Gait stability indices and their relationship with clinical scale scores in stroke patients

Bergamini, Elena; Vannozzi, Giuseppe; Bricca, Alessio; Iosa, Marco; Paolucci, Stefano; Cappozzo, Aurelio

Publication date:
2015

Citation for published version (APA):
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282657401

Gait stability indices and their relationship with clinical scale scores in stroke patients

CONFERENCE PAPER · OCTOBER 2015
DOI: 10.1016/j.gaitpost.2015.07.024

READS
67

7 AUTHORS, INCLUDING:

Giuseppe Vannozzi
Italian University of Sport and Movement "Guido Peri"
43 PUBLICATIONS 325 CITATIONS
SEE PROFILE

Marco Iosa
Foundation Santa Lucia
91 PUBLICATIONS 828 CITATIONS
SEE PROFILE

Stefano Paolucci
Foundation Santa Lucia
155 PUBLICATIONS 2,996 CITATIONS
SEE PROFILE

Aurelio Cappozzo
University of Rome Foro Italico
186 PUBLICATIONS 5,695 CITATIONS
SEE PROFILE

Available from: Elena Bergamini
Retrieved on: 29 January 2016
Gait stability indices and their relationship with clinical scale scores in stroke patients
Elena Bergamini, Giuseppe Vannozzi, Alessio Bricca, Paolo Varvara Casella, Marco Iosa, Stefano Paolucci, Aurelio Cappozzo

1 BOHNES, University of Rome “Foro Italico”, Roma, Italy, 2 S. Lucia Foundation IRCCS, Roma, Italy

INTRODUCTION
Stroke patients are at particular risk for falling [1]. Gait stability, defined as the capacity of maintaining equilibrium minimizing accelerations at upper body level [2], is considered as a major factor in fall risk assessment [3]. To quantify gait stability, clinical scales are normally used in clinics. However, they are highly operator-dependent thus lacking reliability [3]. On the other hand, objective methods exist that quantify gait stability in terms of acceleration at upper body level and its attenuation going from the lower to the upper trunk and head. These methods, often based on the use of wearable sensors, have been validated both in healthy [4] and pathological subjects [5]. However, with regard to stroke patients, no information is available. Moreover, the relationship between the acceleration attenuation and clinical scale scores is not clear. The purpose of the present study is to fill this gap.

METHODS
Fourteen sub-acute stroke patients (PG) (age 40-90 years, Functional Ambulation Scale ≥ 3) and 14 healthy adults (CG) were included in the study. The Barthel Index, Tinetti Balance and Gait Scale, Berg Balance Scale (BBS), and Functional Ambulation Scale (FAC) were administered to each patient. Participants performed a 10m-walking test wearing 3 inertial sensors located at the pelvis (P), sternum (S), and head (H) levels. The root mean square (RMS) values of each acceleration component (AP, ML, CC) at each body level was calculated and normalized with respect to the participants’ walking speed [6]. The attenuation coefficients between each level pair (Cij) were then obtained as described in [4]. To investigate if significant differences existed between PG and CG for both RMS and Cij, a Mann Whitney-U test was performed. In addition, the relationship between Cij and the clinical scale scores was assessed with the Spearmans correlation coefficient (ρ) (α = 0.05).

RESULTS
Stroke patients displayed slightly smaller normalized RMS values with respect to CG, for all three levels and components. However, no significant difference was found between the two groups. The values of the attenuation coefficients between each level pair, for both PG and CG, are reported in Fig.1. Moderate to strong significant correlations between Cij and the clinical scale scores were found for the Barthel, Tinetti, and FAC scales (ρ = 0.51÷0.73), especially with respect to the AP and ML Cij.

Figure 1: Cij results for each acceleration component. * Significant differences between PG and CG.

DISCUSSION
Although no significant difference was found in the normalized RMS values between the two groups, the PG displayed a reduced attenuation capacity of the accelerations in the medio-lateral direction with respect to CG. This is probably due to the presence of both trunk rigidity and gait asymmetries, as a consequence of hemiparesis, which typically affects these patients. The BBS does not seem an adequate tool for assessing gait stability in stroke patients, whereas a relationship exists between the other clinical scales (Barthel, Tinetti, and FAC) and the attenuation coefficients. Ad hoc studies, however, are needed to assess the sensitivity and specificity of these coefficients in clinical contexts.

REFERENCES