TBEV-complex and Anaplasma phagocytophilum in sheep on the Island of Bornholm in the Baltic Sea

Andersen, Nanna Skaarup; Skarphédinson, Sigurdur; Hansen, Signe Grave; Bestehorn, Malena; Chitimia-Dobler, Lidia; Thamsborg, Stig Milan; Dobler, Gerhard; Moestrup Jensen, Per

Publication date: 2016

Citation for published version (APA):
TBEV-complex and *Anaplasma phagocytophilum* in sheep and ticks on the Island of Bornholm in the Baltic Sea

Andersen NS, **Skarphédinsson S**, **Hansen SG**, **Bestehorn M**, **Chitimia-Dobler L**, **Thamsborg SM**, **Dobler G** and **Jensen PM**

1. Research Unit of Clinical Microbiology, Institute of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark.
2. CCEVI - Clinical Center of Emerging and Vectorborne Infections, Odense University Hospital, Odense, Denmark.
3. Veterinary Parasitology, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark.
4. Bundeswehr Institute of Microbiology, partner of German Center of Infection Research (ZDIF) Munich, Germany.
5. Department of Plant- and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.

Corresponding author: Nanna.Skaarup.Andersen@syed.dk

Objective

The objective of this study was to determine the seroprevalence of the Tick-borne Encephalitis virus complex and *Anaplasma phagocytophilum* in sheep on the Island of Bornholm in the Baltic Sea and to determine the minimal infectious rate of TBEV in ticks collected in the proximity of the grazing areas of the sheep flock.

Introduction

The Tick-borne encephalitis virus complex (TBEV-complex) consist of flaviviruses that can cause disease in both animals and humans. In 2004, Jensen et al. showed that *Tickborne encephalitis virus* (TBEV) and Louping ill-virus (LIV) is coexisting in ticks on the Island of Bornholm in the Baltic Sea (1). TBEV has been known to result in Tickborne Encephalitis in humans on Bornholm since the 1950s (2), whereas LIV, usually resulting in encephalitis in sheep, never had been described in Denmark (3). Previous studies in sheep propose the need of immunosuppression in order for LIV infection to manifest into encephalitis. This immunosuppression was shown to be caused by simultaneous infection with *Anaplasma phagocytophilum* a bacteria causing TBF (Tickborne Fever) in ruminants and HGA (Human Granulocytic Anaplasmosis) in humans (4,5).

Veterinarian Inga Stämphej, consulting a sheep farm on the Island of Bornholm, came to us with a specific concern regarding LIV. A couple of sheep in this farm suffered from symptoms of encephalitis when grazing the Paradise Hills (in Danish: Paradisbakkerne). A blood sample from one of these sheep was sent to the Moredun Institute, Scotland where her suspicion was confirmed, the causative agent was a member of the TBEV-complex. For this reason it was recommended that all lambs in the flock should go to this specific pasture soon after birth. Since then no sheep in the flock has suffered from symptoms of encephalitis.

Even with the lack of new cases of encephalitis she was still concerned that the ticks in this pasture were harbouring LIV/TBE with the potential to cause sickness in both sheep and humans. We decided to investigate this further.

Method

41 sheep grazing the Paradise hills were blood sampled in late June 2014. The sheep was all older than 1 year, female and considered healthy upon examination. The samples were tested for the presence of *A. phagocytophilum* antibodies using a modified commercial indirect immunofluorescence assay test – IFA (Focus Diagnostics, California, USA), replacing the conjugate with diluted (1:10). FITC-labelled antibody to sheep IgG (H+L) produced in rabbit (SeraCare, KPL Antibodies and Reagents, Gaithersburg, USA) and hereafter sent to the Department of Virology, Medical University Vienna where they were examined for the existence of TBEV-complex specific antibodies by virus neutralisation test (VNT). 247 ticks collected by flagging in the proximity of the Paradise hills in late July 2014 were tested for the presence of TBEV in pools of 8 to 11 individuals (29 pools) using real-time RT-PCR (Schwaiger & Cassinotti, 2003) (6).

Results

All 41 sheep samples had antibodies against *A. phagocytophilum* giving a prevalence of 100%, 23 of 41 samples was VNT-positive, 11 negative and 7 samples was not able to be determined due to toxic effect of the serum on the cell, this yielding a seroprevalence of the TBE-virus complex of 68% in the sheep (n=34), Figure 1. No tick pools were PCR positive.

Discussion

Giving the results it is safe to say that members of the TBE-virus complex must still be circulating in the ticks at the Paradise hills on the Island of Bornholm. Due to the possible coexistence of LIV and TBEV on the Island of Bornholm it is difficult to say which of the viruses is causing the seroconversion in the sheep. We examined 247 ticks in the area around Paradise hills and in spite of this we found no TBE-positive ticks, once again showing that ticks is a bad indicator of diseases with such low prevalence.

It is important to characterise the circulating virus. If a sheep shows signs of encephalitis it would be interesting to characterise and isolate the virus from the brain of the sheep. Another possibility could be the trapping and examination of small rodents since they maintain the virus for a longer period of time. The high presence of *A. phagocytophilum* antibodies suggest a potential presence of immunosuppression and hence an ability of LIV to cause encephalitis in the sheep in this specific area, if the virus is circulating.

References

Figure 1: Displays the virus neutralisation test (VNT) titers in sheep grazing the Paradise hills on Bornholm. Titers below 1:10 were considered negative. T.n.d. = toxic effect of the serum on the cell

Support: The work was funded by grants from Odense University Hospital, Denmark and Bundeswehr Institute of Microbiology, partner of German Center of Infection Research (ZDIF) Munich, Germany.