Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years

Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Perfluorinated alkylate substances (PFASs) are highly persistent and may cause immunotoxic effects. PFAS-associated attenuated antibody responses to childhood vaccines may be affected by PFAS exposures during infancy, where breastfeeding adds to PFAS exposures. Of 490 members of a Faroese birth cohort, 275 and 349 participated in clinical examinations and provided blood samples at ages 18 months and 5 years. PFAS concentrations were measured at birth and at the clinical examinations. Using information on duration of breastfeeding, serum-PFAS concentration profiles during infancy were estimated. As outcomes, serum concentrations of antibodies against tetanus and diphtheria vaccines were determined at age 5. Data from a previous cohort born eight years earlier were available for pooled analyses. Pre-natal exposure showed inverse associations with the antibody concentrations five years later, with decreases by up to about 20% for each two-fold higher exposure, while associations for serum concentrations at ages 18 months and 5 years were weaker. Modeling of serum-PFAS concentration showed levels for age 18 months that were similar to those measured. Concentrations estimated for ages 3 and 6 months showed the strongest inverse associations with antibody concentrations at age 5 years, particularly for tetanus. Joint analyses showed statistically significant decreases in tetanus antibody concentrations by 19-29% at age 5 for each doubling of the PFAS exposure in early infancy. These findings support the notion that the developing adaptive immune system is particularly vulnerable to immunotoxicity during infancy. This vulnerability appears to be the greatest during the first 6 months after birth, where PFAS exposures are affected by breast-feeding.

LanguageEnglish
JournalJournal of Immunotoxicology
Volume14
Issue number1
Pages (from-to)188-195
ISSN1547-691X
DOIs
StatePublished - 2017

    Research areas

  • Journal Article