Physical activity in childhood and the association with myopia in adolescence – The CHAMPS Eye Study

Lundberg, Kristian; Vestergaard, Anders Højslet; Jacobsen, Nina; Goldschmidt, Ernst; Peto, Tunde; Wedderkopp, Niels; Grauslund, Jakob

Publication date:
2016

Citation for published version (APA):
Purpose

- To investigate the effect of physical activity (PA) on the development of myopia in a Danish cohort of schoolchildren.

Design and methods

- A prospective cohort study with 198 schoolchildren.

Baseline - August to October 2010

- PA assessed with GT3X-accelerometer (ActiGraph) worn at least 10 hours/day, minimum 4 days and 1 weekend day.

- PA measure: mean counts/min.

- Cut off-points for the PA intensity levels:
 - Sedentary (SED) ≤ 100 counts/min
 - Light (L) > 100 counts/min
 - Moderate (M) ≥ 2296 counts/min
 - Vigorous (V) ≥ 4012 counts/min

Follow-up - March to May 2015

- Examination at Department of Ophthalmology, Odense, Denmark, including:
 - Autorefraction in cycloplegia and Keratometry (Tonoref II, Nidek)
 - Biometry (axial length (AL)) (Lenstar LS 900, Haag Streit)

Results

- Results are calculated at follow-up
- Mean age was 15.5 years (range 14.2-17.5)
- 50% were male
- Mean axial length: 23.4±0.94mm
- Mean spherical refractive error (RE): +0.69±1.54 diopter (D)
- 11% were myopic (RE ≤ 0.5 D)
- Mean spherical equivalent (SE): 0.5±1.50D
- 15% were myopic (SE ≤ 0.5 D)
- 10% increment in M-PA-time was predictive of a decrease in AL of 1.2 mm (p<0.01) and an increase in SE of 1.50 (p<0.01)
- Each 10% increment in SED-PA prompt a 0.3 mm longer AL (P<0.05) and a -0.4D increment of the SE (P<0.05)

Conclusion

- Increased level of physical activity was associated with refractive error and a shorter axial length for sedentary and moderate physical activity, consistent with theory.

Table: Characteristics of Study Population of 198 children at follow-up

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>15.5</td>
<td>0.71</td>
<td>14.3-17.5</td>
</tr>
<tr>
<td>Sex (Male), n (%)</td>
<td>99(50)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Axial length, mm</td>
<td>23.4 (0.94)</td>
<td>20.1-25.9</td>
<td></td>
</tr>
<tr>
<td>RE, D*</td>
<td>0.69</td>
<td>1.54</td>
<td>-6.25 – 7.5</td>
</tr>
<tr>
<td>SE, D**</td>
<td>0.5</td>
<td>1.50</td>
<td>-7.12 - 5.37</td>
</tr>
<tr>
<td>Myopia, n (%)</td>
<td>30(15)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PA***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

SED PA, % | 63.3 | 5.79 | 48.2-75.9 |
L PA, %	28.3	4.16	17.6-40.4
M PA, %	5.1	1.56	2.2-9.4
V PA %	3.2	1.47	0.7-8.7

Data are presented as the mean, SD, range or n(%). Right eye only.

*Refractive error.
**Spherical equivalent.
***Myopia: SE ≤ 0.5D.
****Mean time spent on PA for each activity level (%).

Figure 1-4: Prediction from linear regression analyses. Axial length (y-axis) by physical activity (x-axis). 1-4 shows increasing levels of physical activity from sedentary to vigorous. *Statistically significant.