The use of Artemisia annua in the prevention of necrotic enteritis in a broiler disease model

Engberg, Ricarda Margarete; Grevsen, Kai; Ivarsen, Elise; Frete, Xavier; Christensen, Lars Porskjær

Published in: Proceedings of the 18th European Symposium on Poultry Nutrition

Publication date: 2011

Document version Publisher's PDF, also known as Version of record

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The use of *Artemisia annua* in the prevention of necrotic enteritis in a broiler disease model

Ricarda M. Engberg*, Kai Grevsen†, Elise Ivarsen‡, Xavier Fretté§, Lars Porskjær Christensen∥

*Department of Animal Science, †Department of Horticulture, Aarhus University, Denmark, "Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark

Introduction

The plant *Artemisia annua* contains considerable amounts of essential oils, i.e. camphor, 1,8 cineole and artemisia ketone with antimicrobial effect on *Clostridium perfringens* Type A, causing necrotic enteritis in broilers.

Aim

The aim of the study was to investigate the effect of a dietary supplementation of either dried *A. annua* leaves or an extract from dry leaves on the course of necrotic enteritis in broilers applying a disease model.

Material and Methods

Antimicrobial effect of *A. annua* extracts against *C. perfringens*

In order to find the most potent *A. annua* extract to be used as feed additive in the consecutive broiler experiment, the minimal inhibitory concentrations (MIC values) of extracts extracted with either methanol or dichlormethane or *n*-hexane were determined in 96 well microplates. The plant extracts were initially dissolved in dimethylsulfoxide and serial two-fold dilutions were made in Anaerobe Basal Broth (Oxoid). A volume of 20 μl of an overnight *C. perfringens* culture (strain 48) was added to 250 μl medium in the wells of the microplates. The plates were incubated under anaerobic conditions at 38 °C. After 24 h microbial growth was recorded visually and by measuring the absorbance at 650 nm.

The *n*-hexane extract had the lowest MIC value indicating the strongest antimicrobial effect on *C. perfringens* (Table 1) and was therefore used as feed additive in the broiler experiment.

Broiler experiment

A broiler experiment was carried out over 27 days with 320 male broilers divided into 4 experimental groups (4 replicate floor pens/group).

- Group 1 control, non-infected
- Group 2 control, infected
- Group 3 dried plant 10 g/kg, infected
- Group 4 *n*-hexane extract 250 mg/kg, infected

The infection model was based on a sudden shift to a feed providing 30% fish meal at the expense of soya meal on days 17, 18, 19 and 20, a 10 fold overdose of an attenuated live coccidiosis vaccine (Paraxol 5) on day 18, and inoculation of the feed and the individual birds with *C. perfringens* strain 48 isolated from a diseased broiler flock. On each of days 22, 24 and 27, 5 birds per pen were killed. Small intestinal lesions were scored on a scale from 0 (no pathological changes) to 6 (severe diffuse necrosis). In caecal contents, *C. perfringens* numbers were counted on Tryptose Sulphite Cycloserine (TSC) agar incubated anaerobically for 24 hours at 36 °C. Individual body weights of 10 birds per pen were registered on day 17 before feed shift and on day 27.

Table 1. Minimal inhibitory concentration of extracts against *Clostridium perfringens*

<table>
<thead>
<tr>
<th>Solvent extract</th>
<th>MIC (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>> 600</td>
</tr>
<tr>
<td>Dichlormethane</td>
<td>270</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>170</td>
</tr>
</tbody>
</table>

Results and Discussion

None of the feed additives could prevent the development of necrotic enteritis in the experimental birds. The most severe small intestinal lesions and the highest *C. perfringens* numbers in caecal content were found at day 24 (Table 2). Birds supplemented with the *n*-hexane extract had lower lesion scores (P<0.05) and lower caecal *C. perfringens* counts (P<0.05) on days 22 and 27 as compared to the other infected groups (Table 1). This indicates a positive influence on the course of the disease in terms of a later disease onset and a faster recovery of the birds. The infection caused a severe growth depression (Figure 1). In the period from 17-27 days, no difference regarding body weight gain was found between the infected control group and the group receiving dried plant material (P>0.05). Birds supplemented with *n*-hexane extract had a higher weight gain (P<0.05) than the other infected groups (Figure 1).

Conclusion

In a necrotic enteritis disease model, the dietary supplementation of a *n*-hexane extract from dried leaves of *A. annua* modulates the course of the infection in a positive way and prevents to a certain extent severe growth depression related to the disease.

Table 2. Small intestine lesion score and numbers of *Clostridium perfringens* in the contents of caeca (log CFU/g)

<table>
<thead>
<tr>
<th>Lesion score</th>
<th>Control, non-infected (log CFU/g)</th>
<th>Control, infected</th>
<th>Dried plant (10 g/kg), infected</th>
<th>n-Hexane extract (250 mg/kg), Infected</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 days</td>
<td>0 ±a</td>
<td>1.75 ±a</td>
<td>1.30 ±a</td>
<td>0.60 ±b</td>
<td>***</td>
</tr>
<tr>
<td>24 days</td>
<td>0 ±a</td>
<td>3.65 ±a</td>
<td>2.75 ±a</td>
<td>2.65 ±a</td>
<td>***</td>
</tr>
<tr>
<td>27 days</td>
<td>0 ±c</td>
<td>1.75 ±a</td>
<td>1.30 ±a</td>
<td>0.60 ±b</td>
<td>***</td>
</tr>
<tr>
<td>C. perfringens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 days</td>
<td>3.27 ±c</td>
<td>8.31 ±a</td>
<td>7.92 ±b</td>
<td>7.10 ±b</td>
<td>***</td>
</tr>
<tr>
<td>24 days</td>
<td>5.45 ±b</td>
<td>8.53 ±a</td>
<td>8.30 ±a</td>
<td>7.90 ±a</td>
<td>**</td>
</tr>
<tr>
<td>27 days</td>
<td>2.31 ±c</td>
<td>6.83 ±a</td>
<td>7.23 ±a</td>
<td>6.09 ±b</td>
<td>***</td>
</tr>
</tbody>
</table>

*Means in the same row with different superscripts differ significantly (P<0.05).