Physical activity in childhood and the association with myopia in adolescence – The CHAMPS Eye Study

Lundberg, Kristian ; Vestergaard, Anders Højslet; Jacobsen, Nina; Goldschmidt, Ernst; Peto, Tunde ; Wedderkopp, Niels; Grauslund, Jakob

Publication date:
2016

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Purpose

- To investigate the effect of physical activity (PA) on the development of myopia in a Danish cohort of schoolchildren.

Design and methods

- A prospective cohort study with 198 school children.

Baseline - August to October 2010

- PA assessed with GT3X-accelerometer (ActiGraph) worn at least 10 hours/day, minimum 4 days and 1 weekend day

- PA measure: mean counts/min

- Cut off-points for the PA intensity levels:
 - Sedentary (SED) ≤ 100 counts/min
 - Light (L) > 100 counts/min
 - Moderate (M) ≥ 2296 counts/min
 - Vigorous (V) ≥ 4012 counts/min

Follow-up - March to May 2015

- Examination at Department of Ophthalmology, Odense, Denmark, including:
 - Autorefraction in cycloplegia and Keratometry (Tonoref II, Nidek)
 - Biometry (axial length (AL)) (Lenstar LS 900, Haag Streit)

Results

- Results are calculated at follow-up

- Mean age was 15.5 years (range 14.2-17.5)
- 50% were male

- Mean axial length: 23.4±0.94mm

- Mean spherical refractive error (RE): +0.69±1.54 diopeter (D)
 - 11% were myopic (RE ≤ 0.5 D)
 - Mean spherical equivalent (SE): 0.5±1.50D
 - 15% were myopic (SE ≤ 0.5 D)

- 10% increment in M-PA-time was predictive of a decrease in AL of 1.2 mm (p<0.01) and an increase in SE of 1.50 (p<0.01)

- Each 10% increment in SED-PA prompt a 0.3 mm longer AL (P<0.05) and a -0.4D increment of the SE (P<0.05)

Conclusion

- Increased level of physical activity was associated with refractive error and a shorter axial length for sedentary and moderate physical activity, consistent with theory.

Background

- Myopia is the most frequent eye disease globally
- Caused by axial growth of the eye during childhood
- Lifestyle changes, reduced physical activity and time spent outdoors are thought to be the driving force behind the rapid increase of myopia worldwide
- This is a sub-study of the Childhood Health, Activity, and Motor Performance Study Denmark (CHAMPS)

Corresponding author

Kristian Lundberg, MD, Phd-student
Phone: +45 6541 3196
E-mail: lars.kristian.lundberg@rsyd.dk

Commercial relationship

The authors have no conflict of interest to disclose
KL: Travel Grant from Novartis and The Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
TP: funded by The NIHR BMRC, London, United Kingdom.

Data are presented as the mean, SD, range or n(%). Right eye only.

*Refractive error.
**Spherical equivalent.
***Myopia: SE ≤ -0.50D.
****Mean time spent on PA for each activity level (%).

Figure 1-4: Prediction from linear regression analyses. Axial length (y-axis) by physical activity (x-axis). 1-4 shows increasing levels of physical activity from sedentary to vigorous. *Statistical significant.