PPAR agonists identified in extracts of elderflowers (Sambucus nigra) by bioassay-guided fractionation

Christensen, Kathrine Bisgaard; Grevsen, Kai; Petersen, Rasmus Koefoed; Kristiansen, Karsten; Christensen, Lars Porskjaer

Published in: Planta Medica

DOI: 10.1055/s-0028-1084145

Publication date: 2008

Document version: Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 22. okt., 2018
PPARγ agonists identified in extracts of elderflowers (Sambucus nigra) by bioassay-guided fractionation

Kathrine B. Christensen1, Kai Grevsen2, Rasmus K. Petersen3, Karsten Kristiansen4, and Lars P. Christensen5
E-mail: kathrine.bisgaard@agrsci.dk

Bioactivity and perspectives

Bioassay-guided chromatographic fractionation of the elderflower extract yielded four bioactive fractions (marked with pink) and the major metabolites in these were naringenin, α-linolenic acid, and linoleic acid. Bioactivity was assessed using a PPARγ transactivation assay and results obtained are shown to the left for the four fractions I, J, K, and L. Rosiglitazone (1 μM) was used as positive control and the results are given as fold activation when DMSO is set to 1. Fatty acids are well-known activators of PPARγ, but naringenin is not and will have to be further tested to establish its potential as an anti-diabetic compound.

Large differences in the content of the active compounds and other metabolites was found among elderflower varieties. This indicates the importance of choosing the optimal elder variety in order to develop effective functional foods/herbal products for prevention/treatment of type 2 diabetes.