Conformational Impact on Energy Storage Efficiency of Subphthalocyanine-Fullerene Hybrids

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  • Jonas Sandby Lissau
  • Alberto Viñas Muñoz
  • Henrik Gotfredsen
  • Martyn Jevric
  • Mogens Brøndsted Nielsen
  • Theis I. Sølling

Vis graf over relationer

Hybrid molecules involving subphthalocyanine and Buckminsterfullerene derivatives are interesting candidates as heavy metal free triplet sensitizers. Subphthalocyanine efficiently absorbs visible photons and transfer the singlet excited state energy to the Buckminsterfullerene where intersystem crossing produces triplet states in high yield. Thus, far the efficiency of the triplet-generating photophysics in these systems has been hampered by back energy transfer to the subphthalocyanine triplet state resulting in loss of excitation energy. Herein an efficient strategy is realized to avoid loss of triplet energy by back energy transfer. A hybrid molecule based on subphthalocyanine and Buckminsterfullerene is presented in which dispersion-induced π-π interactions result in a molecular geometry where highly efficient through-space singlet excited state energy transfer takes place in one direction, whereas energy flow in the opposite direction via the triplet manifold is blocked by lack of orbital overlap. The approach opens for a new class of heavy-metal-free triplet sensitizers of particular relevance to the fields of photodynamic therapy and noncoherent photon upconversion.

SprogEngelsk
TidsskriftJournal of Physical Chemistry A
Vol/bind122
Tidsskriftsnummer33
Sidetal (fra-til)6683-6692
ISSN1089-5639
DOI
StatusUdgivet - 2018