formation was coincidentally captured in the beam for this particular sample, as different from the others, especially the 8% protein/4%NaCl sample.

References

Acknowledgements

Thanks to DanScatt for financial support. Thanks to Ralf Schweins for support during the SANS experiment and for giving an introduction into data analysis by SasView.